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Systemic and topical administration 
of spermidine accelerates skin wound healing
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Abstract 

Background:  The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. 
Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type 
plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and 
topical administration of SPD would accelerate the skin wound-repair process in vivo.

Methods:  A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrola-
tum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. 
Changes in wound size over time were calculated using digital photography.

Results:  Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD 
promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression 
of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated 
scratch wound closure and cell proliferation in vitro.

Conclusion:  These results indicate that treatment with SPD promotes skin wound healing through activation of the 
uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might 
contribute to new effective treatments to accelerate skin wound healing.

Keywords:  Spermidine (SPD), Wound healing, Urokinase-type plasminogen activator receptor (uPAR), Inflammation, 
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Background
Skin wound healing is a complex process involving 
three phases: inflammation, cell proliferation, and tis-
sue remodeling. In the inflammation phase, infiltrating 
neutrophils and macrophages play critical roles in the 
defense against bacterial infection and the resection of 
necrotic tissue [1]. A previous report demonstrated that 
the immediate induction of an inflammatory response 
after wounding is critical for the re-epithelialization of 
damaged skin [2, 3]. In the proliferation phase, fibroblasts 

and myofibroblasts interact and produce extracellular 
matrix, resulting in granulation tissue formation. The 
tissue remodeling process is primarily associated with 
tissue maturation and collagen degradation by matrix 
metalloproteinases (MMPs) derived from leukocytes and 
dermal fibroblasts [4].

Keratinocytes in the basal layer of the epidermis con-
tact the basement membrane and proliferate. Upon 
epidermal wounding, keratinocytes at the wound edge 
undergo a transition from a nonmotile epithelial state 
to a mesenchymal-like state in which they lose cell–cell 
contacts and become motile. A previous study dem-
onstrated that urokinase-type plasminogen activator 
(uPA) is upregulated at the wound edge where keratino-
cytes migrate and promotes cell migration [5]. In addi-
tion, u-PA upregulation and functional activity have 
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been reported to significantly enhance endothelial cell 
viability, growth, and wound healing [6]. uPA plays a 
pivotal role in extracellular proteolysis and is thought 
to be critically involved in the modulation of angiogen-
esis via the interaction with its uPA receptor [7]. uPA 
receptor (uPAR) plays an important role in cell surface-
associated plasminogen activation leading to disassem-
bly and remodeling of the extracellular matrix [8]. uPAR 
expression is strongly enhanced during inflammation, 
immune responses, injury and stress and under condi-
tions of tissue remodeling such as those during embryo 
implantation or wound healing [5, 9, 10]. The loss of 
uPAR function delayed the wound-healing response and 
impaired keratinocyte proliferation and migration [11].

Spermidine (SPD) is a naturally occurring polyam-
ine, originally isolated from semen that is also found in 
cheese, corn, mushrooms, legumes, soya products and 
whole grains [12]. Polyamines are ubiquitous endog-
enous metabolites and essential organic compounds for 
cell growth and proliferation [13,  14]. A previous study 
reported that SPD is involved in cell proliferation and cell 
differentiation [15]. Moreover, polyamines are involved 
in a wide variety of cellular processes, as they participate 
in the regulation of gene expression through regulating 
enzyme activity, activating DNA synthesis, facilitating 
the interaction of DNA and protein, and protecting DNA 
molecules from putative damaging agents [16]. In wound 
models using human skin samples, levels of ornithine 
decarboxylase (ODC), the rate-limiting enzyme in poly-
amine metabolism, and adenosylmethionine decarboxy-
lase 1 (AMD1), a polyamine regulator, rapidly increased 
at the wound edge [14]. In addition to SPD, spermine 
(SPM) is involved in wound healing because it rescued 
AMD1 knockdown and promoted keratinocyte migration 
and the re-epithelialization of human wounds ex  vivo. 
Polyamines are essential for endothelial cell proliferation 
and angiogenesis, and it has been reported that the intra-
cellular supply of ornithine for polyamine synthesis may 
play an important role in promoting placental angiogen-
esis and wound healing [17]. Although some studies have 
verified the effect of SPD on skin wound healing in vitro, 
the effect of SPD in vivo has remained unclear. Therefore, 
the present study investigated the effect of SPD on the 
wound-healing process in vivo.

