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Purpose: Given the complicated nature of an interstitial gynecologic brachytherapy treatment plan,
the use of a quantitative tool to evaluate the quality of the achieved metrics compared to clinical
practice would be advantageous. For this purpose, predictive mathematical models to predict the D2cc

of rectum and bladder in interstitial gynecologic brachytherapy are discussed and validated.
Methods: Previous plans were used to establish the relationship between D2cc and the overlapping
volume of the organ at risk with the targeted area (C0) or a 1-cm expansion of the target area (C1).
Three mathematical models were evaluated: D2cc = α∗C1 + β (LIN); D2cc = α – exp(–β∗C0) (EXP);
and a mixed approach (MIX), where both C0 and C1 were inputs of the model. The parameters of
the models were optimized on a training set of patient data, and the predictive error of each model
(predicted D2cc − real D2cc) was calculated on a validation set of patient data. The data of 20 patients
were used to perform a K-fold cross validation analysis, with K = 2, 4, 6, 8, 10, and 20.
Results: MIX was associated with the smallest mean prediction error <6.4% for an 18-patient train-
ing set; LIN had an error <8.5%; EXP had an error <8.3%. Best case scenario analysis shows that an
error ≤5% can be achieved for a ten-patient training set with MIX, an error ≤7.4% for LIN, and an
error ≤6.9% for EXP. The error decreases with the increase in training set size, with the most marked
decrease observed for MIX.
Conclusions: The MIX model can predict the D2cc of the organs at risk with an error lower than 5%
with a training set of ten patients or greater. The model can be used in the development of quality
assurance tools to identify treatment plans with suboptimal sparing of the organs at risk. It can also
be used to improve preplanning and in the development of real-time intraoperative planning tools.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4819946]
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1. INTRODUCTION

Dosimetric planning of interstitial brachytherapy has histor-
ically been performed through the use of specified source
distribution rules, such as the Paterson-Parker system and
the Quimby system. In recent years, gynecologic brachyther-
apy has gradually embraced the use of 3D imaging with
Computed Tomography (CT) (Refs. 1 and 2) or Magnetic
Resonance Imaging (MR) (3 and 4) for insertions and for
planning, thus shifting the focus from ICRU point doses5 to
volume doses. In particular, the D2cc metric has become popu-
lar for the assessment of the dose to the rectum and bladder;6–9

D0.1cc, D1cc, and D5cc have also been used for reporting and for
planning in some cases.6, 7

A predictive mathematical model offers prediction of an
outcome (e.g., the dose metrics of a treatment), given a num-
ber of input parameters, after optimization on prior data called
a training set. In this work, we investigate the prediction er-
ror of models aimed at predicting the D2cc for rectum and
bladder in gynecologic interstitial brachytherapy based on
the geometric relation between the organs at risk and tar-
geted area, without using dose calculation tools and source
position information. Predictive models for the dosimetry of
organs at risk have been validated for intensity modulated
external beam treatment planning,10 but to our knowledge
have not been investigated for brachytherapy applications.

These models can find applications as quality assurance tools
and can be used for time-efficient preplanning and intraop-
erative dosimetric guidance. The methods described in this
work may be transferrable to other brachytherapy techniques,
such as intracavitary gynecologic brachytherapy and prostate
brachytherapy.

2. METHODS AND MATERIALS

The CT scans and dosimetric data of 20 patients with gy-
necologic malignancies extending in the vagina (ten recurrent
endometrial, five cervical, four recurrent vulvar, and one vagi-
nal cancer) treated in our clinic with interstitial brachytherapy
between March 2011 and March 2012 were retrospectively
used in this study with IRB approval. Geometric information
was obtained from the contours drawn by a single radiation
oncologist contoured on CT. Dosimetric information was ob-
tained from the dose-volume histograms of the clinical plan
calculated on the same contour set.

