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Abstract

Background noise strongly penalizes auditory perception of speech in humans or vocalizations in animals.
Despite this, auditory neurons are still able to detect communications sounds against considerable levels of
background noise. We collected neuronal recordings in cochlear nucleus (CN), inferior colliculus (IC), auditory
thalamus, and primary and secondary auditory cortex in response to vocalizations presented either against a
stationary or a chorus noise in anesthetized guinea pigs at three signal-to-noise ratios (SNRs; —10, 0, and
10dB). We provide evidence that, at each level of the auditory system, five behaviors in noise exist within a
continuum, from neurons with high-fidelity representations of the signal, mostly found in IC and thalamus, to
neurons with high-fidelity representations of the noise, mostly found in CN for the stationary noise and in simi-
lar proportions in each structure for the chorus noise. The two cortical areas displayed fewer robust responses
than the IC and thalamus. Furthermore, between 21% and 72% of the neurons (depending on the structure)
switch categories from one background noise to another, even if the initial assignment of these neurons to a
category was confirmed by a severe bootstrap procedure. Importantly, supervised learning pointed out that
assigning a recording to one of the five categories can be predicted up to a maximum of 70% based on both
the response to signal alone and noise alone.
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In daily situations, humans and animals are faced with various background noises in which they have to de-
tect behaviorally salient signals. Noise resistance is often viewed as an emergent property of cortical net-
works, but only a few studies have characterized the relative contribution of cortical and subcortical
neurons. Our results demonstrate that the neuronal resistance to noise is distributed along the auditory sys-
tem with a more important fraction of robust neurons in subcortical structures compared with auditory cor-
tex, and is relatively well predictable based on the responses to the signal alone and the noise alone. Our
results also suggest that noise-invariant representations of communication sounds coexist with accurate
\noise representations, which are detected as early as the cochlear nucleus (CN). /

ignificance Statement

Introduction
In natural conditions, speech (in humans) and commu-
nication sounds (in animals) usually co-occur with many
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other competing acoustic signals. During evolution, the
auditory system has developed strategies to extract these
behaviorally important signals mixed up with substantial
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amounts of noise. Over the last decade, many studies
performed on different species have reported that the re-
sponses of auditory cortex neurons are quite resistant to
various types of noises, even at low signal-to-noise ratio
(SNR; Narayan et al., 2007; Rabinowitz et al., 2013;
Schneider and Woolley, 2013; Mesgarani et al., 2014; Ni
et al., 2017; Beetz et al., 2018). Several hypotheses have
been formulated to account for the high performance of
auditory cortex neurons. For example, it was proposed
that noise tolerance is correlated with adaptation to the
stimulus statistics, potentially more pronounced at the
cortical than at the subcortical level (Rabinowitz et al.,
2013). A dynamic model of synaptic depression was also
suggested as a potential mechanism for robust speech
representation in the auditory cortex (Mesgarani et al.,
2014). Alternatively, a simple feedforward inhibition circuit
was viewed as a mechanism to explain background-in-
variant responses detected in the secondary auditory cor-
tex (Schneider and Woolley, 2013).

A recent study (Ni et al., 2017) reported that auditory
cortex neurons can be assigned to categories depending
on their robustness to noise. By testing the responses to
conspecific vocalizations at different SNRs, this study de-
scribed four types of response categories (robust, bal-
anced, insensitive, and brittle) in the marmoset primary
auditory cortex (A1), and pointed out that depending on
the background noise, two-thirds of A1 neurons exhibit
different response classes (Ni et al., 2017).

The present study aimed at determining whether the
subcortical auditory structures display similar proportions
of these four categories and whether the noise-type sen-
sitivity is already present at the subcortical level. We used
the same methodology as in Ni et al. (2017) to assign
each recording to a given response class: the extraction
index (El; initially defined by Schneider and Woolley,
2013) was computed at three SNRs (+10, 0, and —10dB)
and an unsupervised clustering approach (the K-means
algorithm) revealed groups of El profiles in a given back-
ground noise.

We performed this clustering approach in the cochlear
nucleus (CN), inferior colliculus (IC), auditory thalamus,
primary and secondary auditory cortex using two types of
masking noise, a stationary or a chorus noise composed
of a mixture of conspecific vocalizations. We renamed
two neuronal behaviors in noise for recognizing equivalent
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roles to stimulus-like neuronal responses (i.e., the signal-
like and the masker-like responses) since in ethological
conditions, both could play an important functional role.

The categories range from signal-like responses (equiv-
alent to the “robust” neurons of Ni et al., 2017) showing a
high-fidelity representation of the signal, to masker-like
responses showing a high-fidelity representation of the
noise (equivalent to the “brittle” neurons of Ni et al., 2017),
with two intermediary categories, one showing no prefer-
ence either for the signal or for the noise named insensi-
tive, and the other characterized by the highest sensitivity
to the SNR named balanced. To minimize the intra-cate-
gory distances, we also added a new category, called sig-
nal-dominated, which corresponds to an attenuated
version of the signal-like responses.

Here, we present evidence that the categories initially
described by Ni et al. (2017) in the A1 do exist at each
stage of the auditory system, from CN to secondary audi-
tory cortex. From a continuum of El values, we imposed a
clustering and revealed that each category was repre-
sented at each relay of the auditory system in different
proportions, depending on the auditory structure and the
type of the masking noise. Signal-like and signal-domi-
nated responses were in higher proportions in IC and thal-
amus in both noises. Masker-like responses were found
mostly in the CN in stationary noise but in similar propor-
tions in each structure in chorus noise. Interestingly, the
proportion of balanced responses decreased as one as-
cends in the auditory system suggesting a decreased
sensitivity to SNR at the cortical level. The noise-type sen-
sitivity, that is the ability to switch category from a given
background noise to another, exists at each level of the
auditory system. Using a supervised learning approach
with descriptors extracted from the responses to the origi-
nal vocalizations alone (signal) and to the maskers alone,
we provide evidence that the assignment to a given cate-
gory is relatively well predicted in both types of noise.

Materials and Methods
Most of the Methods are similar to those described in a
previous study (Souffi et al., 2020).

Subjects

These experiments were performed under the national li-
cense A-91-557 (project 2014-25, authorization 05,202.02)
and using the procedures N° 32-2011 and 34-2012 validated
by the Ethic committee N°59 (CEEA Paris Centre et Sud). All
surgical procedures were performed in accordance with the
guidelines established by the European Communities Council
Directive (2010/63/EU Council Directive Decree).

Extracellular recordings were obtained from 47 adult
pigmented guinea pigs (aged 3-16 months, 36 males, 11
females) at five different levels of the auditory system: the
CN, the IC, the medial geniculate body (MGB), the primary
(A1) and secondary [area ventrorostral belt (VRB)] auditory
cortex. Animals, weighting from 515 to 1100 g (mean 856
g), came from our own colony housed in a humidity (50—
55%)-controlled and temperature (22-24°C)-controlled
facility on a 12/12 h light/dark cycle (light on at 7:30 A.M.)
with free access to food and water.
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Two days before the experiment, the animal’s pure-
tone audiogram was determined by testing auditory
brainstem responses (ABRs) under isoflurane anesthesia
(2.5%) as described in Gourévitch et al. (2009). A soft-
ware (RTLab, EchodiaFrance) allowed averaging 500 re-
sponses during the presentation of nine pure-tone
frequencies (between 0.5 and 32kHz) delivered by a
speaker (Knowles Electronics) placed in the animal right
ear canal. The auditory threshold of each ABR was the
lowest intensity where a small ABR wave can still be de-
tected (usually Wave lll). For each frequency, the thresh-
old was determined by gradually decreasing the sound
intensity (from 80-dB SPL down to —10-dB SPL). All ani-
mals used in this study had normal pure-tone audio-
grams (Gourévitch et al., 2009; Gourévitch and Edeline,
2011).

Surgical procedures

All animals were anesthetized by an initial injection of
urethane (1.2 g/kg, i.p.) supplemented by additional
doses of urethane (0.5 g/kg, i.p.) when reflex movements
were observed after pinching the hind paw (usually two to
four times during the recording session). A single dose of
atropine sulfate (0.06 mg/kg, s.c.) was given to reduce
bronchial secretions and a small dose of buprenorphine
was administrated (0.05 mg/kg, s.c.) as urethane has no
antalgic properties. After placing the animal in a stereo-
taxic frame, a craniotomy was performed and a local an-
esthetic (xylocain 2%) was liberally injected in the wound.

