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Abstract

Even as the clinical impact of drug combinations continues to accelerate, no consensus on how to 

quantify drug synergy has emerged. Rather, surveying the landscape of drug synergy reveals the 

persistence of historical fissures regarding the appropriate domains of conflicting synergy models 

– fissures impacting all aspects of combination therapy discovery and deployment. Herein we 

chronicle the impact of these divisions on: 1) the design, interpretation, and reproducibility of 

high-throughput combination screens; 2) the performance of algorithms to predict synergistic 

mixtures; and 3) the search for higher-order synergistic interactions. Further progress in each of 

these subfields hinges on reaching a consensus regarding the long-standing rifts in the field.
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The Fragmented Foundations of Drug Synergy

While experimenting with medicinal combinations stretches back to antiquity, one of the 

first quantitative models to measure synergy was advanced by Loewe in 1926 [1]. Loewe 

proposed what is now called the Dose Equivalence Principle (DEP) which asserts if the 

effect of reducing one drug’s concentration can be compensated for by adding a second drug 

at a constant ratio, there is no synergy (also called additivity). This definition leads to the 

classic linear isoboles (see Glossary) of Loewe Additivity. Observed deviations from this 

expected ratio signify synergy or antagonism. The second principle, the Multiplicative 
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Survival Principle (MSP), was first proposed by Bliss in 1939 [2] then later independently 

by Webb [3]. In contrast to the DEP, the MSP takes a probabilistic approach to synergy 

asserting the probability of being unaffected by each drug individually (U1,U2) is 

independent. Therefore, the probability of being unaffected by the combination (U1,2) is 

equal to the product of the single drug probabilities (U1,2=U1*U2). This equation has been 

termed Bliss Independence. If the percent of the population unaffected by the combination is 

less or more than this product, the combination is synergistic or antagonistic, respectively. A 

third major synergy principle was proposed by Gaddum in 1940, which defined synergy as 

the difference between a combination’s effect and the most efficacious single agent [4]. This 

model is commonly called Highest Single Agent (HSA). Together, these three principles, 

(DEP, MSP, and HSA) comprise the foundations of almost all subsequent synergy 

frameworks (Figure 1A, Foundational Principles) [5]. Several excellent reviews on the 

mathematical basis of these foundational principles are [6–8].

In the 1980s, two equations – one satisfying the MSP and the other the DEP – were derived 

from a mass action model of drug effect by Chou and Talalay (Figure 1A, Mass Action 

Interpretation) [9,10]. Because the mass-action based equations for MSP and DEP are not 

equivalent, Chou recommended using the DEP equation which assumes the inhibitors are 

mutually exclusive. This equation is called the Combination Index (CI) [10]. However, the 

existence of multiple equations for calculating drug synergy became increasingly 

problematic in the late 1980s and early 1990s as systematic comparisons between methods 

emerged. These comparisons highlighted the frequent contradictory results between the 

MSP and DEP frameworks [11,12]—inconsistencies that have been subsequently 

documented as recently as 2019 [13]. Seeking consensus in the field, a conference was 

convened in Saariselkä, Finland in 1993. The resolutions of the attendees were documented 

in what was termed the Saariselkä Agreement [14,15] (Figure 1A, Seeking Consensus) 

which concluded,

“It is clear that the adherents of Loewe additivity and Bliss independence have 

heard all the most compelling arguments for and against each model, and cannot be 

persuaded to switch allegiances. Thus…we propose that both models be tentatively 

accepted…This recommendation is made even though predictions of combined-

effects based on each of the rival reference models may be quite different”

Symptomatic of this internal division in the field, the preponderance of papers using the 

term “drug synergy” since 1993 (~84%) do not reference either the DEP or MSP (Figure 

1B). Further, the adherents of the MSP- or DEP-based frameworks remain firmly entrenched 

in their respective camps – DEP-based studies being roughly twice as common as MSP-

based – with less than6% of studies explicitly mentioning both (Figure 1B).

Nevertheless, this lack of consensus has not slowed the development of combination 

screening technology which has outpaced the analytical tools necessary to translate its 

potential for therapeutic discovery. Seeking to address this gap, an assortment of synergy 

frameworks have been postulated in recent years [16–23] (Figure 1A, Modern Expansion). 

In the next section, we review these recent advances and highlight how the persistence of 

divisions between the MSP and DEP debated at Saariselkä continue to impact all aspects of 

synergy studies in the modern era.
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Recent Advances Building on Fractured Foundations

Over the last decade, there has been an expansion of synergy frameworks, almost all of 

which continue to derive from either the MSP or DEP [5] (Figure 1A, Modern Expansion). 

