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Abstract

The abnormalities in human metabolism have been implicated in the progression of several complex human diseases,
including certain cancers. Hence, deciphering the underlying molecular mechanisms associated with metabolic
reprogramming in a disease state can greatly assist in elucidating the disease aetiology. An invaluable tool for establishing
connections between global metabolic reprogramming and disease development is the genome-scale metabolic model
(GEM). Here, we review recent work on the reconstruction of cell/tissue-type and cancer-specific GEMs and their use in
identifying metabolic changes occurring in response to liver disease development, stratification of the heterogeneous
disease population and discovery of novel drug targets and biomarkers. We also discuss how GEMs can be integrated with
other biological networks for generating more comprehensive cell/tissue models. In addition, we review the various
biological network analyses that have been employed for the development of efficient treatment strategies. Finally, we
present three case studies in which independent studies converged on conclusions underlying liver disease.
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Introduction
The global burden of complex diseases is rising and such dis-
eases cause millions of deaths each year worldwide, proving
to be a widespread issue for not only individuals and health-
care systems but also researchers and clinicians alike. Liver
diseases, including non-alcoholic fatty liver disease (NAFLD),
non-alcoholic steatohepatitis (NASH), liver cirrhosis and hepato-
cellular carcinoma (HCC), account for over 3 million deaths per
year worldwide, with 1.3 billion adults currently overweight with
a 25% lifetime risk of NAFLD [1]. To date, there is no universal
therapy for NAFLD and NASH. Instead, patients reduce personal
risk factors by implementing lifestyle changes, such as dieting
and exercise, or therapeutic solutions, such as insulin sensitisers
(e.g. metformin), antioxidants (e.g. vitamin E) and cholesterol-
lowering agents (e.g. statins) [2]. Although somewhat successful,
the underlying mechanisms of action of many of these ther-
apeutics and potential ramifications of their use continue to
be poorly understood, especially on the molecular and cellular
levels.

HCC patients display genetic, transcriptomic, proteomic,
metabolomic, fluxomic and/or metagenomic heterogeneity—
that is to say, no two cases are identical. However, all cases
are broadly classified as HCC. This heterogeneity in complex
diseases thus implies that personalised therapies are not
only desirable, but necessary to effectively treat HCC while
minimising side-effects.

As reviewed elsewhere [3], systems biology approaches have
been successfully employed to study interactions in complex
disease on multi-omics levels. It has already proven invaluable
for the discovery of biomarkers for the stratification of patients
of complex diseases as well as to identify prognostic markers
and potential therapeutic targets [4–6], and has thus informed
personalised therapy for the patients of heterogeneous diseases.
The advent of the falling cost of multi-omics profiling has meant
that investigators today have a wealth of biological and clinical
data available to them for the generation of both general [7]
and personalised [8, 9] biological networks. This, along with
growing computational power and libraries of multi-omic tools,
means that investigators are now able to perform more in silico
perturbations and simulations to obtain a global, systems-level
overview of complex diseases.

Systems medicine has demonstrated concordance with
previously published findings and can be used as a platform
for in silico simulation, hypothesis generation and rational
drug development (Figure 1). One of the goals of systems
medicine is to identify biomarkers for stratification and per-
stratum or personalised treatment. In this article, we assess
the readiness of the liver disease field to allow for personalised
treatment regimes. We then review systems-based approaches
currently in use to overcome the challenges with heterogeneity
in complex diseases, namely, genome-scale metabolic models
(GEMs) and integrated networks (INs), and discuss their value
to the scientific community. Finally, we review the collective
successes afforded by diverse systems biology methods in
revealing common themes implicated in the progression of liver
diseases including NASH/NAFLD and HCC, namely differential
expression of pyruvate kinase muscle-type (PKM) isoform
transcripts, differential acetate utilisation and differential
regulation of redox metabolism. We therefore propose systems
biology to be the best approach towards personalised treat-
ment of complex liver diseases and believe that identifying
stratifying and treatment markers will aid greatly in this
pursuit.

