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Abstract

We propose a structured low rank matrix completion algorithm to recover a time series of images 

consisting of linear combination of exponential parameters at every pixel, from undersampled 

Fourier measurements. The spatial smoothness of these parameters is exploited along with the 

exponential structure of the time series at every pixel, to derive an annihilation relation in the k − t 
domain. This annihilation relation translates into a structured low rank matrix formed from the k−t 
samples. We demonstrate the algorithm in the parameter mapping setting and show significant 

improvement over state of the art methods.
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1. INTRODUCTION

The recovery of linear combination of damped exponentials from few of their measurements 

is a classical problem in signal processing, starting with the seminal work of Prony [1]. 

Early work, which focused on uniform sampling, relied on the existence of a filter that 

annihilates the uniform measurements. Recently, several researchers have extended this idea 

to the non-uniform sampling setting, which is a more efficient measurement strategy. These 

methods pose the estimation as the completion of a structured matrix (e.g Hankel or 

Toeplitz), whose entries are the signal samples, from few of its measurements. Specifically, 

the annihilation filters are the null space vectors of the Toeplitz matrix, or equivalently the 

matrix is low-rank.

The above exponential estimation problem is of high significance in several medical imaging 

applications, including MR spectroscopic imaging and MR parameter mapping. These 

methods perform a pixel-by-pixel estimation of the exponential parameters (e.g. frequencies, 

decay rate, amplitudes) from an image time series. The parameters provide valuable clues 

about the abnormal metabolic activity and tissue micro-structural changes, which are early 

markers for neurological disorders. The parameters often vary smoothly in space since they 

depend on the underlying tissue microstructure. Unfortunately, the acquisition of the image 

time series at high spatial resolution results in prohibitively long scan time. A common 

approach to accelerate the acquisition is to acquire under sampled data, followed by 

reconstruction using low rank and sparsity priors.
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We introduce a novel formulation that directly exploits the exponential structure of the time 

series and the spatial smoothness of the exponential parameters. Specifically, we couple the 

time series estimation problems at all the pixels into a single annihilation relation, involving 

a spatially smooth annihilation filter. This approach exploits the spatial smoothness 

naturally; we do not require additional spatial regularization priors. The annihilation 

relations translate to a low-rank penalty on a Toeplitz matrix, whose entries are the k − t 
space samples of the time series.

A challenge with the above formulation is the large size of the Toeplitz matrix. The direct 

implementation of the structured low-rank problem will be prohibitive for high resolution 

applications. We generalize our generic iteratively reweighted annihilating filter (GIRAF) 

framework, originally introduced for piecewise smooth images [2], to accelerate the 

computations. In particular, we use an iterative reweighted formulation, where we exploit the 

Toeplitz structure of the matrix to avoid its direct computation and storage. The GIRAF 

scheme approximates the linear convolutions resulting from the Toeplitz multiplications with 

circular convolutions, which allowed their evaluation using Fast Fourier Transform (FFT). 

These approximations were enabled by the fast decay of the image Fourier coefficients 

towards the edges of the observed region. Unfortunately, this approach breaks down in our 

setting since we rely on annihilation relations in k − t space, where the signal has 

considerable intensity at the first image. Hence, we modify the GIRAF steps using a hybrid 

circular-linear convolution strategy. These generalizations provide a fast algorithm that can 

be readily applied to large-scale exponential estimation problems. Our validations using 

MRI data clearly demonstrate the benefits offered by the proposed algorithm, which can 

simultaneously exploit the exponential structure and the spatial smoothness of the 

parameters.

This work has similarities to recent works on structured low-rank priors for the estimation of 

piecewise smooth signals and exponential signals. For example, [3] exploited the 

smoothness of the kx − t signal using a low-rank prior on a wavelet transform weighted 

Hankel matrix. This work does not exploit the exponential structure of the signal. In 

addition, the recovery of each ky − t slice is decoupled into a separate problem to keep the 

computational complexity reasonable [3]. This decoupled approach is less constrained and 

cannot handle efficient 2-D sampling patterns; Cartesian patterns with fully sampled kx lines 

were considered in [3]. In [4], the linear predictability of the time series at each pixel is 

exploited individually. Since this decoupled strategy is less constrained, the authors rely on 

additional low-rank and wavelet sparsity regularization penalties; the optimization of several 

regularization parameters is also challenging. While the piecewise smoothness and sparsity 

has also been exploited by several researchers using the structured low-rank setting [5] [6], 

[7] they do not exploit the exponential signal structure.