However, the implicit assumptions and limitations of each new framework often go unnoted 

as there are no standardized criteria for comparison. Table 1 catalogs the most critical 

features of all frameworks. These features can broadly be grouped into implicit assumptions 

(Table 1, Equation Assumptions) and restrictions on the types of data that can be analyzed 

(Table 1, Data Assumptions).

Commensurate with the expansion of computational resources, most modern frameworks 

have transitioned to fitting parametric equations to calculate synergy (Table 1 Parametric). 

ZIP and Effective Dose Model (EDM) [17,19] are parameterized models for the MSP while 

BRAID, Hill PDE, and BIGL [18,20,22] are the same for the DEP. The GPDI model [21] 

fits two different equations, one for the DEP and one for the MSP, in an approach similar to 

the CI. MuSyC fits a 2D Hill equation which reduces to either the DEP or MSP in particular 

instances subsuming both into a more general model [5,16]. All of these methods assume a 

Hill-like dose-response curve for each single-drug, an assumption first used by Chou [9], 

which is not an original assumption of Bliss, Loewe, or HSA (Table 1 Hill Approx). Finally, 

the recently rediscovered Hand model [23] is also a parameterized version of the DEP which 

only requires the dose-response function to be differentiable and invertible, and, therefore, 

could be applied with non-Hill dose-response curves, though it was not considered in these 

instances.

The form of the Hill equation (Figure S1A) used by these methods constrains the range and 

type of drug effects for which they are applicable (Figure S1B). The EDM, Hill PDE, CI, 

and BIGL are derived with a 2-parameter Hill equation. This form of the Hill equation has 

parameters only for cooperativity (also known as the Hill slope) and the potency, measured 

as the concentration of drug required to achieve the half-maximal effect (EC50) and assumes 

a minimum and maximum effect of 100% and 0% (Figure S1B). When the maximal effect 

does not reach 0%, these methods can result in poor fits[5]. In contrast, ZIP, BRAID, and 

MuSyC all use the 4-parameter Hill equation as their base making them generally applicable 

to non-percent data with arbitrary effect ranges (Table 1 Non-% Data). Because the 2-

parameter Hill equation is a special case of the 4-parameter equation (Figure S1B), these 

methods are also applicable to percent data. The distinction between the 2- and 4-parameter 

equations stems from the distinction between the percent affect and the percent effect of a 

drug. Percent affect measures the discrete change in the number of affected individuals in a 

population (i.e. an individual is either affected or not). Therefore, the percent of affected 

individuals can never exceed 100%. In contrast, the percent effect measures the continuous 

change in the behavior of individuals or populations relative to a control. Because percent 

effects are relative, they can be greater than 100% (e.g. see Figure 2A (0,0) condition). MSP 

frameworks assume the measurement is the percent affect; however, most phenotypic 

screens measure the percent effect. As a result, it is common to observe maximal effects 
which do not reach 0% (Figure S2A,B left two panels). This can happen when all cells are 

affected by the drug, but growth inhibition is partial, resulting in maximal percent effects 

>0%. A recent study [5] has shown this distinction between percent effect and percent affect 
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results in a systematic bias toward antagonism when applying Bliss to drugs with maximal 

effects between 35% and 65%). Comparing an anti-cancer dataset [24] and an anti-malarial 

dataset [25] shows the frequency of drugs with intermediate maximal efficacy is assay/

model dependent (Figure S2C,D). Therefore, careful investigation of the single-drug dose-

response curves should precede using methods derived with a 2-parameter Hill equation 

(Table 1 Unbounded Drug Effect). Both Excess Over Bliss (EOB) [26] and BIGL [22] 

propose rescaling arbitrary drug effects to range between 0% and 100% in order to apply 

Bliss and Loewe respectively; however, it is unclear how rescaling impacts synergy 

calculations when comparing combinations with different maximal efficacy.

In summary, the modern expansion of drug synergy frameworks has increased confusion, 

rather than clarified, the appropriate domain of each synergy model. This has stemmed, in 

part, from the unstated limitations and assumptions of each model (Table 1). Careful 

consideration of the assay read-out, the single-drug dose-response curves, and the 

assumptions of a particular synergy framework is critical to avoid systematic biases and 

improve reproducibility.