For auditory cortex recordings (areas A1 and VRB), a
craniotomy was performed above the left temporal cortex.
The dura above the auditory cortex was removed under
binocular control and the cerebrospinal fluid was drained
through the cisterna to prevent the occurrence of edema.
For the recordings in MGB, a craniotomy was performed
above the most posterior part of the MGB (8 mm posterior
to bregma) to reach the left auditory thalamus at a location
where the MGB is mainly composed of its ventral, tono-
topic, part (Redies et al., 1989; Edeline et al., 1999;
Anderson et al., 2007; Wallace et al., 2007). For IC record-
ings, a craniotomy was performed above the left IC and
portions of the cortex were aspirated to expose the sur-
face of the left IC (Malmierca et al., 1995, 1996; Rees et
al., 1997). For CN recordings, after opening the skull
above the left cerebellum, portions of the cerebellum
were aspirated to expose the surface of the left CN
(Paraouty et al., 2018).

After all surgeries, a pedestal in dental acrylic cement
was built to allow an atraumatic fixation of the animal’s
head during the recording session. The stereotaxic frame
supporting the animal was placed in a sound-attenuating
chamber (IAC, model AC1). At the end of the recording
session, a lethal dose of Exagon (pentobarbital >200 mg/
kg, i.p.) was administered to the animal.

Recording procedures

Data from multiunit recordings were collected in five au-
ditory structures, the non-primary cortical area VRB, the
primary cortical area A1, the MGB, the IC, and the CN
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(see Table 1). In a given animal, neuronal recordings were
only collected in one auditory structure.

Cortical extracellular recordings were obtained from arrays
of 16 tungsten electrodes (TDT, TuckerDavis Technologies;
2: 383um, <1 MQ) composed of two rows of 8 electrodes
separated by 1000 um (350 um between electrodes of the
same row). A silver wire, used as ground, was inserted be-
tween the temporal bone and the dura matter on the contra-
lateral side. The location of the A1 was estimated based on
the pattern of vasculature observed in previous studies
(Wallace et al., 2000; Gaucher et al., 2013; Gaucher and
Edeline, 2015). The non-primary cortical area VRB was lo-
cated ventral to A1 and distinguished because of its long la-
tencies to pure tones (Rutkowski et al., 2002; Grimsley et al.,
2012). For each experiment, the position of the electrode
array was set in such a way that the two rows of eight electro-
des sample neurons responding from low to high frequency
when progressing in the rostro-caudal direction [see Gaucher
et al. (2012; their Fig. 1) and Occelli et al. (2016; their Fig. 6A)].

In the MGB, IC and CN, the recordings were obtained
using 16 channel multielectrode arrays (NeuroNexus)
composed of one shank (10 mm) of 16 electrodes spaced
by 110 pm and with conductive site areas of 177um?. The
electrodes were advanced vertically (for MGB and IC) or
with a 40° angle (for CN) until evoked responses to pure
tones could be detected on at least 10 electrodes.

All thalamic recordings were from the ventral part of
MGB (see above surgical procedures) and all displayed
latencies <9 ms. At the collicular level, we distinguished
the lemniscal and non-lemniscal divisions of IC based on
depth and on the latencies of pure tone responses. We
excluded the most superficial recordings (until a depth of
1500 um) and those exhibiting latency >= 20 ms in an at-
tempt to select recordings from the central nucleus of the
IC (CNIC). At the level of the CN, the recordings were col-
lected from both the dorsal (DCN) and ventral (VCN) divi-
sions, but based on the recording depth, we estimate that
the DCN recordings were more numerous.

The raw signal was amplified 10,000 times (TDT
Medusa). It was then processed by an RX5 multichannel
data acquisition system (TDT). The signal collected from
each electrode was filtered (610-10,000Hz) to extract
multiunit activity (MUA). The trigger level was set for each
electrode to select the largest action potentials from the
signal. On-line and off-line examination of the waveforms
suggests that the MUA collected here was made of action
potentials generated by a few neurons at the vicinity of
the electrode. However, as we did not used tetrodes, the
result of several clustering algorithms (Pouzat et al., 2004;
Quiroga et al., 2004; Franke et al., 2015) based on spike
waveform analyses were not reliable enough to isolate
single units with good confidence. Although these are not
direct proofs, the fact that the electrodes were of similar
impedance (0.5-1 MQ) and that the spike amplitudes had
similar values (100-300 pV) for the cortical and the sub-
cortical recordings, were two indications suggesting that
the cluster recordings obtained in each structure included
a similar number of neurons. Even if a similar number of
neurons were recorded in the different structures, we can-
not discard the possibility that the homogeneity of the
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Figure 1. Original and noisy vocalizations. A, Waveforms (top) and spectrograms (bottom) of the four original whistles used in this
study. B, C, Spectrograms of the four whistles in stationary (B) and chorus (C) noise at three SNRs (+10, 0, and —10dB, from top
to bottom) and the noise only. The frequency range for all spectrograms is 0-30 kHz, and all spectrograms share the same color

scale (covering a range of 50 dB).

multiunit recordings differs between structures. By col-
lecting several hundreds of recordings in each structure,
these potential differences in homogeneity should be at-
tenuated in the present study.

Acoustic stimuli

Acoustic stimuli were generated using MATLAB, trans-
ferred to a RP2.1-based sound delivery system (TDT) and
sent to a Fostex speaker (FE87E). The speaker was
placed at 2.cm from the guinea pig’s right ear (or left ear
for CN recordings), a distance at which the speaker pro-
duced a flat spectrum (+3dB) between 140Hz and
36 kHz. Calibration of the speaker was made using noise
and pure tones recorded by a Briel & Kjeer microphone
4133 coupled to a preamplifier B&K 2169 and a digital re-
corder Marantz PMD671. All the stimuli intensities were
calculated as RMS.

The time-frequency response profiles (TFRPs) were de-
termined using 129 pure-tones frequencies covering eight
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octaves (0.14-36 kHz) and presented at 75-dB SPL. The
—t

2
. t —
tones had a y envelop given by y(t) = <Z) e4 , wheret

is time in ms. At a given level, each frequency was re-
peated eight times at a rate of 2.35Hz in pseudorandom
order. The duration of these tones over half-peak ampli-
tude was 15ms, and the total duration of the tone was
50 ms, so there was no overlap between tones.

A set of four conspecific vocalizations was used to as-
sess the neuronal responses to communication sounds.
These vocalizations were recorded from animals of our
colony. Pairs of animals were placed in the acoustic
chamber and their vocalizations were recorded by a Briel
& Kjeer microphone 4133 coupled to a preamplifier B&K
2169 and a digital recorder Marantz PMD671. A large set
of whistle calls was loaded in the Audition software
(Adobe Audition 3) and four representative examples of
whistle were selected. As shown in Figure 1A, lower
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panels, despite the fact the maximal energy of the four se-
lected whistles was in the same frequency range (typically
between 4 and 26 kHz), these calls displayed slight differ-
ences in their spectrograms. In addition, their temporal
(amplitude) envelopes clearly differed as shown by their
waveforms (Fig. 1A, upper panels).

The four whistles were also presented in two frozen
noises ranging from 10 to 24,000 Hz. To generate these
noises, recordings were performed in the colony room
where a large group of guinea pigs were housed (30-40;
two to four animals/cage). Several 4 s of audio recordings
were added up to generate the “chorus noise,” which
power spectrum was computed using the Fourier trans-
form. This spectrum was then used to shape the spectrum
of a white Gaussian noise. The resulting vocalization-
shaped stationary noise therefore matched the chorus-
noise audio spectrum, which explains why some frequency
bands were overrepresented in the vocalization-shaped
stationary noise. Figure 1B,C displays the spectrograms of
the four whistles in the vocalization-shaped stationary
noise (Fig. 1B) and in the chorus noise (Fig. 1C) with a SNR
of +10, 0, and —10dB. The last spectrograms of these two
figures represent the noises only.

Experimental protocol

As inserting an array of 16 electrodes in a brain structure
almost systematically induces a deformation of this struc-
ture, a 30-min recovering time lapse was allowed for the
structure to return to its initial shape, then the array was
slowly lowered. Tests based on measures of TFRPs were
used to assess the quality of our recordings and to adjust
electrodes’ depth. For auditory cortex recordings (A1 and
VRB), the recording depth was 500-1000 um, which corre-
sponds to Layer lll and the upper part of Layer IV according
to Wallace and Palmer (2008). For thalamic recordings, the
NeuroNexus probe was lowered ~7 mm below pia before
the first responses to pure tones were detected.

When a clear frequency tuning was obtained for at least 10
of the 16 electrodes, the stability of the tuning was assessed:
we required that the recorded neurons displayed at least
three successive similar TFRPs (each lasting 6 min) before
starting the protocol. When the stability was satisfactory, the
protocol was started by presenting the acoustic stimuli in the
following order. We first presented the four whistles at 75-dB
SPL in their original versions (in quiet), then the chorus and
the vocalization-shaped stationary noises were presented at
75-dB SPL followed by the masked vocalizations presented
against the chorus then against the vocalization-shaped
stationary noise at 65-, 75-, and 85-dB SPL. Thus, the level
of the original vocalizations was kept constant (75-dB
SPL), and the noise level was increased (65-, 75-, and 85-
dB SPL). In all cases, each vocalization was repeated 20
times. Presentation of this entire stimulus set lasted
45 min. The protocol was re-started either after moving the
electrode arrays on the cortical map or after lowering the
electrode at least by 300 um for subcortical structures.

