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Abstract

Purpose: To describe a large, publicly available dataset comprising computed tomography (CT) 

projection data from patient exams, both at routine clinical doses and simulated lower doses.

Acquisition and Validation Methods: The library was developed under local ethics 

committee approval. Projection and image data from 299 clinically performed patient CT exams 

were archived for three types of clinical exams: noncontrast head CT scans acquired for acute 

cognitive or motor deficit, low-dose noncontrast chest scans acquired to screen high-risk patients 

for pulmonary nodules, and contrast-enhanced CT scans of the abdomen acquired to look for 

metastatic liver lesions. Scans were performed on CT systems from two different CT 
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manufacturers using routine clinical protocols. Projection data were validated by reconstructing 

the data using several different reconstruction algorithms and through use of the data in the 2016 

Low Dose CT Grand Challenge. Reduced dose projection data were simulated for each scan using 

a validated noise-insertion method. Radiologists marked location and diagnosis for detected 

pathologies. Reference truth was obtained from the patient medical record, either from histology 

or subsequent imaging.

Data Format and Usage Notes: Projection datasets were converted into the previously 

developed DICOM-CT-PD format, which is an extended DICOM format created to store CT 

projections and acquisition geometry in a nonproprietary format. Image data are stored in the 

standard DICOM image format and clinical data in a spreadsheet. Materials are provided to help 

investigators use the DICOM-CT-PD files, including a dictionary file, data reader, and user 

manual. The library is publicly available from The Cancer Imaging Archive (https://doi.org/

10.7937/9npb-2637).

Potential Applications: This CT data library will facilitate the development and validation of 

new CT reconstruction and/or denoising algorithms, including those associated with machine 

learning or artificial intelligence. The provided clinical information allows evaluation of task-

based diagnostic performance.
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1. INTRODUCTION

Introduced to the world in 1971, x-ray computed tomography (CT) remains an invaluable 

medical technology that continues to undergo significant hardware and algorithmic 

advances. Iterative reconstruction (IR) methods, which were used in the EMI Mark I CT 

system invented by Sir Godfrey Hounsfield,1,2 were quickly replaced by much faster to 

perform filtered back projection (FBP) methods, which have been the primary method for 

reconstructing clinical CT images for decades. With the advent of helical (spiral) and 

multidetector row CT technologies, analytical CT reconstruction approaches evolved to take 

into consideration new data acquisition geometries, including cone beam geometries. 

Between approximately 1990 and 2010, iterative approaches to CT image reconstruction 

began to emerge that demonstrated improved spatial resolution, decreased image noise, or 

both.3–7

In 2003, Thibault et al. used multislice helical CT reconstruction projection data from a 

clinical CT exam to compare images reconstructed with a model-based statistical iterative 

reconstruction approach to those reconstructed using a commercial FBP-based approach, 

demonstrating both improved in-plane spatial resolution and decreased image noise.8 Since 

then, new reconstruction algorithms have been routinely evaluated by comparing the results 

from the new algorithm to those from an established high-quality reconstruction approach, 

where each method uses the same input projection data. Radiologist preferences were 

initially used to evaluate the clinical acceptability of new iterative reconstruction algorithms, 

which gave way to more rigorous evaluation methods, which have demonstrated, for 
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example, that these new nonlinear reconstruction and denoising approaches have contrast-

dependent spatial resolution and change the shape of the noise power spectrum.9–11 To 

evaluate the impact of these effects on the ability of human observers to perform clinically 

relevant tasks, multireader, multicase observer performance studies and model observer 

performance studies have become essential to adequately demonstrate the ability of a new 

algorithm to maintain or exceed a desired level of diagnostic performance under the 

condition of reduced patient radiation dose. A subset of cases from this data library has been 

successfully used for such studies.12–19 Since conducting the 2016 Low Dose CT Grand 

Challenge,16 in conjunction with the American Association of Physicists in Medicine and 

support from NIH awards EB017095 and EB017185, over 500 investigators from over 40 

countries have requested access to the 30 abdominal CT studies used in the Grand 

Challenge. In the first 2 weeks after the data library was made public, over 22 TB of data 

consisting of nearly 7000 image series have been downloaded (one scan results in one image 

series and one projection data series).