A Field Divided

Due to the lack of a consensus regarding the best synergy framework, several software 

packages, including SynergyFinder [27] and Combenefit [28], have been developed which 

calculate multiple synergy metrics, commonly including Bliss, Loewe, and HSA. Other 

software has been developed to directly couple multiple synergy calculations with image 

analysis in high throughput studies [29,30]. However, we find that even on the same dataset, 

SynergyFinder and Combenefit can give opposite results for the same synergy metric 

(Figure 2A,B). This likely stems from different data transformations, normalizations, and 

manipulations which are not standardized in the field. We find divergent predictions to be 

the case for up to 36% of combinations comparing between SynergyFinder and Combenefit 

for Bliss in an anti-malaria dataset [25] (Figure 2C, green bars).

The difficulty in comparing software calculations is augmented by the lack of consensus on 

what summary statistics should be used for these dose-dependent models of synergy. 

Malyutina et al. argued synergy scores at the IC50 of both drugs are more therapeutically 

relevant [31]; however, numerous studies have depended on a summary statistic for 

comparing combinations. In the anti-malarial dataset, we find the most antagonistic 

combinations by the mean (top 5%) are all present in the top 32% of most synergistic 

combinations by the maximum observed synergy (Figure 3A, Figure S3A Spearman rank 

correlation=0.13). This is because dose-dependent synergy frameworks, such as Bliss and 

Loewe, were not designed to compare different drug combinations, but rather different doses 

of the same combination. We find anti-malarial combinations where 3 samples at different 

doses are all antagonistic by Bliss (Figure 3B,C) and Loewe (Figure S3B,C), while the 

combination is synergistic by the mean over the whole dose-response surface. The 

discrepancy points to a philosophic quagmire regarding whether synergy is a property of 

drug pairs or drug dose pairs (Outstanding Questions Box). If synergy is a property of drug 

pairs, then the optimal drug concentrations should be determined based solely on 

maximizing efficacy with therapeutically tolerable doses. However, if synergy is a property 
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of particular drug concentrations, then optimal doses should be selected based on both 

synergy and efficacy of a particular dose pair. The implications of these divergent 

worldviews have not been previously discussed, yet they represent a critical fault-line in the 

field with far-reaching ramifications for the discovery and deployment of combination 

therapy.

In summary, not only do the often cited contradictions between synergy models persist, but 

even the same metric can be contradictory between different software packages. Reliance on 

summary statistics to compare drug combinations for dose-dependent synergy frameworks 

(Table 1) further compounds this problem. Such conflicts undermine the reproducibility and 

translatability of synergy studies and therefore should motivate concerted efforts toward 

establishing data handling standards in the field (Outstanding Questions Box).

Tackling the Combinatorial Complexity of Synergy Studies

One challenge, common to all synergy studies, is the looming curse of dimensionality [32–

35]. Each additional drug exponentially increases the requisite number of conditions to 

measure making an exhaustive search of combinatorial space intractable. Three subfields 

have evolved to deal with the inflationary cost of combination screens. First minimal 

sampling designs have been proposed for both MSP and DEP frameworks. Second, 

computational algorithms are being developed to predict synergy. And finally, the existence 

and nature of synergistic interactions beyond pair-wise remains an active area of study. The 

lack of such interactions would mean the effects of >2-drug mixtures could be predicted 

based on pair-wise measurements substantially reducing the number of conditions required 

to measure for higher-order combinations.

Minimalistic sampling heuristics

The most direct way to decrease the cost of drug combination screens is to reduce the 

number of data points required to calculate synergy. Several minimalistic sampling schemes 

have been proposed (Figure S4) [31–33,36–39]; however, not all sampling methods are 

equally appropriate for different frameworks. Specifically, the particularly stringent 

sampling patterns annotated Minimal MSP and DEP in Figure S4, require only 3 data points 

per combination, but can only be analyzed by Bliss/HSA or Loewe, respectively. The CSS 

sampling design [31] was proposed as a compromise between accuracy and cost and can be 

used to calculate both Bliss and Loewe. However, its accuracy depends on the intrinsic noise 

in the assay. Synergy studies should therefore carefully consider a framework’s limitations 

before depending on a particular sampling scheme (Table 1). Additionally, as discussed 

above, the selection of dose becomes critical for these minimalistic sampling schemes 

(Figure 3C,S3B).

An alternative approach to reduced sampling schemes is the use of scaling laws to infer 

effects for under-sampled combinations [40]. These scaling laws have been used to calculate 

drug response in resistant mutants based on responses of sensitive cells. However, this 

approach is also sensitive to the magnitude of an assay’s experimental noise. Further, it 

implicitly assumes that drug interactions are unidirectional (i.e. drug A changes the potency 
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of drug B, but drug B does not change drug A’s potency). Bidirectional synergistic potency 

has subsequently been assumed by several groups [16–19,21].