Data analysis
All the analyses were performed on MATLAB 2019
(MathWorks).
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Quantification of responses to pure tones

The TFRP were obtained by constructing poststimulus
time histograms for each frequency with 1-ms time bins.
The firing rate evoked by each frequency was quantified
by summing all the action potentials from the tone onset
up to 100 ms after this onset. Thus, TFRP were matrices
of 100 bins in abscissa (time) multiplied by 129 bins in or-
dinate (frequency). All TFRPs were smoothed with a uni-
form 5 x 5 bin window.

For each TFRP, the best frequency (BF) was defined as
the frequency at which the highest firing rate was re-
corded. Peaks of significant response were automatically
identified using the following procedure. A positive peak
in the TFRP was defined as a contour of firing rate above
the average level of the baseline activity plus six times the
standard deviation of the baseline activity. Recordings
without significant peak of responses or with inhibitory re-
sponses were excluded from the data analyses.

Quantification of responses evoked by original
vocalizations and noises alone

The responses to vocalizations were quantified using
two parameters:

(1) The firing rate of the evoked response, which corre-
sponds to the total number of action potentials occurring
during the presentation of the stimulus.

(2) The trial-to-trial temporal reliability coefficient
(CorrCoef) which quantifies the trial-to-trial reliability of
the response over the 20 repetitions of the same stimulus.
This index was computed for each vocalization: it corre-
sponds to the normalized covariance between each pair
of spike trains recorded at presentation of this vocaliza-
tion and was calculated as follows:

Sy
b
— 1) T 0y

i=1 j=i+1

CorrCoef =

where N is the number of trials and oxx; is the normalized
covariance at zero lag between spike trains ¢ and x; where
i and j are the trial numbers. Spike trains ¢ and x; were pre-
viously convolved with a 10-ms width Gaussian window.
Based on computer simulations, we have previously
shown that this CorrCoef index is not a function of the neu-
rons’ firing rate (Gaucher et al., 2013).

We have computed the CorrCoef index with a Gaussian
window ranging from 1 to 50 ms to determine whether the
selection of a particular value for the Gaussian window in-
fluences the difference in CorrCoef mean values obtained
in the different auditory structures. Based on the re-
sponses to the original vocalizations, we observed that
the relative ranking between auditory structures remained
unchanged whatever the size of the Gaussian window
was. Therefore, we kept the value of 10ms for the
Gaussian window as it was used in several previous stud-
ies (Huetz et al., 2009; Gaucher et al., 2013; Gaucher and
Edeline, 2015; Aushana et al., 2018; Souffi et al., 2020).

Quantification of the El
To evaluate the influence of noise on neural representation
of vocalizations, we quantified the amount of vocalization
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encoded by neurons at a particular SNR level by calculating
the El adapted from a similar study in songbirds (Schneider
and Woolley, 2013). This metric is based on the repetition-
averaged peristimulus time histogram (PSTH) of neural re-
sponse with a time bin of 4 ms. Different window bins of 1,
2,4, 8, 16, and 32ms were also evaluated, which yielded
qualitatively similar results. In this manuscript, we only report
results based on 4-ms time bins. Only the PSTH during the
evoked activity is taken into account in this analysis.
El was computed as follows:

Dn—snr - Dv—snr
El = 2= —veem
Dn—snr - Dv—snr
By P B, P
Dn—snr:1 n *Tsnr —nr:1_ v “snr

I — —
| P [1[Psnr [l v [[1[Psnr

where D,,_s,, is the distance between PSTH ,, of noise and
PSTH ¢, of vocalization at a particular SNR, whereas D, s,
is the distance between PSTH , of pure vocalization and
PSTH g, of vocalization at a particular SNR. El is bounded
between —1 and 1: a positive value indicates that the neural
response to noisy vocalization is more vocalization-like, and
a negative value implies that the neural response is more
noise-like. The El profile for each recording was determined
by computing El at every SNR level. The normalized inner
product was used to compute distance between , or ,, and
snr» @S Shown in equation above.

To probe the response patterns of each neuron, we fur-
ther implemented an exploratory analysis based on the cal-
culated El profiles as in Ni et al. (2017). By applying k-means
clustering on the blended ElI profiles from both noise condi-
tions separately, we obtained, from a continuum of El val-
ues, subgroups of El profiles, which divided the neuronal
population into clusters according to the similarity of their El
profiles. Similarity was quantified by Euclidean distance.
The number of clusters was determined by the mean-
squared error (MSE) of clustering, as in equation below,

1 N
MSE =5 >_(ElPotstor-1 — EIP,)*

where N is the number of neurons, EIP; is the El profile of
a neuron, and ¢uster-i is the mean El profile of the cluster
into which this neuron is categorized.

To determine a significance level for the El of each neu-
ron, we generated 100 false random spike trains which
follow a Poisson law based on the firing rate values ob-
tained for each stimulus (original and noisy vocalizations).
For a given SNR and recording, we computed based on
these false spike trains, 100 Elgyrrogate Values and fixed a
significance level corresponding to the mean plus two
standard deviations. Using this criterion, we selected only
the recordings with at least one of the six El values signifi-
cantly higher than the Elgyrrogate-

Bootstrap procedure
To estimate the variability of the El index generated
in assigning each recording to a particular category in
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particular noise, we used a bootstrap strategy for all the
recordings, separately for the stationary and the chorus
noise. Even in anesthetized animals, auditory cortex re-
sponses can show some variability. We suspected that in
a given type of noise, a recording could change category
because of the response variability and/or because the
border between two clusters was very close, independ-
ently of the change in noise type.

From the 20 trials obtained for each stimulus during the
experiment, we resampled randomly 20 trials (allowing
repetitions) keeping the total number of trials the same as
in the experimental data. For each resampled group of 20
trials, we recalculated both the PSTHs and the El at each
SNR then the K-means algorithm was used to define five
clusters as in the experimental data. For each recording,
this procedure was performed 100 times. Then, we reallo-
cated each resampled data in the closest cluster com-
pared with the original centroids of the experimental data
to measure the percentage of changed categories relative
to the original clustering.

Classification using linear discriminant analysis (LDA)

In order to investigate whether the assignment of a
given recording to a particular category can be predicted
from the response characteristics obtained with pure
tones and/or with the original vocalizations in quiet, and/
or the noise responses alone, an automatic classification
algorithm was applied. LDA classifiers were chosen
among several linear supervised learning algorithms be-
cause of their slight higher classification performances
when trained with all predictors (Statistics and Machine
Learning Toolbox, MATLAB 2019). LDA is a statistical
classifier that achieves a linear decision boundary based
on the class scatter matrices. All classifiers used in this
study were given identical parameters (same cost matrix,
same cross-validation scheme), but were given different
sets of predictors extracted from the data. A cost matrix
was constructed to penalize the wrong assignment of all
categories into the “insensitive” category that contained
more recordings than the other categories (all costs were
set to 1 except for the insensitive category where they
were set to 2). Cross-validation was performed using a 5-
fold validation scheme.

Fifteen LDA classifiers were built, trained and tested on
the recordings considered as reliable with the bootstrap
procedure (with a confidence interval =95%) in both
noises: 342 recordings were thus selected for the sta-
tionary and chorus noise (see Table 2, first line). For
each recording and each type of noise (stationary or
chorus), 12 predictors were available, extracted either
from responses to pure tones, vocalizations, maskers
or a combination of both signal and maskers. Each clas-
sifier has used a subset of predictors.

Descriptors used for the classifier

In total, 12 neuronal descriptors were extracted for
each type of noise grouped in four types of descrip-
tors: the TFRP, signal, masker, and signal-to-masker
ratio descriptors. Three descriptors were extracted
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Table 1: Summary of the number of animals and number of selected recordings in each structure.
Lemniscal Non-lemniscal
pathway pathway
CN CNIC MGv A1 VRB Total
Number of animals 10 11 10 11 5 47
Number of recordings tested 672 478 448 544 192 2334
Six El values (for the six SNRs) 617 433 343 488 184 2065
One of the six El values significantly higher than the Elsyrrogate 428 374 230 349 137 1518
Selection type
(a) Significant response to at least one vocalization and/or significant TFRP 401 350 210 279 109 1349
(b) Significant response to at least one vocalization and significant TFRP 389 339 198 261 80 1267

CN: cochlear nucleus, CNIC: central nucleus of inferior colliculus, MGv: ventral part of the MGB, A1: primary auditory cortex, VRB: ventrorostral belt.

A recording corresponds to a channel of a 16-channel electrode.

from the responses to pure tones (TFRP): the BF firing
rate (in spikes/s), the bandwidth of tuning (in octave)
and the response duration (in ms). From the responses
to the signal alone (original vocalizations) and the
maskers alone, two descriptors were extracted: the fir-
ing rate (in spikes/s) and the temporal reliability (or
CorrCoef).