Liver disease and metabolism
The altered metabolism in liver diseases

Common metabolic disorders are often complex in nature,
involving strong multigene components, and containing many
different underlying mechanisms that result in the same gross
phenotype. These metabolic disorders often play a critical role in
the pathogenesis of disease—for example, obesity has adverse
effects on health and is associated with certain types of cancer
[10], in addition to being strongly linked to NAFLD.

Other known traditional risk factors involved in the develop-
ment of NAFLD include age, high blood pressure, high choles-
terol, diagnosis of type II diabetes (T2D) and metabolic syn-
drome. NAFLD has also been diagnosed in people without any
of the risk factors. A recent study focused on NAFLD patients
and characterised patients according to liver fat content (high
hepatic steatosis (HS) was defined as >5.5% liver fat percentage;
low HS was defined as <5.5% liver fat percentage) and was able
to suggest alternative treatment strategies for NAFLD patients
[11], namely dietary supplementation of serine, L-carnitine, N-
acetyl L-cysteine (NAC) and nicotinamide riboside (NR). These
strategies were verified to positively improve the disease state in
mice and humans [12]. The abnormalities in serine metabolism
have also been previously reported based on the integration of
proteomics and transcriptomics data in NAFLD patients [13].

The role of diet in NAFLD progression has previously been
investigated in attempts to improve liver fat metabolism in
NAFLD patients. Recently, an isocaloric low-carbohydrate diet
was found to be beneficial for NAFLD patients [14]. This
disease results in excessive release of free fatty acids into the
bloodstream, which is associated with metabolic syndrome.
The intervention with an isocaloric carbohydrate-restricted
diet was found to induce improved fatty acid oxidation, in
addition to inducing decreased glycolytic and tricarboxylic acid
(TCA) fluxes, which in turn would lead to reduced fatty acid
biosynthesis (FAB). Previous studies have also suggested that
the supplementation of the diet with natural substances may
lead to a decrease in the level of the fat accumulated in the liver
(e.g. L-carnitine can activate fatty acid uptake) and hence be
used for the treatment of NAFLD [14].

Classically, patients with risk of liver disease may mitigate
their personal risk through lifestyle changes such as exercise
and weight loss over extended periods of time. Interestingly, a
longitudinal study in weight gain and loss in insulin-resistant
(IR) and insulin-sensitive (IS) individuals revealed health impli-
cations of weight gain that were immediately reversed or not
immediately reversed after weight loss [15]. For example, genes
associated with inflammatory response and dilated cardiomy-
opathy were activated following weight gain, but only inflam-
matory response genes decreased back to baseline with weight
loss.

The high metabolic activity of the gut microbiome has to be
considered when investigating food intake by the human body in
health and disease states. For example, gut microbiota has been
found to affect host amino acid metabolism, with substantial
modifications in glutathione metabolism occurring in the liver
and other metabolically active tissues [16]. Previous associations
have also been identified between the composition of the
gut microbiota and development of various complex diseases,
including NAFLD and various cancers [17]. Furthermore, recent
metagenomic studies have provided additional novel insights
into metabolic diseases and are able to identify possible ther-
apeutic targets [18]. These findings should be able to facilitate
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Figure 1. Iterative computational biology workflow. Data are gathered by experimentation, from the literature or from publicly accessible databases. Computational

models describing biological knowledge are generated and refined. Models are used for in silico simulation, re-refinement of the model and hypothesis generation.

Findings are validated experimentally, feeding into new data for the next iteration of the cycle.

personalised interventions based on metagenomics analysis.
The aforementioned longitudinal study also revealed disease
case—specific changes in the microbiome—in particular,
it was found that following weight gain, the level of the
mucin-degrading bacterium Akkermansia muciniphila increased
significantly in the stool samples of IS individuals, but not IR.
This finding is consistent with previous animal-based studies
suggesting that the bacterium confers protective properties
against insulin resistance [19, 20].