In summary, because the robustness of synergy calculations to different sampling strategies 

has not been rigorously addressed and depends on intrinsic experimental noise, we 

recommend subsequent screens should sample the full matrix of combinations when 

possible for greater versatility in analysis and robustness.

Predicting Synergy

In silico algorithms to predict synergy have seen substantial recent activity including two 

DREAM challenges [41,42]. Broadly, the algorithms can be grouped into either machine 

learning (statistical) methods or mechanistic models.

Two excellent reviews on common types of machine learning algorithms employed in 

predicting drug synergy as well as available databases for training models are [43,44]. 

Machine learning algorithms can be broadly categorized as network-based, gene expression-

based, drug-centric, or some combination thereof. However, because the algorithms depend 

on the structure of the training dataset, most algorithms cannot transfer between different 

studies. Therefore, the wider adoption of these algorithms depends on the interoperability 

and accessibility of synergy datasets. DrugComb [45] is a recent effort to make synergy 

datasets FAIR (Findable, Accessible, Interoperable, and Reusable). Subsequent efforts are 

needed to link drug combination screens to their cognate molecular and cellular feature sets. 

Combining data modalities, specifically, information about gene expression and drug-target 

interaction was shown to improve the predictivity of machine learning algorithms by the 

most recent DREAM challenge [41].

However, an understudied aspect of these approaches is how each algorithm’s predictions 

depend on how synergy was calculated—a notable omission given the historical conflicts in 

the field. The first DREAM challenge [42] used Bliss while the most recent challenge [41] 

was based on Loewe (calculated by Combenefit). When we predicted Bliss, Loewe, or HSA 

synergy of anti-cancer combinations using DeepSynergy [46] – a neural network algorithm 

which uses drug and gene expression information as input – we found a 12% overlap in the 

top 1,000 predicted combinations with no overlap in the top 5 (Figure 4A). The first overlap 

between all three occurred at the 263rd combination by Loewe ranking (Figure 4A). The 

physicochemical drug features (Figure S5A) and expressed genes (Figure S5B) with the 

largest influence on synergy/antagonism (as assessed by mean SHAP value [47] over 1,000 

combinations), features which could be used to guide mechanistic insights into the basis of 

synergy, had a rank correlation between the different synergy metrics of <0.04 for all 

comparisons (Figure S5). This potentially stems from the different sensitivity of Bliss, 

Loewe, and HSA to different mechanisms of joint action as described by Gilvary and 

colleagues [48]. Given the historical discrepancy between these metrics, a more customized 

and rigorous approach is warranted. In contrast to statistical models, mechanistic approaches 

to predict synergy are based on models of biological processes. An early example of this, 

coPIA, used a system of ordinary differential equations (ODEs) to predict combination 

effects in breast cancer cells [49]. A more recent ODE model of the HGF/Met signaling 

pathway was used to identify personalized combinations in hepatocellular carcinoma based 
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on MuSyC synergy calculations [50]. Another example used dynamic logic models of 

phosphorylation cascades to predict colorectal cancer response [51].

Even in the absence of kinetic parameters necessary for an ODE model, purely topological 

models have been used to predict with ~80% accuracy perturbation impacts on gene 

expression in a chemotaxis model of bacteria [52]. Such topological models have also been 

applied in cancer to identify the synergistic interaction of Aurora B and ZAK in triple-

negative breast cancer [53]. The predictivity of such approaches tends to leverage the 

sparsity of biological networks. Finally, a hybrid approach constraining the architecture of 

an artificial neural network to match biological networks has been shown to be predictive of 

growth dynamics in budding yeast [54] and could be used to predict collateral dependencies 

in biological networks.

Understanding the mechanistic basis of synergy is a common goal; however, no unifying 

theme from these studies has emerged. This may stem from relying on different synergy 

models coupled with the mechanistic models or statistical models.

Higher-order interactions.

There has been substantial interest in predicting the effects for mixtures of three or more 

drugs based on pair-wise effects [19,34,55–57] (See [58] for a more in-depth review of 

recent work). In a seminal paper on this topic, Wood et al. did not find evidence for higher-

order interactions in 3-drug combinations in Escherichia coli [55]. Specifically, they could 

predict the effects of 3-drug combinations using an MSP-based, Isserlis-like formula that 

depended only on pair-wise and single drug effects. A series of follow-up comparisons were 

done between EDM, the Isserlis-like formula, and Bliss to predict multi-drug effects for 

combinations up to 10 drugs [19,32,59]. These studies reinforced the absence of higher-

order interactions as first postulated by Wood et al.