Three other masker descriptors were computed to
have an estimation of the firing rate short-term adapta-
tion to the masker. First, we computed the ratio be-
tween the firing rate taken at the time the signal should
have occurred and the initial firing rate during the first
200 ms of the masker (FRm300 and FRm200). Second,
we extracted the number of action potentials emitted
during the first (initial) and last (final) 50ms of the
masker alone over a 564-ms period.

For the signal-to-masker ratios, the response to the
maskers was extracted from the masker alone trials either
from the initial firing rate (first 200ms of the masker,
FRm200), or from the firing rate taken at the time the sig-
nal should have occurred (i.e., for a mean duration of
300 ms, FRm300).

Global quantification of category changes with mutual
information (MI)

The MI allowed quantifying how many recordings
change category from stationary noise to chorus noise
based on either all recordings (Extended Data Fig. 5-1A)
or only the reliable recordings (Extended Data Fig. 5-1B),
independently of structure. For that, we built a matrix with
five rows related to the five categories in stationary noise
and five columns related to the becoming of each record-
ing in chorus noise. From this matrix, the Ml is given by
Shannon’s formula (Shannon, 1948):

p(Xx.y)
Ml = X,y) x log,(————————
Xzyp( 7.y) g2(p(x) % p(y))a
where x and y are the rows and columns of the confusion
matrix.

In a scenario where the categorization based on the re-
sponses in stationary noise do not carry information on
the categorization based on the responses in chorus
noise, assignment of each recording to a category is
equivalent to chance level (here 0.20 because there were
five different categories) and the Ml would be close to
zero. In the opposite case, when responses in stationary
noise always fall in the same category when recorded
with chorus noise, the confusion matrix would be diagonal
and the MI would tend to log2(5) = 2.3 bits.

Statistics

To assess the significance of the multiple comparisons
(masking noise conditions: three levels; auditory struc-
ture: five levels), we used an ANOVA for multiple factors
to analyze the whole dataset. Post hoc pairwise tests
were performed between the noisy conditions (paired t
tests) and between categories (Kruskal-Wallis tests).
They were corrected for multiple comparisons using
Bonferroni corrections and were considered as significant
if their p value was below 0.05.

Results

From a database of 2334 multiunit recordings collected
in the five investigated auditory structures, several criteria
were used to include each neuronal recording in our anal-
yses (see Table 1). A recording had to show significant re-
sponses to pure tones (see Materials and Methods) and a
significant evoked firing rate relative to spontaneous firing
rate (200 ms before each original vocalization) in response

Table 2: Number of recordings reliably categorized both in stationary and in chorus noise using the bootstrap procedure
and number of recordings sensitive to the type of noise within this population

Lemniscal Non-lemniscal
pathway pathway
CN CNIC MGv A1l VRB Total
Number of recordings reliably categorized in the two noises 139 80 50 52 21 342
Number of recordings reliably categorized and noise-type sensitive 30 35 36 12 10 123
Number of recordings reliably categorized and no noise-type sensitive 109 45 14 40 11 219

March/April 2021, 8(2) ENEURO.0043-21.2021
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to at least one of the four original vocalizations (Fig. 1A il-
lustrates their waveforms and spectrograms). These four
vocalizations were presented in quiet and embedded ei-
ther in a vocalization-shaped stationary noise (Fig. 1B) or
in a chorus noise (Fig. 1C) using three SNRs (+10, 0, and
—10dB). We selected recordings showing responses at
the three SNRs both in stationary and chorus noise to de-
rive systematically six El values for each neuronal record-
ing. The El index quantifies to what extent the evoked
response at a given SNR is similar to the response to vo-
calizations in quiet or to noise alone. To determine a sig-
nificance level of the El value, we computed an Elgyrogate
value for each recording (see Materials and Methods) and
included only the recordings with at least one of the six El
values significantly higher than the Elsyrogate- APPlYing
these criteria, we selected a total of 1267 recordings
[Table 1, selection type (b)]: 389 in the CN, 339 in the
CNIC, 198 in the ventral division of the auditory thalamus
(MGv), 261 in the A1, and 80 in a secondary auditory corti-
cal area (VRB).

Chorus noise impacted more neuronal responses than
stationary noise at each stage of the auditory system

Figure 2A shows rasters for recordings collected in the
five auditory structures in response to the original (in quiet)
and masked vocalizations embedded in stationary (top) and
chorus (bottom) noise. In all structures, the neuronal re-
sponses evoked by the four whistles progressively vanished
as the SNR decreased from +10 to —10dB. However, one
can clearly notice that the recordings obtained in CNIC and
MGv still display detectable responses at 0-dB SNR, even
down to —10dB for some vocalizations in CNIC.

To evaluate the neuronal resistance to noise, we quanti-
fied the El (see Materials and Methods; Schneider and
Woolley, 2013; Ni et al., 2017) of the 1267 recordings ob-
tained in the five structures. For each recording, the El com-
pares the PSTH obtained at a given SNR with the PSTHs
obtained with the original vocalizations and with the noise
alone: the higher the El value (close to 1), the more the re-
sponses are signal-like (Fig. 2B, left). Conversely, the lower
the El value (close to —1), the more the responses are
masker-like (Fig. 2B, right). In both noises, the El values
were higher in the IC and thalamus than in the CN and cor-
tex, except in chorus noise at — 10-dB SNR, which strongly
impacted all neuronal responses at each stage (Fig. 2C). In
addition, the El values obtained in chorus noise at 0 and
—10-dB SNR were significantly lower than those obtained in
stationary noise in all structures except in the CN at 0-dB
SNR (one-way ANOVAs, p < 0.001; with post hoc paired t
tests, p < 0.001; Fig. 2C).

Thus, in all structures, both noises altered the evoked re-
sponses promoting masker-like responses, the chorus
noise promoting, on average, a significantly higher propor-
tion of masker-like responses than the stationary noise.

Robustness to noise is a distributed property in the
auditory system

We initially aimed at determining whether the four cate-
gories of cortical neurons (robust, balanced, insensitive,
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and brittle) described by Ni et al. (2017) can also be found
at each stage of the auditory system. For each neuronal
recording, we computed six El values (three for the sta-
tionary noise and three for the chorus noise, relative to the
three SNRs). To do the clustering, we used the three El
values of all responses (i.e., the 1267 recordings) sepa-
rately, in stationary and chorus noise. However, analyzing
our whole database with the same clustering method and
the same criterion (elbow method) as in Ni et al. (2017) led
us to consider either five or six clusters in both noises
(Fig. 3), potentially because our recordings came from
three subcortical structures in addition to two cortical
areas. When six clusters were defined, two of them dis-
played very similar behaviors with only slight differences
in El values at the three SNRs (see Fig. 3B,C), which
urged us to consider only five clusters and suggests also
that a larger number of clusters would have been non-
informative as similar behaviors should re-appear.
Compared with the four categories of Ni et al. (2017), we
added one new category, which represents an attenuated
version of their robust category. These neurons cannot be
neglected as they represent in fact a large proportion of
our database (25% and 18% in the stationary and chorus
noise).

Figure 4 presents the five categories derived from the
whole data set across the three SNRs and the two noises.
Figure 4A,F presents the El values of all neurons in the
three SNRs in a given background noise (with a color
code from blue to red when progressing from low to high
El values). The five categories are indicated by a color bar
on the right side and are derived from a continuum of El
values. This color code is used for the 3D representations
of the five categories in the stationary (Fig. 4B) and chorus
(Fig. 4G) noise. Figure 4C shows the mean El values in
stationary noise for these five categories across the three
SNRs and the percentage of neurons in each category is
displayed in Figure 4D ~10% of the neurons exhibit sig-
nal-like responses characterized by mean El values >0.5
at +10- and 0-dB SNRs. More than 25% display signal-do-
minated responses characterized by mean El values >0.2 at
+10- and 0-dB SNRs. Approximately 5% of the neuronal re-
sponses are balanced and >40% of the total population
has a mean El value around 0 at all SNRs, which corre-
sponds to the insensitive responses. More than 10% of the
auditory neurons have negative mean El values at the three
SNRs, which correspond to masker-like responses. Figure
4H,l shows the mean El values for these five categories in
the chorus noise with, roughly, similar proportions of the five
categories as in the stationary noise. However, in the chorus
noise there were less signal-like (from 10% to 7.5%) and
signal-dominated (from 27% to 20%) responses and more
balanced responses (from 6.5% to 19.5%), whereas the
proportion of insensitive responses remained similar (42—
39.5%). Note also that in the chorus noise, the categories of
signal-like and signal-dominated responses showed, on av-
erage, lower El values at the 0- and —10-dB SNR than in
stationary noise (compared Fig. 4C and H). Based on these
quantifications performed in the entire auditory system, we
found five similar neuronal behaviors in the stationary and
chorus noise.
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Figure 2. The decrease in El values is more pronounced in chorus noise than in stationary noise in each auditory structure. A,
Raster plots of responses of the four original vocalizations, noisy vocalizations (in both noises), and noise alone recorded in CN,
CNIC, MGv, A1, and VRB. The gray part of rasters corresponds to the evoked activity. For each structure, all the rasters correspond
to the same recording. B, Rasters showing examples of neuronal responses in stationary noise with values of El > 0 corresponding
to a signal-like response (left, IC recording) and EI <0 corresponding to a masker-like response (right, A1 recording). Top panels
show the responses to the original vocalizations, the middle panels the responses to vocalizations at the 0-dB SNR in stationary
noise and the bottom panels the responses to stationary noise alone. C, Box plots showing the El values for the three SNRs ob-
tained in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue), and VRB (in purple) alternatively in stationary noise (SN) and
chorus noise (CN). In each box plot, the red dot represents the mean value. The black lines represent significant differences be-
tween the mean values (one-way ANOVAs, p < 0.001; with post hoc paired t tests, p®.10 ag.cn = 4.03e-18, P°-10 aB, cnic = 1.45e-
07, poas, cNic = 2.47e-45, dedB, mav = 2.11e-30, P°odB, a1 = 5.41e-25, pdeB,VRB = 6.36e-10, p% 10 g, cn = 5.74€-12, Ph-10 dB, CNIC =
1.83e-59, p|_10 dB, MGv = 1.16e-36, pj_1o dB, A1 = 2.84e-24, pk+10 dB, VRB = 4.62e-1 1)