2. PROBLEM FORMULATION

We focus on the recovery of a 3-D volume ρ, consisting of a linear combination of damped 

exponentials at every pixel, from noisy and undersampled measurements denoted by b. We 

will now introduce the annihilation relations, and the resulting structured low-rank priors.
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2.1. Annihilation of spatially smooth exponentials

We model the temporal signal at the spatial location r = (x, y) ∈ ℤ2 as :

ρ[r, n] = ∑
i = 1

L
αi(r)βi(r)n . (1)

Note that the temporal signal ρ[r, n] is a linear combination of L exponentials, αi(r) ∈ ℂ are 

the amplitudes and βi(r) ∈ ℂ are the exponential parameters that are dependent on the 

physiological process. For example, in T2 mapping applications, the exponential parameters 

βi = exp −ΔT
T2, i(r) , where ΔT is the time between two image frames and T2,i is the relaxation 

parameter of the ith tissue component (e.g. gray matter, CSF, white matter) at the voxel 

indexed by r.

It is well known that the exponential signal in (1), corresponding to a specific spatial 

location r, can be annihilated by a filter h[r, n] [1]:

∑
k ∈ θ

ρ[r, n − k] ℎ[r, k] = 0 = μ[r, n], ∀r . (2)

where (2) represents a 1-D convolution and θ is a valid index set. The coefficients of h[r, n] 

at r are specified by ℎ[r, z] = ∏i = 1
L 1 − βi(r)z−1 . Computing the 2-D Fourier transform 

(along the spatial dimension, denoted by r) of (2), we obtain

ρ[k, n] ⊗ c[k, n] = 0. (3)

Here, ρ[k, n] are the spatial (2-D) Fourier coefficients of the measurements ρ[r, n] and ⊗ 
denotes 3D convolution. Similarly, c[k, n] denotes the spatial (2-D) Fourier coefficients of 

h[r, n]. We assume that the parameters βi(r) describing the physiological process are 

bandlimited functions of the spatial variable r; this implies that c[k, n] is a 3D FIR filter. In 

particular, the extent of the filter c[k, n] in the spatial frequency (k) dimension controls the 

spatial smoothness of the filter h[r, n], while its extent in the temporal dimension (n) 

depends on the number of exponentials in the model (1). We express (3) in a matrix form as

T(ρ)c = Qc = 0 (4)

where T is a linear operator that maps a 3D volume x to a lifted matrix T(x) ∈ ℂM × N. 

Here the lifted matrix has a multi-fold Toeplitz structure, such that Qc corresponds to the 3-

D convolution between ρ[k, n] and the FIR filter c[k, n]. The number of columns of the 

matrix T(ρ) is equal to the assumed support of the filter. Likewise, if the measurements 

ρ[k, n] are restricted to a cube shaped volume in (k, n), the rows correspond to the valid 

convolutions.

In practice, the support of the filter c[k, n] is unknown. Let us assume that (3) is satisfied by 

a minimal filter c[k, n] of support Δ ⊂ ℤ3. In this case, we observe that
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ρ[k, n] ⊗ d[k, n] = 0, (5)

where d = c ⊗ e and e[k, n] is any FIR filter. Note that the support of d, denoted by Θ is 

larger than Δ; i.e, Δ ⊂ Θ. Hence, if we over-estimate the support of the filter c, there will be 

many linearly independent annihilating filters in the nullspace of T(ρ), or equivalently T(ρ)
is low rank.

To avoid oversmoothing of the parameter maps, we choose the spatial support of the 3D 

filter c to be large. This implies that the lifted matrix Q is rectangular (more columns than 

rows) in the parameter mapping setting.