However, these findings were challenged by two studies that found emergent synergy for 

multi-drug combinations in E. coli based on Bliss [34,60]. This trend toward synergy was 

also observed by Russ and Kishony [56], though less pronounced, in a study that directly 

compared the scaling of Loewe and Bliss. They found the null models for Loewe and Bliss 

diverge for increasingly higher-order combinations with Bliss becoming more synergistic (in 

agreement with [34,60]) and Loewe becoming more antagonistic. Cokol and colleagues also 

found evidence for higher-order interactions according to Loewe for combinations of anti-

tuberculosis compounds, though no trend as a function of the number of drugs was observed 

[33]. In our own comparison of the trends in the three datasets [34,56,59], we find a trend 

toward antagonism as the number of drugs increases for Loewe in all datasets (Figure 5A). 

The trend for Bliss, however, is contradictory between the three datasets (Figure 5B). Given 

recent work demonstrating bias in Bliss toward antagonism for drugs with maximal effects 

>0% (Figure S2) [5], we corrected the Katzir et al. [59] data to account for this bias and 

found the trend toward antagonism is attenuated (Figure S6A). We find a higher proportion 

of drugs with maximal effects >0% in the Katzir et al. data than the Russ et al. [56] data 

(Figure S6B) explaining why this bias was more prevalent in the former data.
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In the end, the presence or absence of higher-order synergy does not preclude the 

deployment of mixtures of 3 or more drugs, as gains in efficacy can still be achieved, as 

shown in a study in colorectal cancer [61]. Indeed, it has been argued that curative drug 

combinations in cancer should be constructed from non-synergistic drugs with independent 

mechanisms of resistance [62].

In summary, the existence and nature of higher-order interactions remain controversial. 

Clearly delineated studies on the role of assay, metric, drug selection, and model system are 

needed to better address this question. Further, the recently proposed existence of multiple 

types of synergy [5,16] opens a new avenue of investigation into how different types of 

synergistic interactions (e.g. synergistic potency and efficacy) scale for increasing numbers 

of drugs. Nevertheless, what is clear is the discrepancies between the MSP and DEP are 

further exacerbated by the scaling to higher numbers of drugs amplifying the need for a 

consensus approach synergy before addressing this problem.

Synergy in New Contexts

Despite the persistent historical fissures in the field, there are exciting developments that 

continue to add new dimensions to the quantification of combination pharmacology. One 

interesting development is the study of synergy in temporally staggered treatments [63], 

which are known to impact in vivo efficacy [64]. These dosing programs better mimic 

patient combinations which are not commonly given simultaneously—an often-ignored 

assumption of all Hill-equation based frameworks (Table 1, Hill Approx.). Koplev et al. [63] 

take a geometric approach, similar to the MSP [56], and find several anti-cancer 

combinations with temporally dependent synergy in pancreatic cancer. Related to this, a 

recent study by Dean et al. has investigated how synergy is related to the short-term 

development of resistance [65]. They found the rate of adaptation in E. faecalis is not related 

to the synergy of the combination, but rather is a function of the overlap in mechanism 

between the drugs. In related work, Maltas et al. [66] found the collateral effects of a single 

drug are pervasive but drug-specific. Therefore, the optimal combinations to reduce the 

development of resistance are drug-dependent, though the connection between collateral 

effects of a single drug and synergy is not well understood.

Another rapidly evolving concept is the translation of synergy between different scales 

[67,68]. Palmer et al. used a Bliss model to show the gain in survival time for most clinical 

combinations can be explained by variable sensitivity in a population rather than true 

pharmacologic interaction. A conceptually similar idea was the basis of DRUG-NEM [69], 

an MSP-based framework for identifying combinations that maximize coverage of a 

heterogeneous cell population measured by CYTOF. Finally, the impact of cell-to-cell 

variability on the development of drug resistance has been modeled using a probabilistic, 

state-transition framework that found drug interactions between cytostatic and cytotoxic 

drugs to vary in time [70]. Overall, these studies highlight the role of heterogeneity at every 

scale on our understanding of drug synergy.

Another developing area of research is the use of multi-objective functions to prioritize drug 

combinations. For example, SynToxProfiler [71] and CSS [31] both calculate synergy as 
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well as total efficacy. The possible existence of a synergy-efficacy trade-off [72,73] 

emphasizes the search for synergistic combinations should not be solely focused on 

optimizing synergy, but also high efficacy at tolerable doses. One tool for simultaneously 

considering synergy and efficacy is the S-S plot [31], a scatter plot of the efficacy (related to 

the area under the surface of the CSS sampling design) and synergy (Bliss, Loewe, or ZIP 

calculated at the IC50 of both drugs). Toxmatrix instead quantifies toxicity, or protection 

against toxicity, due to a combination [74]. MuSyC was proposed to decouple different types 

of synergies: efficacy, potency, and cooperativity [5,16] where the relative merits of each 

synergy are disease-specific [16]. Such a multi-parametric approach to drug synergy better 

captures the clinical trade-offs between therapeutic efficacy and tolerable dose. However, it 

is unclear how much the in vitro measures of efficacy, toxicity, and synergy correlate to 

clinical axes of interest (e.g. side effects and clinical efficacy). Furthermore, the optimal 

trade-off between these different parameters is unknown, though Pareto optimization would 

appear appropriate.