What are the proportions of these categories in each
structure? For each auditory structure, the percentage of
neurons from each category is presented in stationary
noise (Fig. 4E) and in chorus noise (Fig. 4J). In stationary

March/April 2021, 8(2) ENEURO.0043-21.2021

noise, signal-like and signal-dominated responses were
mostly present in the IC and thalamus, while the three
other categories of neuronal responses classified as bal-
anced, insensitive, and masker-like were mostly present
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Figure 3. The choice of five clusters is optimal to reveal the different behaviors in both noises. A, Mean square error of El profile cluster-
ing as a function of the number of clusters using the K-means algorithm for the stationary and chorus noise. B, C, Population average El
profile (:SEM) of each cluster when considering six clusters to separate the data in the stationary noise (B) and in the chorus noise (C).
Note that in both noises, two clusters have similar mean El profile, i.e., the same El evolution across the three SNRs (the two gray clusters
in B and the two blue clusters in C) leading us to consider only five clusters in the following results (Fig. 4).

in the CN and in the two cortical fields. Statistical analyses
confirmed that the proportions of the different categories
differed in IC and MGv compared with the three other
structures (all x%; p <0.001). In chorus noise, there was a
large increase in the proportion of balanced responses
and a decrease in signal-like responses in all structures,
but these latter neurons remained in higher proportions in
IC and MGv than in CN and in cortex. Moreover, the
masker-like responses were in equivalent proportions in
all structures (between 12.5% and 19%). In the CN, there
was also an increase in the proportion of signal-domi-
nated responses (from 7% to 14.5%). Statistical analyses
confirmed that, in the chorus noise too, the proportions of
the different categories differed in the IC and MGv com-
pared with the three other structures (all y%; p < 0.001).
Note that including the recordings with no significant
TFRP (n=82) led to exactly the same proportions of re-
cordings in the different categories in both noises
(Extended Data Fig. 4-1). These neurons, which did not
respond to pure tones, displayed no signal-like response
in subcortical structures and very rarely in the auditory
cortex (see Extended Data Fig. 4-1D,H). In addition, in an
attempt to evaluate the differences between the ventral
and dorsal parts of the CN, we compared the El values for
a set of 87 recordings collected at the deepest electrode
placements (assuming that they were potentially located
in or close to VCN) versus the rest of the CN population
considered as collected in DCN (Extended Data Fig. 4-2).
The mean El values did not significantly differ between
these two populations at the three SNRs in both noises
(Extended Data Fig. 4-2A,B) and the proportions of the
different categories were relatively similar in these two
populations. Note also, that in the IC, the recordings po-
tentially obtained from the non-lemniscal divisions dis-
played (1) more balanced responses than in the lemniscal

March/April 2021, 8(2) ENEURO.0043-21.2021

division in the stationary noise, and (2) more insensitive
responses than in the lemniscal division in the chorus
noise (Extended Data Fig. 4-3).

To sum up, in both noises, the neurons with a high-fidel-
ity representation of the signal were mostly present at two
subcortical levels, in the IC and thalamus. The insensitive
responses showing no preference either for the signal or
the noise were found in majority in the CN and in the audi-
tory cortex. The balanced responses represented a small
fraction of neurons in stationary noise but were more nu-
merous in the chorus noise, especially in IC and MGuv.
Interestingly, in both types of noise, the proportion of
these balanced responses decreased as one ascends in
the auditory system suggesting a decrease in sensitivity
to SNR at the cortical level. Finally, the neurons with a
high-fidelity representation of the noise were mostly local-
ized in the CN in the stationary noise but were in an equiv-
alent proportion in all structures in the chorus noise
(between 12.5% and 19%).

The noise-type sensitivity is found at each stage of the
auditory system

In the auditory cortex of awake marmoset, Ni et al.
(2017) have pointed out that the neuronal behavior in
noise can be context dependent: the behavior of a given
neuron in a particular noise does not predict its behavior
in another noise. Is this a property characterizing cortical
neurons, or is it a general property that exists at all levels
of the auditory system?

In each auditory structure, the neuronal behaviors were
partly, but not completely, preserved in the two noises. In
Figure 5A17, the group-switching matrix represents the
percentage of neurons in a given cluster in chorus noise
depending on the cluster originally assigned in the
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Figure 4. Robustness to noise is a distributed property in the auditory system. A, Each row corresponds to the El profile of a given
neuronal recording obtained in the five auditory structures in stationary noise with a color code from blue to red when progressing
from low to high El values. On the right, five stacked colors delineate the identity for the five categories of responses. The signal-like
category is in green, the signal-dominated category in pink, the balanced category in turquoise, the insensitive category in gray and
the masker-like category in yellow. The names of the categories used in the study by Ni et al. (2017) are provided for comparison.
B-E. 3D representation of the five categories in stationary noise (B), mean El values (=SEM) of the five categories (C), relative pro-
portions of each category in stationary noise (D), and proportion of each category in the five auditory structures from CN to VRB (E).
F-J, Same representations as in A-E for the responses collected in the chorus noise. See Table 1, selection type (b), for referring to

the number of selected recordings in each structure.

stationary noise. The preservation of the same neuronal
behavior in both noises is indicated by the percentages in
the diagonal line. Approximately 50% of the signal-like
and 40% of the signal-dominated neuronal responses in
the stationary noise remained so in the chorus noise.
Most of the balanced (73.5%) and insensitive neuronal re-
sponses (65.5%) in the stationary noise remained also in
the same category in the chorus noise. Only 36.5% of the
masker-like neuronal responses remained so in the cho-
rus noise. Figure 5A2 indicates that the signal-like, signal-
dominated and masker-like neuronal responses were the
three categories with the highest percentages of category
changes (y? p<0.001). In the different structures, the
percentage of category changes was between 37% and
57% without significance difference between structures.
A bootstrap procedure was used to estimate the per-
centage of category changes, which can occur simply be-
cause of response variability (see Materials and Methods).
We suspected that, independently of the change in noise
type, a recording can potentially change category be-
cause of its response variability and/or because it was lo-
cated at the frontier between two clusters. Briefly, for
each recording, and from the pool of 20 trials obtained for
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each stimulus, we resampled 20 trials (allowing repeti-
tions), recomputed the El and reallocated each resampled
recording in the closest category. This entire procedure
was performed 100 times for each recording. In all the fol-
lowing results, we only considered the recordings which
remained in the same category 95 times or more (out of
the 100 bootstraps) in both noises, that is, recordings that
displayed a very high reliability of their responses and
were assigned to a particular category with a 95% confi-
dence or more.