Modulation of liver metabolism using
natural substances

With the motivation of addressing specific metabolic disorders,
natural substances have been shown to restore normal hepatic
lipid metabolism and reduce HS in NAFLD patients. As
reviewed recently [12], a three-step strategy involving increased
mitochondrial fatty acid uptake, increased mitochondrial
fatty acid oxidation and increased availability of glutathione
(GSH) was predicted to correct liver metabolism altered in
NAFLD, in particular identifying the metabolic cofactors serine,
carnitine, NAC and NR by using network modelling [11].
Such natural substances can form the basis of per-stratum
or personalised therapies for patient groups identified by
stratification. Several therapies using natural substances have
been used in clinical trials for the treatment of NASH/NAFLD and
HCC as presented in Table 1, and select examples are described
below.

Vitamin A metabolism in NAFLD and its putative role in the
progression of liver disease have recently been reviewed [21].
Vitamin A is required for a number of important physiological
processes, ranging from cell proliferation and differentiation to

immune regulation, in addition to glucose and lipid metabolism.
The liver plays a key role in the metabolism of vitamin A and
harbours the largest body supply of vitamin A in hepatic stellate
cells (HSCs), mostly as retinyl esters. Liver diseases, particularly
those resulting in fibrosis and cirrhosis, have a profound impact
on vitamin A storage and metabolism. An impaired liver triggers
HSCs to activate and transdifferentiate to myofibroblasts, lead-
ing to a loss of hepatic vitamin A stores and thereby causing
dysregulated lipid metabolism. Hence, vitamin A metabolites
are key co-regulators of hepatic lipid metabolism and thera-
pies have been targeted at re-establishing proper levels of vita-
min A that may restore order to hepatic lipid metabolism in
NAFLD [22].

Furthermore, vitamin E has been proposed as a treatment for
NAFLD owing to its status as a potent antioxidant that has the
ability to reduce oxidative stress in NAFLD, which is believed to
play a crucial role in producing the lethal hepatocyte injury that
is associated with NAFLD [23]. This is in part due to reactive oxy-
gen species inducing the peroxidation of hepatic triglycerides
(TGs) with the subsequent release of reactive aldehydes dam-
aging mitochondrial components [24]. Oxidative stress has also
been identified as a factor that disturbs endoplasmic reticulum
(ER) folding capacity and increasing amounts of accumulating
data have implicated the disruption of ER homeostasis in NASH
development [25]. Hence, there is a need to focus on the ther-
apeutic efficacy of vitamin E in NAFLD/NASH. However, clinical
trials involving vitamin E administration have only shown mod-
est improvement in liver biochemistries so far: results include
modestly reduced alanine transaminase (ALT) levels in chil-
dren with NAFLD [26], reduced ALT and aspartate transaminase
(AST) levels in NASH [27], and reduced ALT, AST and γ -glutamyl
transpeptidase (GGT) when combined with ursodeoxycholic acid
(UDCA) [28].



1754 Lam et al.

Table 1. Survey of current and completed clinical trials using natural substances to treat liver diseases

NCT identifier Treatment and dosage (if specified) Conditions Phase Status

NAFLD/NASH
NCT03073343 Betaine 2 g or 4 g twice daily NAFLD/T2D N/A Recruiting
NCT01016418 Bovine colostrum powder 600 mg three times NAFLD/NASH Phase 1/2 Completed
NCT02929901 Caffeine 200 mg daily; and/or chlorogenic acid 200 mg daily NAFLD/T2D Phase 2/3 Completed
NCT02458586 Canola oil 50 g daily NAFLD/obesity/prediabetes/

dyslipoproteinemia
N/A Unknown

NCT01707914 Chinese bayberry juice 250 mL twice daily NAFLD N/A Completed
NCT03375580 Compound zhenzhu tiaozhi 4 tablets three times daily; or

metformin 0.5 g three times daily; or simvastin 20 mg
daily

NAFLD N/A Recruiting

NCT02908152 Curcumin 1500 mg daily NAFLD/T2D Phase 2/3 Unknown
NCT01934777 DHA 250 mg, vitamin E 39 UI, choline 201 mg daily NAFLD/fibrosis/obesity/