Two data sets, one for rectum and one for bladder, were
thus obtained. Each data point in a set is composed of the
following information:

� C0: the volume, in cm3, of the overlap between the 100%
isodose line and the organ at risk (Fig. 1);
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FIG. 1. Example of geometrical input parameters. C0 for the rectum is equal
to zero since there is no overlap between rectum and targeted area (volume
within the 100% isodose line).

� C1: the volume, in cm3, of the overlap between a 1 cm
isotropic expansion of the 100% isodose line and the
organ at risk (Fig. 1);

� D2cc: minimum dose received by the volume of 2 cm3

that receives the highest dose within the organ at risk.

The D2cc is expressed as a percentage of the prescription
dose.

C0 and C1 are the inputs for the models that will be dis-
cussed in this work; D2cc is the output. Plots of the D2cc versus
C0 and C1 are shown in Fig. 2.

A data set can be divided in two subsets: {. . .}C0=0 com-
posed of all data points with C0 = 0 and {. . .}C0>0, composed
of all data points with C0 > 0. The size of {. . .}C0=0 indicates
the degeneracy of a data set, that is, the fact that multiple val-
ues of D2cc are associated with the same value of C0 across
the data points in the data set.

A degeneracy of the data at C0 = 0 was to be expected:
the data points in the subset C0 = 0 are associated with pa-
tients with no overlap between targeted area and organs at
risk, which is desirable. In this study, 10 out of 20 rectum data
points and 13 out of 20 bladder data points that were used
for model validation belonged to their respective {. . .}C0>0,
that is, had an overlap between the area receiving prescription
dose and the organs at risk.

Although a degeneracy of the data at C1 = 0 is theoret-
ically possible, in our data set this was not observed. The
1-cm expansion of the targeted area resulted in an overlap
with organs at risk in all cases.

FIG. 2. D2cc as a function of C0 and C1 for the bladder and rectum data sets.
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2.A. Predictive models

Three models are proposed to predict the D2cc of a set
of validation data points (called validation set {. . .}V al), of
which only C0 and C1 are provided to the model. The models
are trained based on the C0, C1, and D2cc of a set of train-
ing data points (called training set {. . . }Trn). In this work
we will refer to the relationship between the calculated D2cc

and the input parameters C0 and C1 with the generic name
MODEL(C0, C1). The index j refers to a data point in a vali-
dation set, the index i refers to a data point in a training set.

The first model is a linear model (LIN) of D2cc as a
function of C1, that is:

D
j

2ccLIN
= αLC

j

1 + βL, (1)

where j ∈ {. . .}V al .
The second model is an exponential model (EXP) of D2cc

as a function of C0, that is:

D
j

2ccEXP
= 1 + αE(e−βE ·2 − e−βEC

j

0 ), (2)

where j ∈ {. . .}V al . The term e−βE ·2 forces Eq. (2) to the triv-
ial result that if the overlap between organ at risk and the pre-
scription dose is equal to 2 cm3, then D2cc must be 100%.

The parameters α and β are solutions of the following
least-square optimization problem:

arg min
α,β

∑
i

∣∣Di
2cc − MODEL

(
Ci

0, C
i
1

)∣∣2
, (3)

where i ∈ {. . . }Trn.
Given the expected degeneracy of the data at C0 = 0, we

also investigated a model that is a combination of the LIN
and the EXP models (MIX). Since EXP depends only on
C0, it cannot predict the differences between two data points
belonging to {. . .}C0=0. Therefore, the following output was
proposed:

D
j

2ccMIX
=

⎧⎨
⎩

αLC
j

1 + βL if C
j

0 = 0

1 + αE(e−βE ·2 − e−βEC
j

0 ) if C
j

0 > 0
, (4)

where j ∈ {. . .}V al . αL, βL and αE, βE are the solutions of two
distinct optimization problems each optimized independently
on the same {. . . }Trn.