Material and methods
Mice
C57BL/6  J mice (age 7–9  weeks, male) were obtained 
from Japan SLC Inc. (Shizuoka, Japan). All procedures 
were conducted in accordance with the guidelines of the 
National Institutes of Health Guide for the Care and Use 
of Laboratory Animals and the guidelines for the care 

and use of animals established by the Animal Care and 
Use Committee of Gifu University (Gifu, Japan).

Reagents
SPD (> 99% purity) was obtained from Sigma-Aldrich (St 
Louis, MO). SPD (2  μg/wound) was added to 100  μl of 
white petrolatum. The formulation was heated to 60  °C 
and quickly mixed to emulsify the components. Distilled 
water containing SPD (5 mM) was systemically adminis-
tered daily for 4 days before skin wound creation. MDI-
2268 obtained from AOBIOUS INC (Gloucester, MA) 
was dissolved in 0.1% DMSO in lactated ringer buffer. 
After a skin wound had been created, mice received 
MDI-2268 (3 mg/kg) or vehicle by intraperitoneal admin-
istration for 2  days. Amiloride HCl (a uPA inhibitor) 
was obtained from Sigma-Aldrich (St Louis, MO). After 
a skin wound had been created, mice were intraperito-
neally administered amiloride HCl (10 mg/kg) for every 
day.

Establishment of a wound repair model and measurement 
of the wound area
A skin wound repair model was established as shown in 
our previous study [18]. In brief, mice were anesthetized, 
and their backs were shaved and sterilized with 70% etha-
nol. Two excised wounds were created using a 5 mm ster-
ile circular punch (Kai Industries Co., Gifu, Japan) from 
the right- and left-upper paravertebral regions of the 
mouse, and the entire skin thickness was removed. The 
biopsy sites were coated with 100 μl of white petrolatum 
containing 2 μl of SPD and 2 μl of PBS, or 4 μl of PBS as 
a control, on days 0 and 2. The mice were wrapped with a 
tight-fitting bandage to protect the biopsy sites. Wounds 
were checked and photographed every other day. The 
wound area was measured at the indicated time points 
with a ImageJ software (version 1.37; NIH, Bethesda, 
MD), and the results are expressed as the percentage clo-
sure relative to original size (1 − [wound area]/[original 
wound area] × 100). Suggestive signs of topical infection 
were not detected in the wound area. Each treatment was 
tested, and the results from minimum of 4 independent 
animals/group were averaged.

Extraction of RNA and quantitative RT‑PCR
Tissues from the biopsy site were excised 0, 24, 48  h 
after wound creation. Wound site tissues taken from 
the 2–3  mm surrounding the wound edge were imme-
diately frozen after collection. Total RNA was extracted 
from the wound site using ISOGEN II reagent (Nippon 
Gene, Tokyo, Japan), and first-strand cDNA was syn-
thesized using the High Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster City, CA). 
Quantitative real-time RT-PCR was performed using 



Page 3 of 12Ito et al. Cell Commun Signal           (2021) 19:36 	

specific primer–probe sets to amplify VEGF mRNA with 
TaqMan® Gene Expression Assays and Universal PCR 
Master Mix (Applied Biosystems) or to amplify IL-6, 
TNF-α, MMP-2, MMP-9 and EGF mRNA with Quanti-
Tect SYBR Green PCR Master Mix (Qiagen GmbH, 
Hilden, Germany). Each sample was analyzed on a Light-
Cycler® 480 system (Roche Diagnostic Systems, Basel, 
Switzerland). The expression level of each gene was 
normalized against that of GAPDH mRNA. The primer 
sequences used for qRT-PCR were as follows: IL-6-fwd, 
TCC​AGT​TGC​CTT​CTT​GGG​AC; IL-6-rev, GTA​CTC​
CAG​AAG​ACC​AGA​GG; TNF-α-fwd, CAC​AGA​AAG​
CAT​GAT​CCG​CGA​CGT; TNF-α -rev, CGG​CAG​AGA​
GGA​GGT​TGA​CTT​TCT; MMP-2-fwd, CCC​CTG​ATG​
TCC​AGC​AAG​TAGA; MMP-2-rev, AGT​CTG​CGA​TGA​
GCT​TAG​GGAAA; MMP-9-fwd, CCC​TGG​AAC​TCA​
CAC​GAC​ATC​TTC; MMP-9-rev, GGT​CCA​CCT​TGT​
TCA​CCT​CAT​TTT; EGF-fwd, ATG​GGA​AAC​AAT​GTC​
ACG​AAC; EGF-rev, TGT​ATT​CCG​TCT​CCT​TGG​TTC; 
GAPDH-fwd, TGC​ACC​ACC​AAC​TGC​TTA​G; and 
GAPDH-rev, GGA​TGC​AGG​GAT​GAT​GTT​C.