Investigators from a wide range of disciplines have expertise in image reconstruction or 

noise reduction methods, but to date have been unable to apply their knowledge to medical 

CT imaging due to the lack of availability of the necessary patient data. This is because 

access to clinical CT projection data has been extremely limited due to the proprietary 

information and formatting of manufacturer-specific projection data files. The purpose of 

this data library is to make patient CT projection data, and reference information regarding 

type and location of pathology, publicly available to accelerate development of high impact 

approaches to increasing diagnostic performance as patient dose is decreased. The 

availability of this CT data library will facilitate the development and validation of new CT 

reconstruction and/or denoising algorithms, including those associated with machine 

learning or artificial intelligence while the provided clinical information will allow 

assessment of task-based diagnostic performance.

2. ACQUISITION AND VALIDATION METHODS

2.A. Overview of dataset

The library consists of CT patient scans from three common exam types: noncontrast head 

CT scans acquired for acute cognitive or motor deficit, low-dose noncontrast chest scans 

acquired to screen high-risk patients for pulmonary nodules, and contrast-enhanced CT 

scans of the abdomen acquired to look for metastatic liver lesions. A large majority of the 

head CT scans were performed using our default clinical head CT protocol to rule evaluate 

acute neurologic deficit, bleeding/hemorrhage. All patients had suspected acute neurologic 

deficit. A few patients were scanned using a higher dose setting as part of a trauma protocol 

in our Emergency Department. Similarly, contrast-enhanced abdominal CT scans were all 

portal phase at the dose level corresponding to our default contrast-enhanced abdominal CT 

dose level. The majority of scans were obtained at the routine dose level; however, some 

multiphase scans were performed at higher dose levels. In these cases, the noise insertion 

tool was used to standardize the radiation dose level of the “full” dose cases to that of the 

default abdominal CT protocol. The data for each patient include CT projection data at the 

acquired (full) dose and a simulated reduced dose, reconstructed image data, and the 
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location and diagnostic for positive findings. With assistance of the participating scanner 

manufacturers, Siemens Healthineers (Forchheim, Germany) and GE Healthcare (Waukesha, 

WI), projection data were converted from the manufacturer’s proprietary format into the 

previously described DICOM-CT-PD data format.20 Reconstructed images are provided 

using the DICOM-CT image storage standard.21 Clinical reports provide the location and 

diagnosis for positive findings, including snapshots of the identified findings delineated by 

radiologist-drawn regions of interest. These data are provided in a non-DICOM spreadsheet 

file.

After approval from Mayo Clinic’s Institutional Review Board, patient data were collected 

at two Mayo Clinic locations (Rochester MN and Scottsdale AZ) using each practice’s 

routine clinical protocols. A total of 299 adult patient cases were collected, which included 

CT scans of the head, chest, and abdomen (Fig. 1). Approximately 50% of the data are 

negative for disease. Each case includes projection data, image data, and clinical findings.

2.B. Data acquisition, modification, and reconstruction

Both of the manufacturers whose CT systems were used in the acquisition of patient data 

granted permission to share projection data using the vendor-neutral DICOM-CT-PD format. 

The DICOM-CT-PD files were generated using a MATLAB (MathWorks, MATLAB version 

R2016a) script. The headers of the DICOM-CT-PD files provide the geometric information 

required for image reconstruction, which were provided by each manufacturer. The 

attenuation information for each projection was written into the DICOM-CT-PD pixel data 

matrix using the developed MATLAB script. All DICOM-CT-PD header tags and 

conventions used to describe the acquisition geometry are detailed in the provided user 

manual. A DICOM-CT-PD data dictionary and reader script are also provided.