While αL, and βL, are solutions to the optimization prob-
lem in Eq. (3), αE, βE are the solutions of the following mod-
ified optimization problem:

arg min
αE,βE

∑
i

wi
E · ∣∣Di

2cc − 1 − αE(e−βE ·2 − e−βECi
0 )

∣∣2
, (5a)

where i ∈ {. . . }Trn. Since the EXP model depends only on C0,
it was assumed that it cannot efficiently train on {. . .}C0=0.
The optimization problem presented in Eq. (3) was therefore
modified by the introduction of a weight factor that decreases
the importance of the training data points belonging to the
degenerate set {. . .}C0=0. The weight factor was expressed as

wi
E =

{
w if Ci

0 = 0

1 if Ci
0 > 0

. (5b)

A different value of w was associated with each training
set and was found by the following two-step optimization
problem:

arg min
w

∑
i

∣∣Di
2cc − 1 − α(w)

· (e−β(w)·2 − e−β(w)Ci
0 )

∣∣ : i ∈ ({. . .}T rn ∩ {. . .}C0>0),

arg min
α(w),β(w)

∑
i

wi
E · ∣∣Di

2cc − 1 − α(w)

· (e−β(w)·2 − e−β(w)Ci
0 )

∣∣2
: i ∈ {. . .}T rn. (5c)

Equation (5c) states that w, with (0 < w ≤ 1), is the weight
needed to generate the parameters α and β (optimized over
the entire training set) that provide the best linear fit to the
points of the training set with C0 > 0, given the relationship
between D2cc and C0 described by the EXP model [Eq. (2)].
The problem in Eq. (5c) was divided in two steps because
different subsets of the training set are used for the evaluation
of each step: the entire training set for the evaluation of α

and β (for each w), and only the patients with C0 > 0 for the
evaluation of w.

2.B. K-fold Cross-Validation

A K-Fold Cross-Validation analysis11 was performed on
the 20-patient data set for the validation of the predictive
power of the models.

Given a subdivision λ of {. . . }All into K disjointed
subsets, that is {. . .}λ = {{. . .}1

λ , . . . , {. . .}κλ , . . . , {. . .}Kλ }, of
equal (if n/K is an integer number, where n = 20
is the number of data points in a set) or near-equal
size, the prediction error of a model is evaluated as
pκ

λ = (1/�j )
∑

j |Dj

2cc − MODEL(Cj

0 , C
j

1 )|, where {. . .}V al

= {. . .}κλ and {. . .}T rn = {. . .}λ − {. . .}κλ. Repeating this cal-
culation for every κ in {. . . }λ, the prediction error pλ of each
model for a given subdivision λ is the average of pκ

λ across
all K. For each subdivision λ, the relative prediction error
of each model �pλ(MODEL1, MODEL2) = pλ(MODEL2)
− pλ(MODEL1) is also calculated for the purpose of com-
paring the predictive power of the model. A negative value
of �pλ is associated with MODEL2 being more predictive
than MODEL1; a positive value of �pλ is associated with
MODEL2 being less predictive than MODEL1.

The mean prediction error p of each model and their mean
relative prediction error �p are calculated as averages of pλ

and �pλ over a large number of randomly selected subdivi-
sions λ. The lower the value of p, the more predictive is the
model. The value of p is greater than or equal to 0.

A K-fold Cross-Validation provides an indicator of the pre-
diction error of a model on a validation set of size n/K, given
a training set of size n · (K − 1)/k, with n = 20. This analysis
was performed for all even numbers of K from 2 to 10, and
for K = 20.
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FIG. 3. Mean prediction error of the models as a function of the average training set size, derived from K-fold Cross-Validation analysis, where the average
training set size is (20 · (K − 1))/K.

The number of randomly selected subdivisions λ was
100 000. An exhaustive evaluation of all the 92 378 combi-
nations of the twofold Cross Validation was carried out. The
20-fold Cross-Validation is equivalent to a leave-one-out anal-
ysis, with only one possible subdivision λ.