MetS
Phase 3 Completed

NCT00820651 Diamel® 660 mg every 8 h NASH/IR Phase 3 Completed
NCT01936779 EPA/DHA 4 g daily NAFLD N/A Completed
NCT03260543 Fermented ginseng powder 125 mg or 500 mg daily NAFLD N/A Completed
NCT00681408 Fish oil 3 g daily NAFLD/NASH Phase 2/3 Completed
NCT00230113 Fish oil 4 g daily; or safflower oil 4 g daily NAFLD Phase 2 Completed
NCT01547910 Fish oil 400–1200 mg NAFLD Phase 2 Completed
NCT02395900 Flaxseed powder 30 g NASH Phase 2/3 Completed
NCT03625284 FucoVital® (microalgae fucoxanthin extract) NAFLD N/A Not yet

recruiting
NCT02535195 Ginger supplement (ginger 500 mg) 2 capsules twice daily NAFLD Phase 2/3 Completed
NCT01553500 Glucomannan 5 g daily MetS/NAFLD/IR Phase 2 Completed
NCT03801577 Hepaxa® (EPA/DHA) 4 capsules daily NAFLD/NASH N/A Not yet

recruiting
NCT03377140 Hesperidin 2 capsules NASH N/A Unknown
NCT03377153 Hesperidin 2 capsules, flaxseed 30 g NAFLD/NASH N/A Unknown
NCT03734510 Hesperidin supplement 2 capsules; and/or flaxseed 30 g NAFLD/NASH N/A Recruiting
NCT00816465 Hoodia gordonii extract 1 tablet daily NAFLD Phase 1 Completed
NCT02992470 Hydrolysed oyster extract 250 mg three times daily NAFLD N/A Unknown
NCT03914495 Inulin 10–40 g daily NAFLD N/A Recruiting
NCT02642172 Inulin-type fructan (inulin/oligofructose 75/25) 16 g daily NAFLD/MetS N/A Recruiting
NCT00586885 L-Alanine 6 g one to three times daily NASH N/A Completed
NCT03439917 L-Carnitine tartrate 2 g, Slimfast® 325 ml twice daily NAFLD/IR N/A Recruiting
NCT03463967 Lycopene-enriched tomato juice 100 g daily NAFLD N/A Recruiting
NCT03135873 Mastiha 2.1 g daily NAFLD Phase 1 Recruiting
NCT02647294 Maxicor® n-3 PUFA 3.6 g daily NAFLD N/A Active, not

recruiting
NCT01940263 Medox® anthocyanin 320 mg daily NAFLD/NASH Early

Phase 1
Completed

NCT03864783 Meriva® curcumin supplement 1000 mg twice daily NAFLD/obesity/IR/glucose
tolerance impaired

N/A Not yet
recruiting

NCT00063635 Metformin 500 mg daily; or vitamin E 400 IU twice daily NAFLD Phase 3 Completed
NCT03942822 Milled chia seeds 25 g daily NAFLD N/A Completed
NCT01056133 n-3 PUFA 1.0 g (EPA/DHA 0.82/0.44 g) daily NASH/NAFLD Phase 2 Completed
NCT01285362 n-3 PUFA 4.0 g (EPA/DHA 465/375 mg per 1 g capsule) daily NAFLD N/A Completed
NCT02117700 NAC 600 mg once or twice daily NAFLD/obesity/CVD Phase 2 Unknown
NCT03850886 Nature’s Life® niacinamide supplement 1000 mg daily NAFLD Phase 2 Recruiting
NCT02307344 Nigella sativa 1 g twice daily NASH N/A Unknown
NCT03838822 NR 1 g, L-carnitine 3 g, serine 20 g, NAC 5 g Healthy Early

Phase 1
Completed

NCT02369536 Nutraceutical mixture [fish oil (DHA 70%),
phosphatidylcholine, silymarin, choline bitartrate,
curcumin, D-α-tocopherol; choline 82.5 mg] 1600 mg daily