Projection data for each patient were obtained from either a GE Discovery CT750i, 

SOMATOM Definition AS+or SOMATOM Definition Flash CT system. The projection data 

were taken from right before image reconstruction, after all preprocessing and the logarithm 

operation; data without preprocessing such as beam hardening corrections were not available 

for use in this work.

Acquisition and reconstruction parameters (Table I), which varied by scanner model and 

anatomic region, were dictated by the routine clinical protocols for each of the three clinical 

indications studied, but occasionally were adapted according to the clinical situation by the 

supervising radiologist. The specific acquisition parameters used for each patient case are 

recorded in the header tags of both the DICOM-CTPD projection data and DICOM image 

files; reconstruction parameters are recorded only in the header tags of the DICOM image 

files.21 The acquired data are referred to as the full-dose data.

A second set of projection data was generated for each scan by inserting noise into the full-

dose data to simulate a low-dose scan. Noise was inserted using a previously validated 

photon counting model that incorporates the effect of the bowtie filter, automatic exposure 

control, and electronic noise.22 To account for the difference in detector and bowtie filter, the 

noise insertion model was validated for each scanner model and exam type in a similar way 

as in the Ref. [22]. All the Siemens exams used in this dataset were acquired with the single 
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source mode on Flash scanners or the single-source AS+scanners, the noise insertion model 

described in Ref. [22] was modified slightly (a calibration factor and electronic noise 

parameter) to accommodate the slight difference in detector among these scanner models. 

For GE scanners, the bowtie profiles were remeasured and determined in the same way as in 

Ref. [22]. Head and abdomen projection data were modified to simulate an exam acquired at 

25% of the full dose; the low-dose chest projection data simulated an exam acquired at 10% 

of the full dose. These are referred to as the simulated low-dose datasets.

For patient data from both manufacturers, automatic tube current modulation was used in 

scans of the chest and abdomen but not used in scans of the head. For Siemens data, the tube 

current information for each projection was directly taken from the respective field in their 

proprietary data format using decoding tools provided to us by Siemens. For GE data, only 

the mean tube current across the entire scan was provided to us by GE. As we did not have 

access to their data format, we could not read the per-projection tube current information, 

and so we needed to empirically infer the tube current modulation information. We 

accomplished this using the prelog signal at the peripheral detectors, where patient 

attenuation was absent. In the few datasets where some patient attenuation was observed at 

the first and last detector channels, we used interpolation from neighboring projections to 

estimate the unobstructed detector signal, which is directly proportional to the tube current. 

The resulting per-projection tube current data were then normalized using the provided mean 

tube current.

Because some reconstruction algorithms require statistical information, we calculated and 

provided noise maps for both manufacturers, expressed as an array describing the spatial 

distribution of noise equivalent quanta along the direction of the detector columns. The noise 

map takes into account the shape of the bowtie filter and automatic tube current modulation, 

but neglects the variation across detector rows; the calculation methodology has been 

previously described by Yu et al.22 The noise maps for the GE data used the empirically 

derived per-projection tube current values.

Images were reconstructed from the full-dose projection data on the scanner used for each 

patient exam (Table II). A second image series was generated with the simulated low-dose 

projection data for patients scanned on Siemens scanners, where it was possible to return the 

modified projection data to the scanner for reconstruction using the commercial weighted 

FBP algorithm.23 Images created using IR are not provided for any datasets.