2.C. Leave-one-out restricted analysis

Results of the 20-fold Cross-Validation, which is equiv-
alent in this work to a leave-one-out, were analyzed to
evaluate the prediction error associated with data points
belonging to {. . .}C0=0 and to {. . .}C0>0. Given the sin-
gle possible subdivision {{1}, {2}, . . . , {j}, {20}},
the two quantities R

j

0 = |Dj0
2cc − MODEL(Cj0

0 , C
j0
1 )| and

R+j = |Dj+
2cc − MODEL(Cj+

0 , C
j+
1 )| were calculated, where

j0 ∈ ({. . .}V al ∩ {. . .}C0=0) and j+ ∈ ({. . .}V al ∩ {. . .}C0>0),
and their averages are called R0 and R+. The standard de-
viations of R0

j and R+j are also reported.

2.D. Worst and best case scenarios

The best subdivision λbest of the twofold Cross-Validation
analysis is the subdivision associated with the lowest p; the
worst subdivision λworst is the subdivision associated with
the highest p. This information is reported to assess what
the possible mean prediction error is when there is selection
of the data points in {. . . }Trn, and to give guidance on the
possible selection of a {. . . }Trn.

2.E. Programming environment

All routines were written and run in MATLAB
(MathWorks, Natick, Massachusetts).

All optimization problems were solved using the trust-
region-reflective algorithm in the nonlinear least-square
solver provided in the Optimization Toolbox, with Jacobians

of the models provided to the solver. K-fold Cross-Validation
analysis was carried out using the tools provided in the Statis-
tics Toolbox.

3. RESULTS

3.A. K-fold Cross-Validation

All mean prediction errors p are shown in Fig. 3 as a
function of the average size of the training set of the K-fold,
20 · (K − 1)/K, and summarized in Table I.

A p < 10% was observed for all models when a training
set of size 10 or greater was used. Our methodology does not
allow for an analysis of the prediction error for training sets
of size lower than 10, given a minimum K = 2 for the K-fold
Cross-Validation.

TABLE I. Mean prediction error and standard deviation associated with the
K-fold Cross-Validation. The standard deviation associated with the 20-fold
Cross-Validation is 0, given the existence of only one partition of the total set
of 20 patients into 20 folds.

K LIN (%) EXP (%) MIX (%)
Bladder

2 7.3 ± 1.1 8.9 ± 1.5 5.1 ± 1.2
4 7.0 ± 0.5 8.5 ± 0.9 4.4 ± 0.5
6 6.9 ± 0.4 8.4 ± 0.6 4.3 ± 0.3
8 6.9 ± 0.4 8.3 ± 0.5 4.2 ± 0.3
10 6.8 ± 0.2 8.3 ± 0.4 4.2 ± 0.1
20 6.8 ± 0 8.2 ± 0 4.2 ± 0

Rectum
2 8.8 ± 1.0 7.3 ± 1.0 6.6 ± 0.8
4 8.6 ± 0.5 7.1 ± 0.5 6.5 ± 0.4
6 8.6 ± 0.4 7.1 ± 0.4 6.5 ± 0.4
8 8.6 ± 0.4 7.4 ± 0.7 6.5 ± 0.4
10 8.5 ± 0.2 7.1 ± 0.2 6.4 ± 0.2
20 8.5 ± 0 7.1 ± 0 6.4 ± 0

Medical Physics, Vol. 40, No. 10, October 2013



101711-5 Damato, Viswanathan, and Cormack: Predictive mathematical models 101711-5

MIX was associated with the smallest mean prediction er-
ror: for the tenfold (18 size training set), p = 4.2% for bladder
and p = 6.4% for rectum.

The mean relative prediction error �p for the tenfold, be-
tween MIX and LIN, was −2.6% ± 0.3% for bladder and
−2.1% ± 0.2% for rectum; between MIX and EXP, it was
−4.1% ± 0.3% for bladder and −0.6% ± 0.3% for rectum.
These results are consistent with the results shown in Fig. 3.