2.2. Recovery using structured low-rank matrix priors

In this paper, we focus on the recovery of T2 weighted MR images from their undersampled 

multichannel encoded measurements, denoted by

b = A(ρ) + η, (6)

where A is a linear operator representing Fourier under sampling and multiplication of coil 

sensitivities with ρ. We pose the recovery of the signal (1) as the structured low rank matrix 

recovery problem:

ρ⋆ = argmin
ρ

‖T(ρ)‖p + λ
2 ‖A(ρ) − b‖2

2
(7)

where λ is a regularization parameter and ∥X∥p is the Schatten p norm, defined as 

‖X‖p: = 1
pTr[ X * X

p
2 ] = 1

pTr[ XX *
p
2 ] = 1

p ∑iσi
p; σi are the singular values of X. Here, T(ρ)

denotes the structured multifold Toeplitz matrix, whose entries are the samples of ρ; ρ
corresponds to the 2-D Fourier coefficients of ρ.

3. OPTIMIZATION ALGORITHM

We rely on the iterative re-weighted least squares (IRLS) based algorithm to solve (7). The 

basic idea is to use the identity ‖Y‖p = ‖H
1
2Y‖F

2
, where H = YY *

p
2 − 1. We use an 

alternating minimization algorithm, which alternates between the following two sub-

problems, to solve (7):

Hn = [T ρn − 1 T ρn − 1 *
R

+ ϵnI]
p
2 − 1

(8)

ρn = argmin
ρ

1
2‖Hn

1
2T(ρ)‖F

2
+ λ

2 ‖A(ρ) − b‖2
2 (9)
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where ∊n → 0 is added to stabilize the inverse. We will now focus on an efficient 

implementation of the subproblems.

3.1. Least squares-Update

Let the rows of H
1
2  be denoted by [(h(1))T , …, (h(M))T ]

T
. Substituting for H

1
2  in (9), we obtain

ρ* = argmin
ρ

1
2 ∑

i = 1

M
‖h(i)T(ρ)‖2

2 + λ
2 ‖A(ρ) − b‖2

2
(10)

Note that the term h(i)T(ρ) is the linear convolution between the 3-D sequences h(i) and ρ. In 

the GIRAF algorithm [2], we relied on the approximation of the linear convolution by 

circular convolutions to accelerate its computations using FFT. We exploited the fast decay 

of the Fourier coefficients in GIRAF, which made the approximations valid. Here we rely on 

the annihilation relations in the k − t domain, where the signal does not decay rapidly in the 

temporal dimension. Hence we use a hybrid approach that consists of performing linear 

convolutions along time and circular convolutions along the spatial dimension.

Let h(i) and ρ consist of Nt and T frames respectively and let k denote T − Nt + 1. Let each 

frame of the filter h(i) be of dimension N1 × N2. Now (h(i)T(ρ)) can be simplified as,

h(i)T(ρ) = hNt
(i) … h1

(i)
T ρk … T ρ1

⋮ ⋮ ⋮
T ρk + Nt − 1 ⋯ T ρNt

(11)

In the above equation, T ρj  represents a Toeplitz matrix formed from ρj; the product 

hi
(i)T ρj  corresponds to the 2-D convolution between the ith frame of the filter h(i) and jth 

frame of ρ. We safely approximate each of the 2-D convolutions by circular convolutions as 

in GIRAF and compute them efficiently using Fast Fourier transforms.

3.2. Weight-Update

We consider the Gram matrix R in (8) that has the following structure:

R1, 1 R1, 2 … R1, Nt
⋮ ⋮ ⋯ ⋮

RNt, 1 RNt, 2 ⋯ RNt, Nt

(12)

with Nt column and row partitions and Ri,j is a matrix block of dimension N1N2 × N1N2. We 

obtain the general expression for the matrix block Rp,q as.

Rp, q = ∑
i = 1

k
T(ρp + i − 1)T(ρq + i − 1) * (13)
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We observe that the Toeplitz matrix T(ρi) can be expressed as T(ρi) = PΛ* Circ(ρi)PΓ, where 

PΓ ∈ ℂL × PQ is a matrix that restricts the convolution onto a valid index set represented by 

Γ, Circ(ρi) ∈ ℂL × L is a circulant matrix formed from ρi and PΛ* ∈ ℂN1N2 × L is a matrix 

representing zero-padding outside the filter support Λ; here P, Q are the spatial dimensions 

of ρ. Now T(ρi)T(ρj) * can be simplified as

Pi, j = PΛ*Circ(ρi)Circ(ρj)*
Circ(g)

PΛ
(14)

where the entries of Circ(g) are generated from the array g given by F(FH(ρi) ∘ conj(FH(ρj))), 
conj denotes the conjugate operation and ◦ denotes point-wise multiplication. We evaluate 

the weight matrix H as

H = U(Λ + ϵI)U *
p
2 − 1 = U(Λ + ϵI)

p
2 − 1U * ,

where UΛU* is the eigen decomposition of R. Hence, one choice of the matrix square root 

H
1
2  is (Λ + ϵI)

p
4 − 1

2U *.