2.C. Clinical information

In addition to the clinical image interpretation performed for each patient, board-certified 

subspecialist radiologists reviewed all patient cases, including the patient medical record. A 

region of interest was drawn around each finding (e.g., pulmonary nodule, liver metastasis) 

and recorded in a custom database, along with the pixel coordinates of the finding, the 

diagnosis, the diagnostic reference (source of truth), patient age and gender, and a 

hyperlinked snapshot of each finding.
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2.D. Validation studies

Accuracy of the conversion from the manufacturer’s proprietary data format to DICOM-CT-

PD was confirmed on the ACR phantom scans by using in-house and open-source software 

to reconstruct images and comparing them to the commercial reconstructions.20 A subset of 

the data (13 cases) were successfully used in the 2016 Low Dose CT Grand Challenge.16 

The rest of the cases were also tested by reconstructing images from the converted DICOM-

CT-PD data format. [Correction added on January 30, 2021, after first online publication: 

The 30 cases have been changed to 13 cases.]

The accuracy of the noise insertion method used in this work has also been previously 

demonstrated.22 Additionally, after noise was inserted into each projection dataset, the 

amount of noise in the reconstructed images was confirmed by measuring the ratio of noise 

(standard deviation of pixel values) in the simulated low-dose images to that in full-dose 

images and comparing to the predicted values, which were calculated assuming a Poisson 

noise distribution (i.e., the inverse square relationship between dose and noise). The average 

percent difference between the noise inserted images and the theoretically predicted values 

are −4.2% ± 6.2%; −2.6% ± 4.8%; and 16.1% ± 8.9% for Siemens head, abdomen, and chest 

exams, respectively. The differences in noise levels in head and abdomen exams were within 

a reasonable range. The higher differences observed in the chest exams were expected due to 

the much lower radiation dose used in those cases (70 QRM for the full dose and 7 QRM for 

the low dose), which results in electronic noise becoming a non-negligible factor that can 

significantly increase the noise in lower-dose images compared with the value predicted 

based only on the inverse square relation (i.e., Poisson noise). Because of this, the noise 

insertion algorithm took into account the increased contribution of electronic noise. To 

determine approximately how much of the 16.1% difference might be due to the effects of 

electronic noise, scans were acquired of an anthropomorphic chest phantom at these low 

dose levels. The data showed that the differences in noise between measured and 

theoretically predicted values were about 11%. This baseline difference in noise relative to 

that predicted based on Poisson noise alone existed at very low doses due to the presence of 

electronic noise. Therefore, because our noise insertion method addressed electronic noise 

but the differences noted above (e.g., 16.1%) did not, the deviation of the noise in simulated 

low-dose chest exams compared with a real data acquisition is estimated to be much smaller, 

within approximately 5–6%.

Each case was de-identified using a custom MATLAB script and removal of all protected 

health information (PHI) confirmed prior to transferring data to the data repository (The 

Cancer Imaging Archive, TCIA), where de-identification was confirmed prior to moving the 

data to the data archive.24 Final verification of the data and evaluation for PHI was 

performed by re-downloading the cases from TCIA using the National Biomedical Imaging 

Archive (NBIA) data retriever and comparing the retrieved header and pixel data to the 

original data.

During case selection, inclusion of positive cases required confirmation of the radiological 

diagnosis with an independent source of truth (Table III). Findings in the head and liver were 

confirmed with clinical or imaging evidence of disease stability, progression, or regression 

after treatment, or histological evidence from resection or biopsy. However, the diagnostic 
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task selected for the chest exams was identification of indeterminate pulmonary nodules, 

which by definition are neither actionable nor clearly negative. For these cases, the initial 

clinical interpretation was reviewed and confirmed by un-blinded subspecialized thoracic 

radiologist.

3. DATA FORMAT AND USAGE NOTES

All data collected for this data library are in compliance with the Health Insurance 

Portability and Accountability Act (HIPAA) de-identification standards and are stored at 

TCIA.24

The DICOM-CT-PD format stores attenuation information in the pixel data section of the 

file and stores the parameters and geometry necessary for image reconstruction in the 

DICOM-CT-PD header section. It is an extended DICOM class and the study, series, and 

instance definitions were altered from the standard DICOM definition to accommodate 

having images and two projection datasets associated with a single “scan/irradiation event” 

(Fig. 2). Additionally, a sequence of private tags is incorporated into each DICOM-CT-PD 

file. A data dictionary file is provided for interpreting these tags, as well as a user manual to 

describe the function of each tag (Table IV). It is important to note that the definitions of 

some tags differ from those given in our previous publication.20 Each DICOM-CT-PD file is 

an individual projection (i.e., one view) or one readout of the complete detector array. 