Figure 5B1 shows, for this population of 342 record-
ings, that a non-negligible fraction (36-75%) of the neu-
rons assigned to a given category remained in the same
category when shifting from the stationary to the chorus
noise. When analyzing the percentage of neurons chang-
ing categories, we found a similar pattern as the whole
population of 1267 neurons, i.e., the largest proportions
of neurons switching category from the stationary to the
chorus noise were in the signal-like, signal-dominated
and masker-like categories (x> p<0.05; Fig. 5B2).
Analyzing the percentage of neurons changing clusters
according to the structure revealed that the lowest per-
centages of category changes were in the CN and in A1
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Figure 5. The noise-type sensitivity is found at each stage of the auditory system. A1, Group-switching matrix representing the percent-
age of recordings in a given category in chorus noise depending on the category originally assigned in the stationary noise. The abscis-
sas indicate the category identity in the stationary noise, and the ordinates represent the category identity in the chorus noise. For
example, signal-like responses in stationary noise are also 50% signal-like in chorus noise but 10% are reclassified as signal-dominated,
35% balanced, 1.5% insensitive, and 3.5% masker-like. Note that, in stationary noise, the number of recordings in each category were
139, 346, 83, 540, and 159 in signal-like, signal-dominated, balanced, insensitive, and masker-like category, respectively. A2, Mean per-
centages of recordings changing category from the stationary noise to the chorus noise, first in each category and second in each struc-
ture [VRB, (in purple), A1 (in blue), MGv (in orange), CNIC (in green), and CN (in black)]. B1, Group-switching matrix representing the
percentages of recordings changing category from the stationary noise to the chorus noise based only on recordings considered as reli-
able with the bootstrap procedure in the two types of noise (with a confidence interval =95%). B2, Mean percentages of recordings
changing category from the stationary noise to the chorus noise, first in each category and second in each structure [VRB, (in purple), A1
(in blue), MGuv (in orange), CNIC (in green), and CN (in black)].

(21% and 22%) and the highest proportion in MGv (72%,
X2 p <0.05).

Note that when computing the MI based on all neurons
(Extended Data Fig. 5-1A) or only reliable neurons (Extended
Data Fig. 5-1B), we obtained low MI values (0.53 bits for all
neurons and 0.7 bits for reliable neurons) confirming that a
large proportion of neurons change category between
noises.

Thus, even when using a bootstrap procedure with a
severe selection criterion, a non-negligible fraction of
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recordings changes categories from one background
noise to another and this noise-type sensitivity is found at
each stage of the auditory system.

The neuronal behaviors in stationary and chorus noise
are predictable based on response parameters
obtained in quiet

A fundamental question is whether the assignment of a
given recording to a particular category can be predicted
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Figure 6. Descriptors of the categories in stationary noise used by the classifiers. A-C, Three TFRP parameters were chosen as de-
scriptors: the BF firing rate, the bandwidth and the response duration. D, E, Two signal descriptors were selected corresponding to
the firing rate and the CorrCoef values obtained in original conditions. F, G, Two main masker descriptors were presented corre-
sponding to the firing rate and the CorrCoef values obtained in stationary noise alone. H, I, The three other masker descriptors are:
(H) the ratio between the masker firing rate taken at the time the signal should have occurred and the initial masker firing rate during
the first 200 ms of the masker and the number of action potentials emitted during the first (initial; /) and last (final, ) 50 ms of the
masker alone over a 564-ms period. J, K, Two descriptors of the signal-to-masker ratio are presented and taken into account the
firing rate of responses to the signal and to the masker; the two differ only on which part of the response to the masker is taken into
account (see Materials and Methods). For each violin plot, the red dot represents the median value and the black lines represent sig-

nificant differences between the median values (Kruskal-Wallis test, p < 0.05).

from the response characteristics obtained by presenting
pure tones and/or the original vocalizations in quiet and/
or the maskers alone. To address this question, we firstly
focused on the neurons reliably categorized with the
bootstrap procedure in both noises (with a confidence
interval > 95%, n=342).

To determine whether the assignment of a recording to
a particular category can be predicted based on response
characteristics, we trained an artificial classifier (LDA) with
all combinations of descriptor types.

Three descriptors were extracted from the responses to
pure tones (TFRP): the BF firing rate, the bandwidth of
tuning and the response duration. From the responses to
the signal alone (original vocalizations) and the maskers
alone, two descriptors were extracted: the firing rate and
the temporal reliability (CorrCoef index; see Materials and
Methods). Three other masker descriptors were used in
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both noises in an attempt to quantify the firing rate short-
term adaptation to the masker (see Materials and Methods).
Finally, we included two descriptors corresponding to the
ratios between the responses to the signal and to the
masker (see Materials and Methods).

In stationary noise, for the descriptors extracted from
the TFRP (Fig. 6A-C), the distributions of BF firing rate
and bandwidth of tuning did not point out significant dif-
ferences across the five categories (Fig. 6A,B), but the
signal-like category showed significantly longer response
duration than the other categories (Kruskal-Wallis test,
p < 0.05; Fig. 6C). For the descriptors extracted from the
signal responses (Fig. 6D,E), the firing rate was signifi-
cantly lower for the insensitive responses compared with
all other response categories (Kruskal-Wallis test, p <
0.05; Fig. 6D) and the signal-like and balanced responses
had significantly higher CorrCoef values compared with
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Figure 7. Descriptors of the categories in chorus noise used by the classifiers. A-C, Three TFRP parameters were chosen as de-
scriptors: the BF firing rate, the bandwidth and the response duration. D, E, Two signal descriptors were selected corresponding to
the firing rate and the CorrCoef values obtained in original conditions. F, G, Two main masker descriptors were presented corre-
sponding to the firing rate and the CorrCoef values obtained in chorus noise alone. H, I, The three other masker descriptors are: (H)
the ratio between the masker firing rate taken at the time the signal should have occurred and the initial masker firing rate during the
first 200 ms of the masker and the number of action potentials emitted during the first (initial; /) and last (final; /) 50 ms of the masker
alone over a 564-ms period. J, K, Two descriptors of the signal-to-masker ratio are presented and taken into account the firing rate
of responses to the signal and to the masker; the two differ only on which part of the response to the masker is taken into account
(see Materials and Methods). For each violin plot, the red dot represents the median value and the black lines represent significant
differences between the median values (Kruskal-Wallis test, p < 0.05).

three other categories (Kruskal-Wallis test, p < 0.05; Fig.
6E). For the descriptors extracted from the responses to
the masker (Fig. 6F-/), the signal-like, signal-dominated
and insensitive neuronal responses showed lower firing
rate compared with the balanced and masker-like re-
sponses (Kruskal-Wallis test, p < 0.05; Fig. 6F), whereas
the CorrCoef values did not differ across categories ex-
cept for the insensitive neuronal responses that showed
the lowest CorrCoef values (Kruskal-Wallis test, p < 0.05;
Fig. 6G). The masker accommodation (Fig. 6H,/) was sig-
nificantly lower for the signal-like and signal-dominated
categories than the other categories, indicating that these
two categories adapted more to the masker (their firing rate
decreased during presentation of the masker alone). For the
two descriptors combining the firing rate to the signal and to
the masker (Fig. 6J,K), the values were higher for the signal-
like and signal-dominated categories than for the other
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categories (Fig. 6J,K) indicating that these two categories
displayed marked preference for the signal over the masker
(Kruskal-Wallis test, p < 0.05; Fig. 6G).

In general, similar results were obtained in the chorus
noise for TFRP and signal descriptors (Fig. 7A-E). However,
more differences emerged across categories for the masker
descriptors as the CorrCoef index (Fig. 7G). The differences
observed across categories were relatively comparable to
the differences observed in the CorrCoef values obtained
for the signal (Fig. 7E).

Altogether, these analyses pointed out that there
were little or no between-category differences based on
the TFRP descriptors and that the descriptors combin-
ing responses to the signal and to the maskers provide
information allowing a correct separation between the
signal-like and signal-dominated categories versus the
others.
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Figure 8. The neuronal behaviors in stationary and chorus noise are predictable based on response parameters obtained in quiet.
A, All tested combinations (1-15) based on four types of descriptors (TFRP, signal, masker, and signal/masker) of the categories in
stationary noise and their respective percentages of accuracy of the classifier. The gray part means that the descriptor is included
in the classifier and the white part means that the descriptor is excluded from the classifier. B, C, Example of the confusion matrix
obtained with all descriptors (combination 1) in stationary (B) and chorus (C) noise. Each row corresponds to a true category and
each column corresponds to a predicted category. The numbers in the confusion matrix correspond to the percentage of recordings
of a given true category which have been predicted to belong to a given predicted category.

When the classifier was trained with all the descriptors
in stationary noise (combination 1 in Fig. 8A, left column),
the accuracy of the classifier reached 68.42%, which is
more than three times the chance level (20% as there
were five categories). Figure 8B presents the confusion
matrix obtained with this classifier in stationary noise and
revealed that the percentage of correct classification de-
pends on the category. Indeed, the signal-like, the bal-
anced and the insensitive neuronal responses were well
predicted (67%, 64%, and 91%, respectively) whereas
only 21% and 37% of the signal-dominated and masker-
like neuronal responses were correctly predicted.