Western blot analysis
Skin tissues taken from approximately 2–3  mm sur-
rounding the wound edge were homogenized in CelLytic 
MT Cell Lysis Reagent (C3228, Sigma-Aldrich). Proteins 
were separated from the lysate by sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred to a nitrocellulose membrane. After 
being blocked with 5% skim milk and 1% bovine serum 
albumin in Tris-buffered saline-Tween at room temper-
ature for 1  h, the membrane was incubated with rabbit 
anti- PLAUR (Bioss Antibodies, bs-1927R, 1:1,000), rab-
bit anti-PCNA (Cell Signaling, D3H8P/#13110, 1:1,000) 
and anti-GAPDH (Cell Signaling Technology) primary 
antibodies for 60  min and then incubated with peroxi-
dase labeled anti-rabbit IgG antibody (Santa Cruz Bio-
technology) for 60  min at room temperature. Detection 
of protein bands was performed with ECL Plus reagent 
(GE Healthcare UK Ltd., England).

Enzyme‑linked immunosorbent assay (ELISA)
Blood was collected before and after skin wound crea-
tion, and serum was collected by centrifugation. Serum 
was used to measure uPA protein levels with a Mouse 
uPA ELISA Kit (Abcam, Cambridge, MA, USA) accord-
ing to the manufacturer’s instructions.

Scratch assay
A scratch assay was carried out as in our previous 
study [19]. In brief, embryos were harvested at embry-
onic day 12.5 to establish mouse embryonic fibroblasts 
(MEFs). MEF cultures were prepared using standard 

techniques [20]. Cells were maintained in complete 
RPMI1640 (FUJIFILM Wako Pure Chemical Corpora-
tion, Osaka, Japan) medium supplemented with 10% fetal 
bovine serum, penicillin/streptomycin, and l-glutamine 
(Gibco®, Invitrogen, Life Technologies, Grand Island, 
NY). Cultured MEFs from mice were grown in 12-well 
plates. When the cells reached confluence, a scratch was 
made across the cell monolayer with a yellow pipette tip 
(approximately 0.5  mm in width). After scratching, the 
cells were washed twice with PBS and SPD (4 μM, 20 μM 
and 100 μM) was then immediately added to the serum-
free culture medium (SFM; RPMI-1640). The culture 
medium was removed at 24 and 48  h after scratching, 
and the cells were immersed in 4% paraformaldehyde for 
30  min for immobilization. The cells were then stained 
with crystal violet for 1  h, and three representative 
scratched areas for each experimental condition were 
photographed. Changes in the non-wound closure area 
were measured using ImageJ software.

Cell viability and cytotoxicity assays
The cell viability of the cultured cells was quantified using 
the Cell Counting Kit (CCK) -8 assay (Dojindo Molecular 
Technologies, Kumamoto, Japan) and an iMark™ micro-
plate reader (BIO-RAD, Hercules, CA), according to the 
manufacturer’s instructions. After the cells were conflu-
ent, the medium was changed to SFM, SPD was added, 
and the cells were cultured for 24 h. The cell viability data 
are presented as a percent compared to control cells cul-
tured in parallel in medium only.