NAFLD N/A Completed

NCT02923804 Omega-3 supplement 3 g daily NAFLD N/A Completed
NCT02201160 Omega-3 supplement 4 capsules daily NAFLD Phase 1/2 Unknown
NCT03132662 Optifast® (0.35 g linolenic acid) 1 serving, four times daily;

or Oceano3® Krill Oil (EPA 150 mg, DHA 90 mg) 1000 mg
three times daily

Obesity/NAFLD/NASH N/A Not yet
recruiting

NCT01875978 Phytosterols 1.8 g daily NAFLD N/A Completed
NCT01002547 Pioglitazone 30–45 mg daily, vitamin E 400 IU twice daily; or

vitamin E 400 IU twice daily
NASH Phase 4 Completed

Continued
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Table 1. Continued

NCT identifier Treatment and dosage (if specified) Conditions Phase Status

NCT03627819 Plant sterols 3 g daily; or plant stanols 3 g daily NAFLD N/A Recruiting
NCT00977730 Protandim 1675 mg daily NASH N/A Completed
NCT00870077 ProWHEY® 94 CFM/SponserR® 20 g three times daily NAFLD/obesity N/A Completed
NCT03047668 PUFA T2D/NAFLD/obesity/

dyslipidemia/
hypertension/MetS

N/A Unknown

NCT01992809 PUFA (ALA 64%, EPA 16%, DHA 21%) 945 mg three times
daily

NAFLD Phase 3 Completed

NCT00819338 PUFA 5 g daily NAFLD Phase 2 Completed
NCT02030977 Resveratrol 1 capsule daily NAFLD Phase 2/3 Completed
NCT01446276 Resveratrol 500 mg three times daily NAFLD/Obesity N/A Completed
NCT01464801 Resveratrol 500 mg three times daily NAFLD N/A Completed
NCT02216552 ResVida® resveratrol 75 mg twice daily NAFLD/T2D/MetS Phase 2/3 Completed
NCT02568787 Rice bran arabinoxylan compound 1 g twice daily NAFLD N/A Completed
NCT02599038 Serine daily NAFLD/NASH Phase 1/2 Completed
NCT01650181 Siliphos® 140 mg, selenium 15 μg, methionine 3 μg, α-lipoic

acid 200 mg twice daily
NAFLD/NASH Phase 4 Completed

NCT03749070 Silymarin 700 mg, vitamin E 8 mg, phosphatidylcholine
50 mg daily

NAFLD N/A Recruiting

NCT03319199 Slim Water® (L-carnitine 2000 mg, magnesium 150 mg) 1
serving daily

NAFLD/NASH N/A Not yet
recruiting

NCT01956825 Slim Water® (magnesium lactate 150 mg, L-carnitine
2000 mg)

NAFLD/NASH Phase 4 Unknown

NCT03664596 Sublimated mare milk 1 sachet three times daily;
with/without UDCA capsule 250 mg two or three times
daily

NASH N/A Recruiting

NCT03738358 Trehalose 5 g daily NAFLD N/A Completed
NCT01511523 Vitamin C/silymarin/carnitine 3 capsules twice daily NAFLD/NASH N/A Unknown
NCT03084328 Vitamin D 2000 IU daily NAFLD N/A Completed
NCT01623024 Vitamin D 20000 IU weekly NAFLD Phase 3 Unknown
NCT02132442 Vitamin D 50000 IU weekly T2D/NAFLD/Vitamin D

deficiency
Phase 3 Completed

NCT01571063 Vitamin D3 2100 IU daily NASH Phase 2 Completed
NCT02962297 Vitamin E 100 mg three times daily NASH N/A Active, not

recruiting
NCT01792115 Vitamin E 200 IU or 400 IU or 800 IU daily NAFLD Phase 2 Completed
NCT00063622 Vitamin E 30 mg daily; or pioglitazone 800 IU daily NASH Phase 3 Completed
NCT02690792 Vitamin E 400 IU twice daily NAFLD/NASH N/A Completed
NCT00655018 Vitamin E 600 IU, vitamin C 500 mg daily NAFLD/inflammation/