The different behavior of the MIX model between data
sets, and the different relative performance of the LIN and
EXP models, may be explained by two factors:

(i) the different degeneracy of the sets at C0 = 0, where
the rectum data set has 10 of 20 data points in {. . .}C0=0

and the bladder data set has 7 of 20 data points in
{. . .}C0=0;

(ii) the different range of C0 values in the data sets.
Excluding the data points in {. . .}C0=0, the C0 values
for the rectum data set range between 0.2 and 2.9 cm3,
with a mean of 1.3 ± 1.0 cm3. Excluding the data
points in {. . .}C0=0, the C0 values for the bladder data
set range between 0.4 and 11.1 cm3, with a mean of
2.6 ± 3.2 cm3.

3.B. Leave-one-out restricted analysis

The leave-one-out results and the restricted analysis
to {. . .}C0=0 (R0) and to {. . .}C0>0 (R+) are reported in
Table II. The MIX model provided equal or lower prediction
errors than the other models for all subgroups of patients.

One trivial result of the restricted analysis is that LIN and
MIX have identical R0 (MIX output is identical to LIN for
{. . .}C0=0). LIN provided lower prediction errors than EXP for
{. . .}C0=0 in both the rectum and the bladder data sets.

The weighted approach of MIX described in Eq. (5c) re-
sulted in a lower prediction error than LIN and EXP for
{. . .}C0>0 in both the rectum and the bladder data sets.

3.C. Worst and best case scenario analysis

The worst and best pair (each member of the pair called
subset A and subset B) of ten-size subsets analyzed with

TABLE II. Leave-one-out results and restricted results to the patients with C0

= 0 (R0) and C0 > 0 (R+). Results are reported as mean prediction error for
the leave-one-out analysis ± the standard deviation of the patient-by-patient
leave-one-out calculation. The standard deviation associated with the 20-fold
Cross-Validation is 0, given the existence of only one partition of the total set
of 20 patients into 20 folds.

Leave-one-out R0 R+

Bladder
LIN (%) 6.8 ± 5.1 5.7 ± 6.0 7.4 ± 4.7
EXP (%) 8.2 ± 6.4 9.6 ± 7.0 7.4 ± 6.3
MIX (%) 4.2 ± 5.1 5.7 ± 6.0 3.4 ± 2.4

Rectum
LIN (%) 8.5 ± 5.7 9.3 ± 5.6 7.7 ± 5.9
EXP (%) 7.1 ± 6.1 10.4 ± 6.6 3.8 ± 3.2
MIX (%) 6.4 ± 5.3 9.3 ± 5.6 3.4 ± 3.0

an exhaustive twofold Cross-Validation analysis for MIX are
presented in Fig. 4.

The worst case scenario prediction error for MIX is 13.3%
for the bladder data set and 12.4% for the rectum data set; for
LIN it is 14.6% for the bladder data set and 20.1% for the rec-
tum data set; for EXP it is 16.1% for the bladder data set and
13.3% for the rectum data set. This case gives an indication
of the most conservative estimate of the mean prediction error
if only ten patients were available to build a training set, and
all ten patients are being used. Figure 4 shows that this worst
case scenario is associated with training sets with very differ-
ent distributions of patients between {. . .}C0=0 and {. . .}C0>0

than the data set the model needs to predict.
The best case scenario prediction error for MIX is 3.4% for

the bladder data set and 5.0% for the rectum data set; for LIN
it is 5.9% for the bladder data set and 7.4% for the rectum data
set; for EXP it is 6.9% for the bladder data set and 5.9% for
the rectum data set. This case gives an indication of the mean
prediction error if ten patients were selected among a larger
database of patients to form a training set specifically tailored
toward the value of C0 and C1 in the validation set.

4. DISCUSSION AND CONCLUSION

The results of the validation outlined in this work shows
that the proposed mathematical model MIX can predict D2cc

metrics of bladder and rectum for interstitial gynecologic
brachytherapy with a prediction error of less than 7% on a
training set of ten patients. Proper selection of a training set
may reduce the prediction error to less than 5%, and we have
shown that further error reduction is possible using a training
set of larger size.