Statistical analyses
Values are expressed as the means ± standard errors of 
the mean (SEMs). The statistical significance of differ-
ences in the wound-healing rate were assessed using one-
way repeated measures analysis of variance (ANOVA). 
Comparisons between the experimental groups were 
analyzed with the Kruskal–Wallis test followed by Schef-
fe’s F-test. Significance was established at p < 0.05.

Results
Topical and systemic treatment with SPD promoted skin 
wound healing in mice
We first examined the effect of topical and systemic 
administration of SPD on skin wound healing in  vivo. 
Two identical full-thickness skin biopsies were taken 
from the right and left subscapular regions of individual 
mice. The mice were divided into the following three 
groups: the untreated group, topical SPD administration 
group, and systemic SPD administration group. The skin 
wounds were observed every other day, and alterations 
in wound size over time were calculated using digital 
photography. Both topical and systemic administration 
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of SPD significantly accelerated wound healing at 2 and 
4  days after wound creation (Fig.  1a, b). Indeed, 50% 
wound closure was achieved after 5.3 ± 0.2  days at sites 
treated with PBS, 3.7 ± 0.8 days at sites topically treated 
with SPD, and 2.8 ± 0.5 days at sites systemically treated 
with SPD (Fig. 1b). Next, the expression of PCNA at the 
wound site was measured using western blot analysis. 
Topical SPD treatment significantly increased PCNA 
expression at 1  day after skin wound creation. The sys-
temic administration of SPD enhanced PCNA expression 
in the skin tissues before skin wound creation, and PCNA 
expression in the wound site of mice in the systemic SPD 
administration group was also increased (Fig. 1c). These 
results indicate that the topical and systemic administra-
tion of SPD accelerated skin wound healing and induced 
cell proliferation at the wound site in the mice.

Administration of SPD increased uPA and uPAR expression, 
and induced uPAR cleavage
uPA and uPAR play a central role in cell surface-associ-
ated plasminogen activation leading to degradation and 
remodeling of the extracellular matrix [21]. The loss of 
uPAR function in uPAR-knockout mice delayed skin 
wound repair, and impaired keratinocyte proliferation 
and migration [11]. Therefore, serum uPA protein levels 
were measured in mice treated with SPD using ELISA 
before and after skin wound creation. Systemic SPD 
administration significantly increased the serum uPA 
level before skin wound creation (Fig.  2a). In addition, 
western blot analysis revealed that systemic SPD admin-
istration alone significantly increased the expression of 
uPARD2D3 (approximately 37 kDa) (Fig. 2b). Moreover, 
systemic administration of SPD increased the expres-
sion of glycosylated uPAR (G-uPAR) (approximately 
55–70 kDa) and uPARD2D3 in the wound site (Fig. 2b). 
Similarly, topical SPD treatment significantly increased 
the expression of G-uPAR at the wound sites (Fig. 2b).

uPA‑uPAR signaling regulates the effect of spermidine 
on skin wound healing
A previous study demonstrated that amiloride inhibited 
the uPA-uPAR pathway in a mouse lung tumor model 

[22]. Next, to determine whether the uPA-uPAR pathway 
contributes to the ability of SPD to promote skin wound 
healing, we intraperitoneally administered amiloride 
(10  mg/kg) daily. In the mice that drank water without 
SPD, wound healing was significantly impaired by the 
administration of amiloride (Fig.  3a). In the mice that 
drank water with SPD, wound healing was also impaired 
by the administration of amiloride 2–6 days after wound 
creation (Fig.  3b). These results suggest that the uPA-
uPAR pathway is involved in the effect of SPD adminis-
tration in promoting wound healing. In fact, 50% wound 
closure was achieved after 4.4 ± 0.2  days at sites with 
PBS, 4.9 ± 0.8 days at sites systemically treated with ami-
loride alone, 3.8 ± 0.3  days at sites systemically treated 
with SPD, and 4.9 ± 0.2 days at sites systemically treated 
with SPD and amiloride (Fig. 3a, b).