4. EXPERIMENTS

A fully sampled axial 2-D dataset was acquired on a Siemens 3T Trio scanner using 12 coils 

and a turbo spin echo sequence. The following scan parameters were used in the acquisition: 

Matrix size:128×128, FOV: 22×22 cm2, TR = 2500 ms and slice thickness = 5 mm. The T2 

weighted images were obtained for 12 equispaced echo (TE) times ranging from 10 to 120 

ms. Post reconstruction, the T2 maps were obtained by fitting a mono-exponential model to 

each voxel.

We first study the effect of the filter size (dimensions of the block Toeplitz matrix) on the 

SNR of the images recovered from 8-fold undersampled multichannel Fourier data in Table. 

1. We observe that the spatial dimensions of the filter have the largest influence on the SNR, 

as seen from Table. 1.(b). Specifically, we observe that filters with smaller support provides 

improved results, which demonstrates the benefit of exploiting spatial smoothness; a filter 

with size 128×128×10 fails to exploit smoothness. We also observe from the Table. 1.(a) the 

benefit of using temporal annihilation relations. Specifically, we obtain a 0.5 dB 

improvement over the filter with size 122×122×1, which only exploits joint sparsity, by 

increasing the length of the filter along time.

In Fig. 2, we compare the proposed approach with k − t low rank algorithm on the recovery 

of single coil (coil compressed) T2 weighted data from 30% uniform random measurements. 

We chose a filter of size 122 × 122 × 2 and a Schatten p = 0.6. We observe that the proposed 

scheme provides lower errors (see caption for details).

In Fig. 3, we compare the two methods on the recovery of multi-channel T2 weighted data 

from 12-fold (3-fold variable density + 4-fold 2×2 Cartesian) undersampled data. We chose 
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a filter of size 114 × 114 × 10 and a Schatten p = 0.7 for the proposed scheme (see caption 

for details).

5. CONCLUSION

We introduced a novel structured low rank algorithm to recover a 3-D volume consisting of a 

linear combination of exponentials, from undersampled Fourier measurements. A 

convolution relation was obtained between the k − t Fourier samples and a 3-D FIR filter by 

exploiting the exponential structure of the time series at every pixel and the smoothness of 

the parameters. To speed up the computations, a hybrid approach was employed which 

consisted of performing circular and linear convolutions along the spatial and temporal 

dimensions respectively. The algorithm was applied in the context of MR parameter 

mapping and the reconstructed images and maps were sharper and had fewer errors than 

those obtained from state of the art methods.
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Fig. 1: 
Construction of the Toeplitz matrix T(ρ): The rows of the matrix correspond to the cube 

shaped neighborhoods of the Fourier samples. The missing entries of the matrix are 

estimated by exploiting its low rank structure.
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Fig. 2: 
Comparison of the proposed method with k − t low rank on the recovery of single channel 

data from 30 percent uniform random measurements. The improvements offered by the 

proposed scheme can be easily appreciated from the estimated T2 error images in (a) and the 

T2 estimates in (b).

Balachandrasekaran and Jacob Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Comparison of the proposed method with k − t low rank on the recovery of multi channel 

data at an acceleration of 12. We observe that the reconstructions from the proposed method 

have fewer errors, which can be appreciated from the error maps of the T2 weighted images 

in (a) as well with the noise-like artifacts in the T2 maps in (b).
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Table 1:

Effect of filter size on SNR of T2 weighted images.

(a) Varying temporal dimension (b) Varying spatial dimensions

filter size SNR (dB) filter size SNR (dB)

122x122x11 31.80 128x128x10 29.9

122x122x10 32.1 122x122x10 32.1

122x122x7 32 118x118x10 32.44

122x122x2 31.84 116x116x10 32.49

122x122x1 31.56 114x114x10 32.54
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