Finally, the rapid evolution of chemical-genomics screens is only beginning to impact the 

search for drug combinations. Examples include recent studies in M. tuberculosis [75,76] 

and E. coli [77] which identified mutant-specific classes of inhibitors and suggest mutation 

mimicking drug combinations as a promising path forward. Another study used a CRISPR-

based double knockout screen to identify synergistic combinations against leukemia cells 

[78]. However, as gene knock-outs and mutations are fundamentally different than molecular 

inhibition, the relationship between synthetic lethal and drug synergy is likely case 

dependent. Notably, Cokol et al. did not find an increase in Loewe synergy in targeting 

synthetic lethal genes compared to random [79]. While the historical overlap between 

functional genomics and drug synergy has been small, these recent efforts are beginning to 

bridge these disciplines.

Conclusions and Future Perspectives

Herein we have highlighted recent advances in the field of drug synergy as well as provide a 

template for future comparisons (Table 1). Twenty-five years on from the Saariselkä 

conference, consensus seems even further away; however, recent efforts have reinvigorated 

the conversation of unifying the MSP and DEP fostering the hope unity is possible 

[5,17,18,21]. We have compiled key areas in need of consensus (see Outstanding Questions). 

The notable development of a drug combination database [45] should facilitate more 

comprehensive comparisons in the future. To this end, we recommend standardizing the 

format of experimental data (Table S1) and the annotation of the pharmacologic parameters 

(Table S2) to assist subsequent systematic comparisons between drug synergy experiments 

or frameworks, respectively.

Quantitative models of drug-drug interactions are critical for rationally guiding drug 

combination discovery and translation in the treatment of complex, multi-factorial diseases. 

However, the clinical translation of such discovery efforts depends on the reproducibility of 

synergy studies – reproducibility hampered by the persistence of historical fissures. A 

collective effort toward consensus on the models and methods to measure drug synergy is 

therefore urgently needed.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank members of the Quaranta and Lopez lab for helpful discussions. CM would like to 
thank Chris Wright for advice concerning content and structure. Additionally, the authors would like to thank all the 
papers that included raw data or open software. Such content was critical to the conclusions of this review.

This work was supported by the following funding sources: CTM was supported by the National Science 
Foundation (NSF) Graduate Student Fellowship Program (GRFP) [Award #1445197]. CFL and DJW were 
supported by NSF awards [MCB 1411482] and [MCB-1715826], respectively. CFL and VQ were supported by the 
National Institutes of Health (NIH) [U54-CA217450 and U01-CA215845]. VQ was additionally supported by NIH 
[R01-186193].

Glossary:

Cooperativity:
Also known as the Hill slope, this is a measure of the steepness of the dose-response curve 

(Figure S1A).

Curse of dimensionality:
The name given to a large class of problems arising from the combinatorial expansion of 

considering higher dimensions.

CyTOF:
Mass Cytometry uses heavy-metal tagged antibodies to quantify single-cell expression of up 

to 50 target proteins.

Dose-response curve:
To assay drug effect, drugs are commonly titrated across several concentrations and the 

resulting effect measured. Commonly the dose-response is sigmoidal well fit by a Hill 

equation.

Dose-response surface:
The measured effect of a combination of two drugs over a range of different concentrations. 

Commonly plotted as either a heatmap (Figure 2A) or 3D surface plot where the X-Y axes 

are drug concentration and the color or Z-axis is the measured effect, respectively.

Higher-order combinations:
Combinations of three or more drugs.

Isoboles:
Contours of equal effect. For all pairs of drug 1 and drug 2 concentrations along an isobole, 

the resulting effect (e.g. percent of viable cells) is the same.

Mutually Exclusive:
Two inhibitors are mutually exclusive if binding to one precludes the binding of the other.

Parametric equations:
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Equations with parameters which are fit to the data. An example is the Hill equation (Figure 

S1A) which varies E0, Em, h, and C to fit dose-response data. An example of a non-

parametric equation is the Bliss equation (U1,2=U1*U2) as there are no values to fit.