fibrosis/IR
Phase 2/3 Completed

NCT03669133 Vitamin E 800 IU daily NAFLD/NASH/HIV Phase 2 Recruiting
NCT03988725 Vitamin E 800 IU daily NASH/HIV mono-infection N/A Completed
NCT00509418 Viusid 1 sachet three times daily NASH Phase 3 Completed
NCT02983669 Zataria multif lora Boiss. 350 mg twice daily NAFLD N/A Completed
NCT02178839 β-Glucan oat supplement 8.5 g daily NAFLD/NASH N/A Unknown
Liver cirrhosis
NCT03285217 Abbott Nutrition® 1 serving, vitamin D 160 IU twice daily Liver cirrhosis/sarcopeni-

a/malnutrition
N/A Active, not

recruiting
NCT02132962 Amino acid infusion Liver cirrhosis N/A Completed
NCT02023229 BCAA Liver cirrhosis Phase 4 Completed
NCT00931060 BCAA 0.45 g/kg daily Liver cirrhosis/hepatic

encephalopathy/hepatic
insufficiency

N/A Completed

NCT00955500 BCAA 30 g (leucine 13.5 g, isoleucine 9 g, valine 7.5 g) daily Liver cirrhosis/hepatic
encephalopathy

Phase 4 Completed

NCT03339232 Bulk Supplements® BCAA powder (L-leucine 50%,
isoleucine 25%, valine 25%) 1788 mg seven times daily

Liver cirrhosis N/A Recruiting

NCT03605147 Calcium-HMB 1.5 g twice daily Liver cirrhosis/sarcopenia N/A Recruiting
NCT03354299 Coconut milk 50 mL daily Liver

cirrhosis/malnutrition
N/A Completed

NCT03908255 Do Vitamins® BCAA supplement Liver cirrhosis/liver
failure/HCC

Phase 2 Not yet
recruiting

NCT02650245 EAS Myoplex® protein drink, lactulose 10 g Liver cirrhosis N/A Completed

Continued
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Table 1. Continued

NCT identifier Treatment and dosage (if specified) Conditions Phase Status

NCT02407769 Enterex® Hepatic bag (BCAA 8.63 g) 1 serving daily Liver cirrhosis N/A Unknown
NCT00168961 Fresenius Kabi supplement Liver cirrhosis Phase 4 Completed
NCT03080129 Fresubin® Energy 200 mL daily Liver cirrhosis/sarcopenia N/A Recruiting
NCT03503708 Herbal supplement (Phyllanthus niruri, Boerhavia diffusa,

Picrorhiza kurroa) two capsules twice daily
Alcoholic liver cirrhosis N/A Not yet

recruiting
NCT03234920 HMB 1.5 g twice daily Liver cirrhosis/sarcopenia N/A Completed
NCT03892070 HMB 1.5 g twice daily Liver cirrhosis/sarcopenia N/A Recruiting
NCT02249741 Ibandronic acid 150 mg monthly Liver cirrhosis Phase 4 Completed
NCT01113567 Lactose-free milk (lactose 3.5 g); or whole milk (lactose 24 g) Liver cirrhosis/hepatic

encephalopathy
N/A Suspended

NCT01773538 Lactulose 25 mL, three times daily, rifaximin 550 mg twice
daily, Bramino® BCAA 30 g daily

Liver cirrhosis/hepatic
encephalopathy

N/A Completed

NCT01060813 Leucine supplement 10 g daily Liver cirrhosis N/A Completed
NCT03208868 Leucine-enriched essential amino acids Liver cirrhosis N/A Recruiting
NCT01408966 Lindt Excellence® 85% Cocoa dark chocolate 0.55 g/kg daily;

or Lindt Excellence® Natural Vanilla white chocolate
0.63 g/kg daily

Liver cirrhosis/portal
hypertension

Phase 2 Completed

NCT01894867 Magnesium Liver cirrhosis Phase 4 Unknown
NCT02321202 Omega-3 parenteral nutrition (Structolipid® 20%,

Omegaven® 10%) daily
Liver cirrhosis/liver cancer Phase 4 Unknown

NCT01260012 Praziquantel® daily; with/without antioxidant supplement
daily

Schistosomiasis/liver
fibrosis/periportal
fibrosis/oxidative stress

N/A Unknown

NCT01634698 Retinyl palmitate 1500 IU or 2500 IU once Chronic liver disease N/A Completed
NCT00212186 Selenate (selenium 200 μg) daily; or selenomethionine