Therefore, there are large numbers of DICOM-CT-PD files per scan, all of which fall under 

one study unique identifier (UID) and series UID. This approach substantially decreases 

algorithm development time as reconstructions can be initiated using only several rotations 

worth of projections; this would not be possible if all projections were contained in a single 

data file.

Images included in this dataset follow the standard DICOM image format.21 Figure 3 

illustrates the relationship between study, series, and instance UIDs at different dose levels 

between the DICOM-CT-PD projection data and the associated DICOM images for a given 

patient. Within each of the image series headers is a tag sequence that helps track and 

identify the original raw data from which it was derived. This DICOM tag sequence, 

identified as the Reference Raw Data Sequence (0008,9121), contains the study and series 

UIDs from the DICOM-CT-PD projection data from which the image series originated.

An anonymized patient name and identifier is used for each case in the dataset. All patients 

with a head scan are identified with an N followed by a 3 digit number, chest cases with a C, 

and abdomen cases with an L. Both the patient name and ID are the same. The series 

description can help identify if the file is projection data, image data, full dose, or simulated 

lower dose. Information regarding specific tags and other important details on using the 

private tags are located in the user manual, accessible with the dataset.

This data collection is named Low Dose CT Image and Projection Data (LDCT-and-
Projection-Data) and can be accessed on the TCIA website www.cancerimagingarchive.net 

or by digital object identifier (DOI) 10.7937/9npb-2637. This dataset is 1.32 TB in size. It is 
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comprised of 299 cases, 13,009,241 files, and 3 clinical reports. The extremely large number 

of files is a consequence of storing each individual project in its own file.

4. DISCUSSION

The potential value of the described data library has been demonstrated through its use in the 

2016 Low Dose CT Grand Challenge sponsored by the Mayo Clinic, American Association 

of Physicists in Medicine and the National Institute of Biomedical Imaging and 

Bioengineering.16 The purpose of the challenge was to provide common datasets and 

evaluation methods to investigators and thereby estimate and compare the diagnostic 

performance of image-based denoising techniques and iterative reconstruction algorithms 

for the task of detecting hepatic metastases from simulated low-dose CT data (25% of the 

full dose). Interest in the challenge was very high, with 90 sites registering to participate 

from over 20 different countries. Since completion of the challenge, over 500 investigators 

from over 40 countries have requested access to the abdominal CT studies used in the 2016 

Grand Challenge. It thus appears clear that this much larger data library will be very 

valuable to the research community. The careful annotation of pathology will be of 

particular value in the training and testing of novel artificial intelligence technologies. 

[Correction added on January 30, 2021, after first online publication: The 30 abdominal have 

been deleted.]

Below are examples of research studies utilizing our data:

1. A deep convolutional neural network using directional wavelets for low-dose x-

ray CT reconstruction.25

2. A residual encoder–decoder convolutional neural network (RED-CNN) for 2D 

and 3D CT denoising.26,27

3. A generative adversarial network (GAN) for low-dose CT denoising.28,29

4. A multiresolution deep learning U-net for sparse-view CT.30

5. Performance comparison of CNN-based image denoising methods using 

different loss functions.31

6. A self-attention CNN for low-dose CT denoising with self-supervised perceptual 

loss network.32

7. A cycle-consistent adversarial network (CycleGAN) for low-dose CT image 

denoising without paired CT images for training.33

8. A residual CNN for liver extraction from low-dose CT images.34

As additional examples of the value of these data, within our own research program and 

clinical practice, we have used these and other data to.