Percent Affect vs. Percent Effect:
For historical reasons, these are often used interchangeably, but they are fundamentally 

different. Affect measures whether there is a discrete change in phenotype (live vs. dead). 

The percent of affected cells, eggs, etc. can never exceed 100%. Percent effect is the relative 

change compared to control and is commonly measured in phenotypic assays. In contrast to 

percent affect, it can exceed 100% (Figure 2, S2A,C).

Potency:
The concentration of drug required to achieve a particular effect. Commonly quantified by 

the EC50. the drug concentration is required to achieve a half-maximal effect (Figure S1A).

Sham Experiment:
A thought experiment in which a combination of drugs is tested for synergy; however, the 

combination is actually two of the same drug. The sham principle states no combination 

should be synergistic with itself. Classically, DEP frameworks are sham compliant while 

MSP frameworks are not.
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Outstanding Questions:

• What is the relationship between and applicable domain of the Dose 

Equivalence Principle (DEP) and Multiplicative Survival Principle (MSP)?

• Is synergy a property of drug combinations or is it dose-dependent?

• Do higher-order drug interactions exist? If so, how prevalent are they?

• Should sham compliance be included as a measure of a new synergy 

framework’s validity?

• What are common mechanisms which underlie a successful clinical 

combination?

Meyer et al. Page 15

Trends Pharmacol Sci. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights:

• Historical rifts between drug synergy paradigms have persisted into the 

modern era with modern frameworks further dividing the field.

• These divisions impact the reproducibility of synergy calculations limiting the 

translational potential of combination studies.

• Additionally, these divisions undermine the utility of computational 

approaches to predict synergy.

• The properties of different synergy metrics have led to contradictory 

conclusions regarding the existence and nature of higher-order synergistic 

interactions for increasing numbers of drugs.

• Unifying the field necessarily precedes a broader acceptance and utilization of 

synergy calculations for discovering clinically-impactful therapeutic mixtures.
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Figure 1: Timeline of developments in drug synergy highlights the persistence of historical rifts 
in the field.
A) Developments in drug synergy span four distinct epochs. During the Foundational 

Principles period, the major drug synergy principles were first described. Subsequent work 

in the 1980s rederived the DEP and MSP based on a mass-action model of drug effect 

resulting in two equations. The DEP-based equation became known as the Combination 

Index (CI). A series of studies during a critical period in the 1990s highlighted the 

incongruence of the DEP and MSP culminating in the recommendation studies should 

explicitly state how synergy was calculated. The modern era is characterized by an 

expansion of synergy models that seek to extend the DEP and MSP (Table 1). Substantial 

developments have also occurred in related subfields such as software, sampling methods, 

computational prediction, and higher-order interactions. B) Publications (in Google Scholar) 

which include the term “drug synergy.” Publications are grouped by those mentioning MSP 

(blue), DEP (red), both (purple), or neither (gray). Papers the terms “dose equivalence 
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principle” or “isobologram” or “loewe” or “combination index” or “Chou and Talalay” or 

“isobole” containing the terms “dose equivalence principle” or “isobole” or “Loewe” or 

“combination index” were considered to reference the DEP. Papers containing the terms 

“multiplicative survival principle” or “bliss” or “fractional product method” were considered 

to reference the MSP. The time span included was: 1993–2019. The search date was 

01/16/2020. Over 84% of publications continue to use the term synergy without referencing 

a particular model. Of those that do, < 6% acknowledge the existence of multiple 

frameworks.
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Figure 2: Conflicting results between synergy software packages impairs reproducibility.
A) Percent effect (color-bar bottom, numbers in boxes) of nvpbgl226 (PI3K/mTor inhibitor) 

and emetine (anti-protozoal) against HB3 strain of malaria. Data from Mott et al. [25]. The 

percent effect can be greater than 100% because static endpoint measures of drug effect rely 

on normalization to untreated controls. If the treated condition has more cells than the 

control, the normalized percent effect is >100%. This highlights the difference between 

percent affect (which can never exceed 100%) and percent effect. B) Combenefit and 

SynergyFinder calculate Bliss (color scale bottom) for this combination differently resulting 

in conflicting synergy classification based on the mean across the surface. Gray boxes are 

undefined as synergy is only calculated for combination conditions. Syn=synergy, 

Ant=Antagonism. The color scale is the same for both heatmaps. This disparity may arise 

from different approaches to deal with effects >100%. C) The frequency of agreement 