These errors are below the interobserver variability er-
rors, which have been reported to be 10% in intracavitary
brachytherapy.12 Those errors are also well below the ex-
pected interpatient variability: D2cc ranging from 30 to 120 Gy
for bladder and between 20 and 80 Gy for rectum have
been reported among gynecologic interstitial brachytherapy
patients.13

The models discussed in this work provide the D2cc of rec-
tum and bladder based on the overlap C0 between the organ
at risk and the area targeted by the prescription dose, and
based on the overlap C1 between the organ at risk and a 1 cm
expansion of the area targeted by the prescription dose. The
use of the input C0 has the advantage of using, in the mathe-
matical model, the trivial relationship that if exactly 2 cm3 of
an organ at risk overlaps with the area covered by the pre-
scription dose, then the D2cc is equal to 100% of the pre-
scription dose. However, since in clinical practice it is not in
general desirable to target a portion of an organ at risk with
the prescription dose, the value C0 may be equal to 0 in many
patients, resulting in a degeneracy of the data set. The tar-
geted area expansion selected to asses C1 (1 cm) was deemed
large enough to avoid a degeneracy of data at C1 = 0, yet
small enough to provide meaningful information on the geo-
metric relationship between the organs at risk and the targeted
area.
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FIG. 4. Graphical representation of the worst and best case scenarios: distribution per C0 of the 20 data points in two sets of 10 data points. In the worst case
scenarios, the points belonging to the two sets have different C0 values. In the best case scenarios, the points belonging to the two sets have similar C0 values.

In this work we show that with proper weighting of the
data in the training set for which C0 = 0, a model based on
C0 can predict the D2cc of patients for which C0 > 0 with
an error <3.5%. Such a model is not able to distinguish be-
tween patients for which C0 = 0 and would result in predic-
tion errors exceeding 10% in this subgroup. A model based on
C1 is in general able to capture the difference between pa-
tients for which C0 = 0. The prediction error of a model based
on C1 for the patients for which C0 = 0 is <10%. C0 and
C1 are both input parameters in MIX, and the output will
depend on C0 if the model is predicting a patient for which
C0 > 0, and on C1 if the model is predicting a patient for
which C0 = 0.

For the prediction of patients for which C0 = 0, no dif-
ferential weighting between training patients depending on
their value of C0 or C1 was proposed in this work. It is pos-
sible that further reduction of the prediction error is possible
with such an approach. Another possible avenue for future de-
velopment is the development of models weighting the train-
ing sets based on subsets C > Cth and C < Cth, where C is
C0 or C1, and Cth is a given threshold (in cc). The value of
Cth would need to be dynamically assessed for each train-
ing set, and it is likely that a set of data larger than the one

currently available will be needed for validation. A similar
limitation would likely apply to the development of a model
which does not separate the dependency on C0 and C1 but is
a pure two-parameter model. We are increasing the size of
our data sets and will address these different options in future
work.

Depending on the application, the targeted area used for
the calculation of the overlaps can be changed to the area re-
ceiving a lower percentage of the prescription dose. This can
be done in an effort to reduce the degeneracy of the data at C0

= 0. In this use, the models would provide the D2cc as a per-
centage of the isodose line used to calculate the overlapping
areas. This approach can be considered only in applications
where the knowledge of the full dose matrix is assumed, as
in the quality assurance of treatment plans.10 This approach
cannot be used in applications such as dosimetric guidance
during the implantation, where the targeted area would likely
be delineated by the radiation oncologist and the behavior of
the dose fall-off would not be known.