1. determine optimal protocol settings in our large sub-specialty clinical practice,
35–38
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2. conduct multireader, multicase (MRMC) studies to discern the impact of 

different reconstruction algorithms, patient dose levels and other factors on 

radiologist diagnostic performance and confidence,12–16,20,35–37,39,40

3. develop, and evaluate using MRMC studies, nonlocal means and deep learning-

based image denoising methods,41–43 and

4. develop model observers and deep learning methods from phantom or patient 

data to predict human observer performance of radiologists when interpreting 

patient data to allow rapid optimization of protocols for any scanner model, exam 

type, or patient characteristics.17–19

This data library, however, does have several limitations.

The DICOM-CT-PD format is an extended DICOM format because its header needed to 

contain data in private tags beyond those defined in the standard DICOM information object 

definition. Standard DICOM interfaces will thus not recognize these private tags. To address 

this, a DICOM-CT-PD data dictionary is available to allow users to read the projection data 

and associated tags.

The DICOM-CT-PD data provided in this library are based on the projection data right 

before image reconstruction — after all the data corrections that have been performed by 

manufacturer (e.g., beam hardening, scattering, nonuniformity). For researchers who would 

like to develop algorithms to improve upon these corrections, or to take these and other 

nonidealities into account in the reconstruction algorithm, truly raw projection datasets, 

without the manufacturer’s corrections, are needed. Because the manufacturers did not 

provide us with access to these data, they are not provided in this library. We hope that 

further collaborations with CT manufacturers may provide access to the preprocessed data.

Although the lower-dose simulation method used in the creation of the low-dose data was 

fully validated, as described above, the simulated lower-dose data are limited in that they 

may not perfectly reflect what would have occurred had the patient actually been scanned at 

the lower-dose levels. For example, our confidence in our low-dose simulation approach is 

diminished when attempting to simulate extremely low-dose data, where the detected 

number of photons is so low that system electronic noise becomes a major factor. In that 

situation, manufacturers typically implement nonlinear processes in the data acquisition and 

processing chain, which are extremely challenging to emulate.

As described previously, we have validated that the simulated reduced dose projection data 

included in this library are very reasonable simulations of the data that would have been 

obtained in an actual measurement. Of course, there is always a potential for differences 

between simulated data and what a real measurement would have produced. We have 

directly measured this in phantoms and found the differences to be within 5–6%. However, 

for patient data, it is impossible to determine the magnitude of any such differences, given 

the difficulty of scanning hundreds of patients at both full and reduced doses. Furthermore, 

even if such a study were approved by an Institutional Review Board, it would be impossible 

to exactly match the contrast level enhancement and anatomic positions between two 

temporally separate scans, which decrease the value of the data for many applications.

Moen et al. Page 9

Med Phys. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We believe that given these limitations on acquiring matching full- and low-dose data, a 

simulation approach provides the best option for algorithm development and validation, 

independent of noise mitigation strategies implemented by a specific manufacturer that are 

unable to be simulated. At the simulated reduced dose levels included in this library, we 

believe that any differences that may exist between simulated and measured data have 

negligible impact on algorithms developed using the provided lower-dose data. This belief is 

supported by the successful use of the data in numerous publications.26–34

The dataset is provided in a paired fashion at both routine dose and simulated lower dose, 

which is ideal for many techniques involving supervised learning. Many noise reduction 

techniques trained based on these paired datasets have demonstrated great success in terms 

of reducing image noise and improving image quality.26–34 However, given the recent 

success of unsupervised low-dose CT reconstruction, it is desirable also to have unpaired 

low-dose and full-dose dataset available, which is a topic of interest for future development. 

Meanwhile, the current paired dataset provided in this work can still be used to meet that 

purpose using appropriate arrangement of training cases (e.g., organize the cases in an 

unpaired fashion), which is beneficial as the full-dose images can be used as references even 

if they are not used in the training and testing.