Meyer et al. Page 19

Trends Pharmacol Sci. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between SynergyFinder and Combenefit in the anti-malarial dataset is synergy metric 

dependent.
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Figure 3: Dose-dependent synergy frameworks perform inconsistently when using summary 
statistics.
A) Different summary statistics for dose-dependent synergy metrics (Table 1, Dose-

Independent) prioritize different combinations for follow-up. Anti-malarial combinations are 

ranked from left to right in order of increasing maximum observed Loewe synergy 

(calculation by Combenefit). The rank-order correlation between the maximum Loewe and 

mean Loewe is 0.13 (Figure S3A) and combinations with high maximum synergy are often 

antagonistic by mean (red lines bottom panel). The top 5% of antagonistic combinations by 

the mean fall in the top 32% of synergistic combinations by the max. -log(Loewe) <0 is 
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antagonistic and >0 is synergistic. B) Percent effect (color scale bottom, numbers in boxes) 

of amodiaquine (polymerase inhibitor) and artemether (proposed to function by inhibiting 

anti-oxidant enzymes) on the HB3 strain of malaria. C) The combination is antagonistic 

(Ant) by Bliss (color scale bottom) according to SynergyFinder at three different 

combination doses (purple, orange, green lines); however, the combination is synergistic 

(Syn) by mean over the surface. Gray boxes are undefined as synergy is only calculated at 

combination conditions.
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Figure 4: Top, machine learning-predicted, combinations depend on the synergy metric.
A) We trained DeepSynergy [46], a machine-learning algorithm to predict drug synergy 

from gene expression and drug physicochemical properties, on the O’Neil et al. dataset [24] 

with Bliss (purple), HSA (green), or Loewe (orange) as the measure of synergy. The top-

predicted synergistic combinations were different depending on which metric was used. The 

mixture of mk-2206 (AKT inhibitor) plus sunitinib (tyrosine kinase inhibitor) in A2780 cells 

was the top combination present in the rank-orderings of all three metrics at the 6th, 8th, and 

263rd position for HSA, Bliss, and Loewe respectively (red highlight). The top 5 predicted 

synergistic interactions in Loewe are all in HT144 cells (malignant melanoma) while in 

Bliss and HSA all are in A2780 (ovarian carcinoma).
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Figure 5: Seeking consensus on the existence and nature of higher-order interactions.
A) Average Loewe synergy decreases for an increasing number of drugs in three datasets 

(Russ et al. [56], Katzir et al. [59], and Tekin et al. [34]). The black dot is the mean value of 

the distribution. Red-line demarcates synergy (Syn) from antagonism (Ant). The species 

tested in each paper are indicated in the panel title. B) Distribution of Bliss synergy as a 

function of increasing numbers of drugs. Accounting for the difference between percent 
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effect and percent affect reduced the bias toward antagonism for ultra-high order 

combinations in the Katzir et al. data (Figure S6A).
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Table 1:

Comparison of drug synergy models.

Equation Assumptions Data Assumptions Availability

Dose-
Independent

Parametric 
(#Parameters)

# 
Synergy 

Variables

Hill 
Approx.

Not Sham 
Compliant

>2 
drugs

Non- 
% 

data

Unbounded 
Drug 
Effect

Software 
[Citation(s)]

Original 
Citation

MSP

Bliss 
Independence

1 ✓ ✓ Web,R,Matlab 
[27,28,45]

[2]

EOB 1 ✓ ✓ ✓ [26]

ZIP ✓ (10) 1 ✓ ✓ ✓ ✓ Web,R 
[27,45]

[17]

EDM ✓ ✓ (6) 2 ✓ ✓ ✓ [19]

DEP

Loewe 
Additivity

1 ✓ ✓ Web,R,Matlab 
[27,28,45]

[1]

CI* ✓ (4) 1 ✓ DOS,python 
[80,81]

[9]

Hill PDE ✓ (6) 1 ✓ [20]

Hand 1 ✓ ✓ ✓ [23]

BIGL 1 ✓ ✓ ✓ ✓ R [22] [22]

BRAID ✓ ✓ (10) 2 ✓ ✓ ✓ R [18] [18]

Other

HSA 1 ✓ ✓ ✓ ✓ Web,R,Matlab 
[27,28,45]

[4]

GDPI_LA ✓ ✓ (12) 4 ✓ ✓ ✓ [21]

GPDI_BI ✓ ✓ (12) 4 ✓ ✓ ✓ [21]

MuSyC ✓ ✓ (10,12)
+ 3,5 ✓ ✓ ✓ ✓ ✓ [16]

*
CI is the DEP-based equation in [10] which is the most commonly used.

+
MuSyC has 2 forms as detailed in [5] including or excluding synergistic cooperativity. Checkmark indicates satisfies the property
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