Next, for isolating which type of descriptors allowed the
higher predictability, we used 14 different classifiers

March/April 2021, 8(2) ENEURO.0043-21.2021

corresponding to the 14 possible combinations from the
four types of descriptors (Fig. 8A, combinations 2-15).
Several important results emerged from these analyses.
First, the TFRP descriptors alone (Fig. 8A, line 8) led to the
lowest accuracy, 27.78%, which is close from the chance
level indicating that the responses to pure tones are insuf-
ficient to predict the behavior of a given neuron in noise.
Second, the descriptors extracted either from the re-
sponses to the signal alone (Fig. 8A, line 12), or from the
responses to the masker alone (Fig. 8A, line 14), or from
the signal-to-masker alone (Fig. 8A, line 15) led to an ac-
curacy between 56.73% and 58.77%, which was only
10% less than the best performance when combining all
the descriptors. Finally, the descriptors extracted from the
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Figure 9. Generalization of the classification. In this figure, the
classifiers were trained with the reliable neurons and tested on
the rest of the population. All tested combinations (1-15) based
on four types of descriptors (TFRP, signal, masker, and signal/
masker) of the categories in stationary and chorus noise and
their respective percentages of accuracy of the classifier. The
gray part means that the descriptor is included in the classifier
and the white part means that the descriptor is excluded from
the classifier.

responses to the signal, to the masker and to the signal-
to-masker ratio (Fig. 8A, line 9), generated an accuracy of
66.96%, which is close from the global level reached with
all the descriptors. Therefore, the classifier reached a rela-
tively good performance in stationary noise (66.96%) by
combining the three descriptors extracted from the re-
sponses to the signal alone and to the masker alone, the
TFRP descriptors only slightly increasing the performance
of the classifier (around 3%).

Globally, the results were similar in the chorus noise:
based on all the descriptors, the accuracy of the classifier
was 69%, it dropped to 26% with the TFRP descriptors
alone, and between 62% and 66% with the signal de-
scriptors alone or masker descriptors alone (Fig. 8A, left
column). The only difference was that the accuracy of the
classifier with only the signal/masker descriptors was at
the chance level (20.18%) probably because the firing
rate to the masker is very close to the firing rate to the sig-
nal, suggesting that with a masker composed by a mix-
ture of different type of signals (as the chorus noise), the
masker firing rate does not significantly increase the per-
formance of the classifier. Figure 8C illustrates the confu-
sion matrix obtained by combining the four types of
descriptors in chorus noise, which led to the maximum
accuracy of the classifier (69.01%).

To verify that the descriptors are relevant predictors on
the whole set of recordings, we trained the classifiers on
the reliable neurons and tested them on the rest of the
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population (Fig. 9). The accuracy of the classification was
lower in both noises (43.24% and 49.84% in the station-
ary and chorus noise, respectively; Fig. 9, combination 1)
certainly because among our recordings, some did not
display reliable enough responses. However, these values
of accuracy were still more than twice the chance level.
Again, the descriptors based on the TFRP provided an ac-
curacy close to the chance level (31.24% and 23.35% in
the stationary and chorus noise, respectively; Fig. 9, line
8) and the descriptors based on the response to the signal
alone (Fig. 9, line 12) and response to the masker alone
(Fig. 9, line 14) generated an accuracy that was close
from those obtained with the whole set of descriptors
(43.03% and 42.38% in stationary noise; 41.62% and
43.24% in chorus noise).

Altogether, our results pointed out that very few neuro-
nal parameters (as the firing rate and the temporal reliabil-
ity) to the signal alone and to the noise alone are sufficient
to predict, up to a maximum of around 70%, the neuronal
behaviors in noise.

Discussion

Here, we demonstrate that the robustness to noise of
neuronal responses relies on a distributed network along
the auditory system. Signal-like and signal-dominated re-
sponses were detected at each level of the auditory sys-
tem but were in higher proportions at the collicular and
thalamic levels. In terms of proportions, the highest fidelity
representation of the signal or the noise was found at the
subcortical level whereas at the cortical level, the majority
of neuronal responses showed no preference for the sig-
nal or the noise suggesting that cortical neurons are less
sensitive to the spectro-temporal details of the noisy vo-
calizations. Our results also indicate that neurons sensi-
tive to the type of noise are present at each stage of the
auditory system. Finally, a few neuronal parameters ex-
tracted from both the responses to the signal alone and to
the noise alone convey enough information to predict the
neuronal behavior in noise up to a maximum of 70%.

Limitations of the study

Based on all El values, the five categories rather form a
continuum with no strict boundaries between them, which
inevitably led us to « impose » the categories. Nonetheless,
using a severe criterion of the bootstrap testing (a confi-
dence interval >95%), we found reliable neurons in each
category, in each structure and in both noises. In addition,
for a given recording, prediction about its assignment to a
particular category reached about a maximum of 70%
based on a few descriptors of neuronal responses. All these
results suggest that these five behaviors do exist in the
whole auditory system. The behaviors of cortical neurons
found here in anesthetized animals were the same as previ-
ously described in awake marmosets (Ni et al., 2017).
Therefore, the cortical representation of noisy signals by dif-
ferent neuronal categories characterized either by the pref-
erence of the signal, the masker, a sensitivity to SNR or an
absence of these three acoustic features, seems independ-
ent of the fact that the animal is awake or anesthetized.
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One can suspect that the higher proportion of signal-
like responses in the CNIC and MGv compared with audi-
tory cortex, results from the fact that our data were col-
lected in anesthetized animals. According to this view, if
the recordings have been collected in awake, behaving
animals, the results would be reversed, with a higher pro-
portion of cortical neurons exhibiting robust responses to
acoustic degradations. Confrontation of several results
suggests that this simple explanation might not being cor-
rect. First, Lohse et al. (2020) have recently demonstrated
that collicular neurons of awake mice displayed the same
gain control adaptation to the stimulus statistics than in
anesthetized mice.

Second, auditory cortex responses collected in behav-
ing ferrets were found to be sufficiently robust to preserve
vowel identity across a large range of acoustic transfor-
mations, such as changes in fundamental frequency,
sound location or level (Town et al., 2018). However, ear-
lier studies from the same laboratory performed in anes-
thetized conditions (Bizley et al., 2009; Walker et al.,
2011) have reached similar conclusions for vowels varying
in fundamental frequency and virtual acoustic location, in-
dicating that the general principles allowing neuronal dis-
crimination are observable across anesthetized and
behavioral states. Furthermore, at the subcortical level, it
seems that there is not a large difference between the
phase-locking properties in anesthetized and awake ani-
mals. In fact, in awake animals, the subcortical neurons,
especially collicular ones (Ter-Mikaelian et al., 2007), will
still be far better than cortical ones to follow the 4- to 20-
Hz temporal cues contained in the four vocalizations,
which are crucial cues for responding to these signals in
noisy conditions (see Souffi et al., 2020; their Fig. 12).
Thus, the differences observed here between cortical and
subcortical structures in detecting and responding to
communication sounds in noisy conditions should remain
the same in awake preparations.

Using the same methods to classify and determine the
optimal number of clusters as Ni et al. (2017), we opted
for five categories rather than four, which is one main dif-
ference with their study. Our additional category corre-
sponds to the signal-dominated responses and stands as
an intermediate category between the signal-like and the
insensitive responses. These responses might represent
a too small fraction in their cortical data to emerge as a
category, but the inclusion of three subcortical structures
and a secondary cortical area might favored their emer-
gence in larger proportions (25% and 18% in the station-
ary and chorus noise, respectively). We can also wonder
whether choosing seven, eight, or nine clusters, would
have highlighted other neuronal behaviors. Part of the an-
swer is provided by Figure 3B,C, which show that with six
clusters, similar behaviors re-appear suggesting that a
larger number of categories would have been non-inform-
ative. However, it is possible that more specific behaviors
might have been missed as we collected multiunit record-
ings composed of two to six shapes of action potentials.
This is potentially the case at the cortical level where a
large number of cell types have been described (Ascoli et
al., 2008; DeFelipe et al., 2013) and also in the CN (Cant
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and Benson, 2003; Kuenzel, 2019). In fact, in the CN, mul-
tiunit recordings might have masked the distinct temporal
response profiles corresponding to different morphologic
cell types. For example, the pause/build-up cells have
been associated with the fusiform cells in the dorsal divi-
sion of CN (Rhode et al., 1983; Smith and Rhode, 1985),
whereas primary-like, onset and phase-locked patterns
have been associated with the VCN globular bushy cells
(Smith and Rhode, 1985). Because of our surgical ap-
proach, our recordings mainly (but not exclusively) come
from the DCN.

Obviously, it is also important to assess whether our re-
sults can be generalized to other types of communication
sounds and to other types of masking noises. In fact, simi-
lar results were found in the initial study by Ni et al. (2017)
with five other different vocalizations and two other mask-
ing noises which suggests that with our experimental con-
ditions, the results should not significantly change, at
least in A1, with other types of communication sounds
and other masking noises.

Robustness to noise in the auditory system: a
localized versus distributed property?