The number of files associated with each patient exam is extremely large (e.g., tens of 

thousands). This is because each unique projection is stored in a single file. Hence the 

number of files is determined by the number of projection views acquired during the scan. In 

pilot versions of the DICOM-CT-PD format, all projections were in a single file. This 

required users to import the entire large file (e.g., as large as 4 GB), even if they only wanted 

to use a few rotations of projection data to quickly perform a reconstruction or other 

processing action. Thus, based on this and other feedback from a number of colleagues who 

worked with our early pilot data, we decided to separate each projection view into a unique 

file. This provides a data structure that is as versatile as possible for current and future 

research directions.

The library currently contains only data from two scanner manufacturers and three currents, 

but no longer state-of-the-art, scanner models. As CT technology continues to advance, 

important new scanner attributes will not be represented in the current library, although with 

the assistance of scanner manufacturers to convert their projection data into the DICOM-CT-

PD format, the size and diversity of the library can be easily expanded.

Although a wide range of anatomy and pathology are contained in the provided patient 

cases, they represent only a fraction of the clinical uses and findings from CT imaging. Here 

also, with the assistance of scanner manufacturers, the size and diversity of the library can be 

expanded to include data from any application or containing any pathology. We look forward 

to the day when manufacturers will provide tools to allow practices to export projection data 

from any patient exam or scanner model to a vendor-neutral projection data format, such as 

DICOM-CT-PD, for use by the research community.
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5. CONCLUSION

The Low Dose CT Image and Projection Dataset described herein is publicly available at 

TCIA’s data repository.44 It comprises full and reduced dose projection data, reconstructed 

image data, and detailed pixel-based annotation of clinical findings for 299 patient CT 

exams over the head, chest, and abdomen for commercial scanners from two different CT 

manufacturers. To the best of our knowledge, no other open source data format or publicly 

available data repository exists in which projection data, scan geometry, and scan parameters 

are all accessible for clinical patient CT exams. The lack of such data has limited clinically 

relevant research in this field to CT scanner manufacturers and their small number of 

research collaborators. This unique data library will therefore facilitate the development and 

validation of new CT reconstruction and/or denoising algorithms, including those associated 

with machine learning or artificial intelligence.
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FIG. 1. 
Breakdown of the patient cases included in the Low Dose computed tomography (CT) and 

Projection Data library, outlining how many cases are provided for each manufacturer, 

anatomical region, and dose level. Reconstructed images are only provided for the simulated 

low-dose projection data (PD).
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FIG. 2. 
The definitions of study, series, and instance for the standard DICOM image format and the 

modified definitions necessary for the DICOM-CT-PD format.
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FIG. 3. 
The relationship between DICOM-CT-PD files and the associated image data showing how 

the relationship between the two is maintained using the reference raw data sequence tags.
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Table II.

Key data reconstruction parameters for each exam type.

Manufacturer (Scanner) Reconstruction parameter

Head CT for acute 
cognitive or motor 

deficit
Chest CT for lung 
cancer screening

Abdomen CT for 
metastatic liver 
lesion detection

GE Healthcare (Discovery CT750i) Field of view (mm) 200–260 282–423 315–500

Reconstruction algorithm Standard Standard Standard

Slice / Increment (mm) 5 / 5 1.25 / 1 5 / 3 m

Siemens Healthineers (SOMATOM 
Definition AS+, SOMATOM Definition 
Flash)

Field of view (mm) 250 300–500 300–500

Reconstruction kernel H40 B50 B30

Slice / Increment (mm) 5 / 5 1.5 / 1 5 / 3
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Table III.

Information used to confirm radiological diagnosis.

Head Chest Abdomen

Source of truth

•Additional imaging
•Clinical correlation with symptoms or physical findings
•Pathologic diagnosis
•Surgical correlation
•Stability or progression

•Unblinded interpretation by a second subspecialized 
thoracic radiologist

•Histology
•Similar proven lesion
•Stabile > 6 months
•Progression
•Response to therapy
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