(selenium 200 μg) daily
Liver cirrhosis N/A Completed

NCT02321579 Vitamin B6 50 mg daily; and/or glutathione 500 mg daily Liver cirrhosis/liver cancer N/A Unknown
NCT02009748 Vitamin D 2800 IU daily Liver cirrhosis/Vitamin D

deficiency
Phase 2 Completed

NCT01463735 Vitamin E 350 mg twice daily Liver cirrhosis Phase 2 Completed
NCT00502086 Viusid® three sachets daily Liver cirrhosis/chronic hepatitis

C
Phase 3 Completed

NCT00312078 Yogurt 170 g twice daily Liver cirrhosis/minimal hepatic
encephalopathy

N/A Completed

NCT02475928 Zinc gluconate 100 mg Liver cirrhosis/dysgeusia N/A Recruiting
NCT02072746 Zinc sulfate 220 mg daily Alcoholic liver cirrhosis N/A Unknown
Liver cancer
NCT00945568 Aminoleban® EN (amino acids 6.5 g) 50 g twice daily HCC/Chronic liver disease N/A Completed
NCT02327819 BCAA supplement 12 g daily Primary liver cancer N/A Unknown
NCT01018381 BioBran® Arabinoxylan Rice Bran 1 g daily HCC/hepatitis B N/A Unknown
NCT01666756 Chinese herbal formulation PHY906, sorafenib tosylate Adult primary HCC/advanced

adult primary liver
cancer/advanced adult
HCC/BCLC stage B adult
HCC/BCLC stage C adult HCC

Phase 1 Active, not
recruiting

NCT03908255 Do Vitamins® BCAA HCC/cirrhosis/liver failure Phase 2 Not yet
recruiting

NCT00168987 EPA Colorectal neoplasms/
HCC/cholangiocarcinoma

Phase 4 Completed

NCT01434524 LIVACT® (amino acids 13.0 g) Liver cancer N/A Completed
NCT01392131 Oncoxin® syrup 25 mL, Oncoxin® 1 capsule twice daily HCC Phase 1/2 Unknown
NCT02041871 Oral Impact® powder 74 g three times daily Hepatectomy/elective

hepatectomy/malignant
tumours

N/A Completed

NCT00040898 Sho-saiko-to Liver cancer Phase 2 Completed
NCT01964001 Vitamin B6 50 mg daily; and/or coenzyme Q10 300 mg daily HCC Phase 2/3 Completed
NCT02321579 Vitamin B6 50 mg daily; and/or glutathione 500 mg daily Liver cirrhosis/Liver cancer N/A Unknown
NCT01542281 Whey protein, dietary supplements Colorectal neoplasm/biliary

tract neoplasm/liver neoplasm
N/A Unknown

ALA, α-linoleic acid; BCLC, barcelona clinic liver cancer; CVD, cardiovascular disease; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; HIV, human immunod-
eficiency virus; HMB, β-hydroxy-β-methylbutyrate; IR, insulin resistance; MetS, metabolic syndrome; T2D, type II diabetes; VDD, vitamin D deficiency.
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Studies also indicate the potential benefit of omega-3 sup-
plementation for NAFLD patients and show an association with
metabolic disorders [29]. For instance, long-term daily adminis-
tration of n-3 polyunsaturated fatty acid (PUFA)-enriched olive
oil can decrease AST, ALT, GGT, TG and fasting glucose levels
[30], in addition to markedly enhancing adiponectin levels com-
pared with control [31]. When used to supplement an Ameri-
can Heart Association (AHA)-recommended diet, long-term daily
PUFA supplements can decrease ALT, TG and serum tumour
necrosis factor α (TNFα) levels, as well as liver fat content com-
pared with an AHA-recommended diet alone [32]. In NAFLD
associated with hyperlipidemia, daily intake of seal oil-derived
PUFA can result in decreased ALT, TG and low-density lipoprotein
(LDL) compared with control [33]. These observations indicate
that the supplementation of the diet with omega-3 fatty acids
can improve liver biochemical features in NAFLD patients and
can be used in combination with recommended dietary changes.