In the A1 of awake marmosets, Ni et al. (2017) found
~20-30% of robust responses (depending on the vocal-
ization), called here signal-like responses. In our cortical
data, when pooling together the signal-like and signal-do-
minated responses, we obtained about the same propor-
tions as in the marmoset A1 (33%). In the bird auditory
system, Schneider and Woolley (2013) described the
emergence of noise-invariant responses for a subset of
cells (the broad spike cells) of a secondary auditory area
(Caudomedial Nidopallium, area NCM), whereas up-
stream neurons (IC and A1 neurons in their study) repre-
sent vocalizations with dense and background-corrupted
responses. They suggest that a sparse coding scheme
operating within NCM allows the emergence of this noise-
invariant representation. In our study (and in the mamma-
lian A1 in general), a sparse representation already exists
as early as Al (see the rasters in Fig. 2A; see also
Hromadka et al., 2008) allowing signal-like and signal-do-
minated responses to be present in about the same pro-
portions in A1 and in the secondary area VRB.

Noise-invariant representations were also reported in
A1 of anesthetized ferrets (Rabinowitz et al., 2013). This
study suggested a progressive emergence of noise-invar-
iant responses from the auditory nerve to IC and to A1,
and proposed the adaptation to the noise statistics as a
key mechanism to account for the noise-invariant repre-
sentation in A1. However, Lohse et al. (2020) have re-
cently challenged this result by showing, in anesthetized
animals too, (1) that collicular, thalamic and cortical neu-
rons display the same adaptation to noise statistics; and
(2) importantly, that silencing the auditory cortex did not
affect the capacity of IC and MGv neurons to adapt to
noise statistics.

In fact, Las et al. (2005) reported that A1, MGB, and IC
neurons can detect low-intensity target tones in a louder
fluctuating masking noise and display the so-called
“phase-locking suppression,” that is the interruption of

eNeuro.org



eMeuro

phase-locking to the temporal envelope of background
noise. This last result indicates that both IC and MGB neu-
rons have the same ability as cortical neurons to detect
low-intensity target sounds in louder background noises
(even at —15- or —35-dB SNR). Thus, the robustness of
some of our subcortical neurons may stem from this abil-
ity to detect the vocalizations even at SNRs as low as the
—10-dB SNR.

Based on the proportion of signal-like and signal-domi-
nated responses, it seems that the robustness to noise
peaks in CNIC, with the MGv neurons being at the inter-
mediate level between IC and A1 (Fig. 4E,J). In fact, our
results point out an abrupt change from a prominent
noise-sensitivity in CN to a prominent noise-robustness in
IC, which means that this robustness is generated by neu-
ral computation taking place in the central auditory sys-
tem. Whether this is an intrinsic property emerging de
novo in the IC or whether this property emerges as a con-
sequence of the multiple inputs converging on IC cells
(Malmierca and Ryugo, 2011) remains to be determined.
Several studies have clearly demonstrated that IC neu-
rons adapt to the stimulus statistics. First, adaptations of
IC neurons to the average stimulus intensity, stimulus var-
iance and bimodality that has already been described
with a temporal decay of ~160ms at 75dB (Dean et al.,
2005, 2008). Second, adaptation to the noise statistics
shifted the temporal modulation function (TMF) of IC neu-
rons to slower modulations, sometimes transforming
bandpass TMF to low pass TMF in ~200 ms of noise pre-
sentation (Lesica and Grothe, 2008). In addition, recent
studies have shown that a tone-in-noise discrimination
task influences neuronal activity as early as the IC (Slee
and David, 2015; Shaheen et al., 2021), suggesting that
subcortical structures may participate to complex audi-
tory tasks and should not be considered as passive
relays.

A particularly interesting result is that, in both types of
noise, the proportion of neurons classified as balanced
(i.e., showing strong SNR dependence) decreased pro-
gressively as one ascends in the auditory system, which
is in line with the idea that cortical neurons are less sensi-
tive to SNR than subcortical ones.

Noise-type sensitivity and noise representation in the
auditory system

Ni et al. (2017) found about two-thirds of A1 neurons
switching category from one background noise to anoth-
er, suggesting that the majority of cortical neurons have a
behavior specific to the type of noise. We preferred to call
this phenomenon noise-type sensitivity rather context-de-
pendence (proposed by Ni et al. 2017) because the latter
refers to situations where the same stimulus is presented
in different contexts; whereas inserting signal stimuli in
two types of noise generated different auditory streams.

Here, we confirmed that these neurons exist at the level
of the A1 and extended this result to the subcortical struc-
tures. Therefore, different types of noise streams activate
different subpopulations of neurons at each stage of the
auditory system for constructing invariant representations
of communication sounds in noise. In addition, based on
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a restrictive population of neurons that have a high re-
sponse reliability as they remained in the same category
with a bootstrap procedure (i.e., the reliable neurons), we
also found such neurons that switch categories between
the two noises in all auditory structures. However,
although we initially found around 40% of such neurons in
A1 (Fig. 5A2), the bootstrap procedure indicated that
more realistic percentages should be much lower, poten-
tially around 20% (Fig. 5B2). The response variability,
which is probably much larger in awake than in anesthe-
tized animals (Edeline et al., 2000, 2001; Huetz et al.,
2009), can potentially explain the difference between our
results and those of Ni et al. (2017). Here, these neurons
were detected in auditory cortex but were found in higher
proportions in the IC and in the auditory thalamus. This in-
dicates that these subcortical neurons might be more
sensitive to the sound streams in which the signals were
embedded. It is interesting to note that signal-like responses
in stationary noise became as much balanced as they re-
mained signal-like in chorus noise. Since in chorus noise,
the signal and masker are very close (both spectrally and
temporally), this change of category from signal-like to bal-
anced was predictable. As already mentioned by Ni et al.
(2017), if a larger number of noise types would have been
tested, the proportion of neurons within each category
would have been different. For example, a larger fraction of
neuronal responses can potentially be considered as signal-
like or masker-like, because masker-like responses in a par-
ticular type of noise can be the signal-like ones in another
noise. Our results show that their assumption, if valid, does
not only concern the A1.

Robust perception of speech in humans or vocaliza-
tions in animals probably also requires a robust represen-
tation of competing sounds (here, masking noise). This
can be the functional role of the neurons presenting
masker-like responses, which are potentially crucial to
determine the characteristics of the noise type and to pro-
vide an accurate representation of it within the auditory
stream reaching our ears at any time. They were detected
here, in higher proportion in the CN in stationary noise,
but they became more numerous and in equivalent pro-
portion in all structures in chorus noise. Therefore, the
noise representation can be based on the neuronal activ-
ity in the CN in stationary noise, whereas this representa-
tion can be more distributed in the chorus noise
potentially because this noise has more naturalistic tem-
poral properties leading to activate more neurons than the
stationary noise.

Predictors of neuronal behavior in noise

Using classifiers trained with different types of descrip-
tors, we looked for characteristics from the responses to
the pure tones (i.e., the TFRPs), to the signal alone and to
the noise alone for predicting the assignment of a given
recording in a particular category. We pointed out that the
TRFP parameters led to an accuracy of the classifier very
close to the chance level indicating that the basic static fil-
tering properties derived from the TFRPs did not predict
the neuronal behaviors in noise. When adding the de-
scriptors of both the signal alone and noise alone (as the
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firing rate and the temporal reliability), the classifier reached
an accuracy up to around 70% in both noises which
strongly suggests that responses to signal alone and to
noise alone contained enough information to predict the be-
havior in noise of a given recording. In a previous study test-
ing the responses of IC cells to vocalizations in noise, it was
shown that despite no consistent effect of the mean firing
rate, the temporal reliability was decreased by half (Lesica
and Grothe, 2008). Under these conditions, IC neurons were
still efficient in detecting vocalizations in noise. Using these
physiological results in a computational model, this study
also pointed out that under noisy conditions, lowpass filter-
ing the noisy vocalizations is the most efficient strategy to
code the stimuli because it preserved the power at low mod-
ulation frequencies and the temporal reliability of responses.

Together, these results suggest that the more tempo-
rally precise are the synaptic inputs converging onto a
particular neuron, the more robust is the response of that
neuron in background noise. This is true for encoding
slow amplitude modulations, which are among the most
efficient cues to discriminate speech and communication
sounds (Shannon et al., 1995; Zeng et al., 2005; Souffi et
al., 2020).

In conclusion, here, we propose that the noise-robust-
ness observed in many studies at the cortical level stems,
at least partially, from subcortical mechanisms (Lesica
and Grothe, 2008; Lohse et al., 2020). Therefore, the audi-
tory cortex potentially inherits adaptation from earlier lev-
els, allowing the cortical networks to focus on higher-level
processing such as classifying the target stimuli into pho-
netic or linguistic features (Mesgarani et al., 2014), segre-
gating the different auditory streams (Mesgarani and
Chang, 2012), integrating multimodal information (Deneux
et al., 2019), and retaining behaviorally important stimuli
in short term (Huang et al., 2016) or long-term memory
(Moczulska et al., 2013; Concina et al., 2019).
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