The model described in this work can be used as a compo-
nent of a quality assurance tool to detect suboptimal treatment
plans in the sparing of the organs at risk. Given the area that
is targeted by the prescription dose, or a lower isodose line,
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a properly trained model will provide an estimate of the dose
to the organs at risk that is expected with proper planning and
will detect outliers that need further review. A similar qual-
ity assurance tool has been described for IMRT planning.10

Care should be taken in building a training set formed by pa-
tient data that is considered a “gold-standard.” This can be
achieved through a mechanism to automatically detect and re-
move outlier data from a database of patient data,10 or through
manual selection of patient data based on the expertise of an
experienced radiation oncologist and physicist, or through a
mix of the two approaches. Training sets provided by large
academic institutions, or resulting from the pooling of multi-
ple institutions, can be made available for the quality assur-
ance of small institutions that do not routinely perform inter-
stitial gynecologic brachytherapy or for institutions that are
just starting the practice.

The scope of the quality assurance/quality control pro-
vided by the mathematical models discussed in this work is
confined to organs-at-risk dosimetry compared with a clinic
practice given a 100% isodose line. Compliance with clin-
ically acceptable thresholds for rectum and bladder D2cc

should be independently verified. Moreover, differences be-
tween CTV and the area included in the 100% isodose line
should also be independently checked. Methodologies such
as careful visual inspection of the isodose lines and analy-
sis of CTV D90, D98, V100, and conformity index may be
considered.

Another possible application of the mathematical models
discussed in this work is as a part of a preplanning tool.
Preplanning is the practice of simulating an interstitial or in-
tracavitary insertion on an available image set of a patient,
before the day of the insertion. This practice is used both in
gynecologic brachytherapy8 and in prostate brachytherapy.14

The models proposed can provide an indication of the
dosimetry of the organs at risk without a need to recreate a
full clinical plan. This will have the advantage of saving clin-
ical resources, as it will reduce the time for planning to only
the coverage of the targeted area, without proceeding to a fine
tuning of the doses to the organs at risk. If a clinic-specific
training set is used, the dosimetry predicted by the model
may better predict the dosimetry that will be generated under
clinical conditions (e.g., under time pressure) than a preplan
dosimetry.

Real-time dosimetric guidance, or real-time intraoperative
planning, refers to the practice of providing information on
the expected dosimetry resulting from an implantation as the
procedure is occurring, therefore allowing for corrections or
additions to ensure correct coverage of the target and spar-
ing of the organs at risk. Software systems allowing intraop-
erative planning are commercially available for ultra-sound
guided prostate brachytherapy insertion and systems based
on MR guidance have also been described.15 Those tech-
niques have not been widely implemented in gynecologic
HDR brachytherapy due to the difficulty of developing and
adjusting a treatment plan without greatly increasing the pro-
cedure time. The models proposed in this work can be used
as one of the building blocks to obtain dosimetric guidance
without the need for recreating a real-time plan, thus enabling

real-time dosimetric guidance during the insertion by elimi-
nating the need for online planning.

Preplanning or real-time guidance would likely be per-
formed by using the clinical target volume as the targeted
area. In this work, we assumed that the training sets are com-
posed of the actual targeted area contained in the 100% iso-
dose line. Depending on a clinic’s practice, there may be sit-
uations where the clinical target volume has areas of overlap
with the organs at risk that are larger than any data point in
the training set. Although the results of the models may in
this situation be less accurate, the general result of organs
at risk exceeding tolerance previously accepted in the clinic
would still be provided. We envision that in these cases, the
radiation oncologist may iteratively provide to the model an
adjusted targeted area, until a compromise between coverage
of the clinical target volume and organs-at-risk dosimetry is
found.

The application of these models for the prediction of D5cc,
D1cc, D0.5cc, and D0.1cc is possible but necessitates an inde-
pendent validation to establish the associated prediction er-
ror. The mathematical models discussed in this work may
find application beyond interstitial gynecologic brachyther-
apy. Applications of these models to intracavitary and hybrid
intracavitary-interstitial gynecologic brachytherapy, as well
as low-dose-rate and high-dose-rate prostate brachytherapy
can be considered after proper validation.
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