A previous study demonstrated that PAI-1 inhibited 
uPA activation in macrophages [23]. Next, we examined 
the effect of PAI-1 on skin wound healing using MDI-
2268 which is a PAI-1 inhibitor. The skin wound repair 
rate in the mice systemically administered SPD was sig-
nificantly increased by the administration of MDI-2268 
(Fig.  3c–e). However, the administration of MDI-2268 
did not affect the skin wound repair rate in the mice topi-
cally administered with and without SPD. Indeed, 50% 
wound closure was achieved after 4.2 ± 0.3  days at sites 
treated with PBS, 4.1 ± 0.2 days at sites treated with MDI-
2268 alone, 3.3 ± 0.7  days at sites treated with systemic 
SPD, 1.4 ± 0.2 days at sites treated with systemic SPD and 
MDI-2268, 3.8 ± 0.3 days at sites treated with topical SPD 
and 4.6 ± 0.6  days at sites treated with topical SPD and 
MDI-2268 (Fig. 3c–e).

Effects of SPD administration on the expression 
of pro‑inflammatory cytokines, MMPs, and growth factors
The first phase in the skin wound healing process is 
the inflammatory phase, in which various pro-inflam-
matory cytokines are upregulated at the wound site. 
A previous report demonstrated that pro-inflamma-
tory cytokines are directly and/or indirectly involved 
in the wound healing process, and their upregula-
tion was required for optimal skin wound healing 

Fig. 1  Acceleration of skin wound healing by the systemic and topical administration of SPD. a, b Two independent excisional biopsies (5 mm in 
diameter) were taken from the right and left dorsal side of each mouse (n = 6). Distilled water containing spermidine (5 mM) was administered 
daily from 4 days before skin wound creation. Biopsy sites were treated with white petrolatum containing PBS or SPD (2 μg/wound) 0 and 2 days 
after skin wound creation. Each wound was recorded via digital photography, and the scale bar represents 10 mm. The mean rate of repair was 
calculated based on the original wound area of each biopsy site. *p < 0.05, white petrolatum with SPD group compared to white petrolatum with 
PBS group. †p < 0.05, SPD-containing water + white petrolatum with PBS group compared to white petrolatum with PBS group. c PCNA protein 
levels after wound creation were examined by western blot analysis and normalized using GAPDH protein levels. Each data point and error bar 
represent the mean and SE, respectively, of data from triplicate or quadruplicate samples. *Indicates a statistically significant differences; p < 0.05. 
***Indicates a statistically significant difference; p < 0.005

(See figure on next page.)



Page 5 of 12Ito et al. Cell Commun Signal           (2021) 19:36 	

0            2           4             7          9        Da ys

PBS

SPD

SPD water

0

20

40

60

80

100

0 2 4 7 9

)
%(

etarriapeR

Days

PBS
SPD
SPD water †

*†
*

Control SPD water

PCNA

GAPDH

Day 0

PBS SPD SPD water

0

50

100

150

Control SPD water

%
PC

N
A/

GA
PD

H *

0
20
40
60
80

100

PBS SPD SPD water

%
PC

N
A/

GA
PD

H ***
*

0

40

80

120

160

PBS SPD SPD water

%
PC

N
A/

GA
PD

H

*

PBS SPD SPD water

PCNA

GAPDH

Day 1

PCNA

GAPDH

Day 2

a

b

c



Page 6 of 12Ito et al. Cell Commun Signal           (2021) 19:36 

[24]. Therefore, we evaluated the mRNA expression 
of the pro-inflammatory cytokines IL6 and TNF-α in 
the wound site after treatment with SPD. As shown in 
Fig.  4, the expression of IL-6 and TNF-α in the skin 
tissues at 24  h after wound creation was significantly 
enhanced in mice topically treated with SPD. In con-
trast, the systemic administration of SPD did not affect 
the expression of these cytokines after wound creation. 
Previous studies demonstrated that growth factors such 

as VEGF and EGF, and MMPs are involved in optimal 
skin wound healing [25, 26]. We examined the expres-
sion of VEGF, EGF, and MMPs in the wound site after 
SPD treatment (Fig.  4). The expression of EGF in the 
wound site was significantly increased after the sys-
temic administration of SPD. VEGF expression was 
enhanced by the topical and systemic administration of 
SPD. Moreover, MMP expression was also upregulated 
by SPD administration.
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Fig. 2  The systemic and topical administration of SPD enhances G-uPAR production and uPAR cleavage. a The serum uPA concentration in the 
mice treated with systemic or topical SPD was measured using ELISA (n = 4 mice). b–d The expression of G-uPAR, uPAR, uPARD2D3, and GAPDH 
in the wound sites was measured using western blot analysis. Skin tissue lysates (20 µg/protein) were used for the experiment and analyzed by 
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significant differences; p < 0.05. ***Indicates a statistically significant difference; p < 0.005
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The addition of SPD accelerated scratch wound closure 
and cell proliferation
To evaluate the effect of SPD on wound healing in vitro, 
we prepared MEFs and conducted scratch wound assays 
using these cells. As shown in Fig.  5a, b, the rate of 
scratch wound closure of MEFs in medium to which SPD 
was added was significantly increased compared with 
that in MEFs in medium without SPD. Moreover, the rate 
of scratch wound closure increased in a concentration-
dependent manner. Next, a cell proliferation assay was 
performed to examine the effects of SPD at several con-
centration on MEF proliferation in serum-free medium. 
MEF proliferation was increased in a concentration-
dependent manner upon treatment with SPD at concen-
trations close to that used for the scratch assay (Fig. 5c). 

These results indicated that SPD is involved in promot-
ing wound healing by upregulating cell proliferation and 
migration.

Discussion
In the current study, we demonstrated that systemic 
and topical SPD treatment significantly accelerated skin 
wound healing (Fig. 1a, b). We found that SPD treatment 
promoted skin wound healing through the uPA/uPAR 
pathway (Figs.  2,  3). Moreover, topical SPD treatment 
induced an earlier increase in inflammatory cytokine 
expression after skin wound creation (Fig.  4). This 
enhanced inflammatory cytokine expression after the 
topical administration of SPD might be involved in the 
acceleration of wound healing.
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untreated + MDI-2268 group, SPD topical administration group, SPD topical administration + MDI-2268 group, SPD systemic administration group, 
and SPD systemic administration + MDI-2268 group. The mean rate of wound repair was calculated based on the original wound area of each 
biopsy site. *Indicates a statistically significant differences; p < 0.05. **Indicates a statistically significant difference; p < 0.01. ***Indicates a statistically 
significant difference; p < 0.005
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Present in all higher eukaryotic cells, polyamines are 
essential for cell growth and differentiation [27]. In addi-
tion, when putrescine is systemically administered, it is 
mostly converted to other non-polyamine metabolites in 
the intestine by the enzyme diamine oxidase [28]. How-
ever, SPD is not enzymatically degraded in the alimentary 

tract [28]. Most intracellular polyamines exist as a poly-
amine‐RNA complex and play important roles in tran-
scription and translation in the cell cycle through causing 
a structural change in RNA, especially in the transi-
tions from G1 phase to S phase and from G2 phase to M 
phase [29]. In the present study, PCNA expression was 
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significantly enhanced by systemic and topical treatment 
with SPD in vivo (Fig. 1c). Furthermore, the proliferation 
assay revealed that the number of MEFs approximately 
doubled after 24  h in the presence of SPD (Fig.  5c). In 
addition, the rate of scratch wound closure was 80% in 
SPD-high containing medium (Fig.  5a, b). These results 
indicated that the enhancement of cell proliferation was 
partially involved in the acceleration of scratch wound 
closure and SPD also increased invasive capacity.

uPAR regulates proteolysis by binding uPA and activat-
ing many intracellular signaling pathways [30]. Coordina-
tion of extracellular matrix (ECM) protein degradation 
with MMPs induced by uPAR promotes cell migration, 
proliferation, and survival. G-uPAR is a highly glyco-
sylated, glycosylphosphatidylinositol-anchored receptor 
with three extracellular domains (D1–D3). Proteolytic 
cleavage can occur in the linker region between D1 and 
D2 yielding the fragment uPARD2D3, which can undergo 
further cleavage of the glycosylphosphatidylinositol 
linker releasing the soluble form uPARD2D3 [31]. Several 
studies have indicated that uPARD2D3 is involved in cell 
signaling and stem cell mobilization [32, 33]. Upregula-
tion of G-uPAR and uPARD2D3 was also found to be 
involved in skin wound healing [34]. Therefore, the pre-
sent study examined the effect of SPD administration 
on uPA-uPAR activation. The results showed that the 
topical administration of SPD increased the expression of 
G-uPAR, and the systemic administration of SPD upreg-
ulated both G-uPAR and uPARD2D3 (Fig.  2b–d). uPAR 
binds pro-uPA or uPA, and bound uPA promotes the 
cleavage of plasminogen. Cleaved plasminogen actives 
plasmin, which promotes the cleavage of pro-uPA. Thus, 
plasmin and uPA which can activate each other, form a 
positive feedback loop [35]. Plasmin cleaves and activates 
MMPs, which contributes to uPAR cleavage, ECM degra-
dation, and growth factor activation [36].

Amiloride is a moderately potent inhibitor of uPA that 
does not inhibit tissue-type plasminogen activator or 
other serine proteases, such as kallikrein, thrombin, or 
plasmin [37]. The effect of SPD promoting wound healing 
was inhibited by amiloride administration (Fig. 3b). The 
administration of amiloride also inhibited the normal 
wound-healing process (Fig.  3a). These results revealed 
that uPA is critical for optimal wound healing and the 
accelerated wound healing observed after the adminis-
tration of SPD. Recently, a novel inhibitor (MDI-2268) 
against PAI-1, which impairs the activation of uPA-
uPAR signaling, was developed and proven effective in a 
mouse model of deep vein thrombosis [38]. In the pre-
sent study, skin wound healing in systemic SPD-treated 
mice was significantly promoted by the administration 
of MDI-2268 (Fig. 3e). In contrast, treatment with MDI-
2268 did not affect skin wound repair in untreated and 
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topical SPD-treated mice (Fig.  3c, d). The dependence 
of SPD-induced acceleration of wound healing on uPA-
PAR signaling was more pronounced in systemic SPD-
treated mice than in topical SPD-treated mice because 
the expression of uPA, G-uPAR, and uPARD2D3 in 
systemic SPD-treated mice was upregulated to greater 
extent. Therefore, the effect of MDI-2268 might have 
been enhanced in systemic SPD-treated mice.

Wound healing is a complex event that includes home-
ostasis, inflammation, granulation by cell proliferation, 
matrix deposition, and tissue remodeling. These phases 
depend on the interactions of cytokines, growth factors, 
chemokines, and chemical mediators with regulatory 
functions from various cells [39]. Previous studies have 
shown that SPD has anti-inflammatory effects [40]. How-
ever, as far as we know, there have been no reports con-
firming an inflammatory state when SPD is used to treat 
skin wound sites in vivo. Previous studies demonstrated 
that the excessive polyamines increased oxidative stress 
[41, 42]. In the present study, the topical administration 
of SPD significantly upregulated the expression of IL-6 
and TNF-α in the wound site (Fig.  4). The increase in 
pro-inflammatory cytokines may be due to increased oxi-
dative stress in these wound sites [43]. Previous studies 
have reported that IL-6 deficiency impairs wound healing 
via the inhibition of keratinocyte proliferation [44], and 
TNF-α upregulation has been found to increase keratino-
cyte growth factor production after wound formation 
[45]. These results suggest that the topical administra-
tion of SPD after wound creation induces mild oxidative 
stress and increases inflammatory cytokines.

Conclusion
In summary, the systemic and topical administration 
of SPD accelerated skin wound healing via increases in 
G-uPAR and uPARD2D3. These increases in G-uPAR 
and uPARD2D3 induced cell proliferation and migration 
in vivo and in vitro. Moreover, the topical administration 
of SPD induced pro-inflammatory cytokine production, 
and the increase in these cytokines in wound sites may be 
involved in the acceleration of wound closure. Thus, the 
administration of SPD may constitute an attractive strat-
egy to accelerate skin wound healing.
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