Other studied supplements include carnitine: twice-daily
supplementation with a recommended diet has been associated
with biochemical amelioration such as in ALT, AST, GGT, high-
density lipoprotein, LDL, total cholesterol and TG levels in NASH
compared with diet alone [34]; serine: associated with decreased
ALT, AST, TG and alkaline phosphatase in NAFLD [11]; NAC:
twice-daily dosage has been associated with decreased ALT in
NAFLD compared with the twice-daily dosage of vitamin C [35];
and branched-chain amino acids (BCAAs): long-term oral intake
has been linked with preventing progression to liver failure in
advanced cirrhosis patients compared with lactoalbumin and
maltodextrins [36], and increased serum albumin as well as
general health perception scores in decompensated cirrhosis
compared with diet therapy alone [37].

Finally, within alternative therapies, one example of note
is silymarin, an herbal remedy derived from milk thistle seed
known for its antioxidant properties [38]. NAFLD patients receiv-
ing silymarin in combination with vitamin E displayed nor-
malised ALT, AST and GGT levels over a course of 12 months
[39]. Given that vitamin E therapy alone has resulted in only
modest benefits, this study demonstrates that alternative ther-
apies could potentiate the therapeutic benefits of mainstream
medicine. Indeed, several clinical trials involving natural and
alternative substances, such as fish oil, Chinese bayberry juice
and oyster extract, are ongoing or completed (Table 1).

Taken together, it is clear that potential therapies are abun-
dant, demonstrating the readiness of the field to prescribe single
or multiple natural substances to liver disease patients in a
personalised manner. However, since the therapy space for com-
binatorial treatments is impossible to be explored exhaustively
in the clinic, systematic consideration of human metabolism as
a model is now clearly required.

Genome-scale modelling of liver metabolism
The shift in focus to human metabolism and its regulation
when determining the molecular mechanisms of these complex
diseases requires reconstruction of functional human metabolic
models using a systems medicine approach. GEMs are very
suitable for understanding mechanistic relationships between
genotypes and phenotypes in addition to revealing the underly-
ing mechanisms that may be responsible for a complex disease
[40]. These models generally encompass different parts of
metabolism and associated enzymes, thus enabling the study of
such interactions in a holistic manner. This can prove extremely
useful when targeting enzymes for disease treatment or

identifying biomarkers for diagnosis through changes in
metabolite concentrations [41].

Reconstruction of a GEM involves integrating the substrates
and products, respective stoichiometric coefficients, direction-
alities, and compartmentalisation of every biochemical reaction
catalysed by every enzyme in the cell or tissue type in question,
followed by flux balance analysis (FBA) and definition of a biolog-
ical objective function, such as maximising biomass production
or minimising ATP consumption [42]. A number of computa-
tional tools for the development and application of GEMs, such
as Metabolic Adjustment by Differential Expression (MADE) [43],
Toolbox for Integrating Genome-scale metabolism, Expression,
and Regulation [44] and Relative Metabolic Differences (RMetD2)
[45], are publicly available.

The most comprehensive global reconstruction efforts
of human metabolism are currently Recon3D and Human
Metabolic Reaction database version 2.0 (HMR2)—these generic
human GEMs containing more reactions, metabolites and
genes than previously reconstructed [41, 46]. Hence, it is
often employed to build cell/tissue-type GEMs using a task-
driven model reconstruction (tINIT) algorithm [8], which
combines cell-type-specific transcriptomics and proteomics
with defined metabolic tasks that the generated model should
be able to perform. An example of a cell/tissue-type GEM is
iHepatocytes2322, a consensus functional GEM for hepatocytes,
which was reconstructed manually by integrating the contents
of previously published human hepatocyte GEMs [13]. It
extends previous models of the liver by incorporating extensive
information about lipid metabolism, which is necessary for
studying the effects of excess lipids on the underlying molecular
mechanism of NAFLD. The iHepatocytes2322 GEM has been
utilised to analyse transcriptomics data from NAFLD patients
identifying new potential biomarkers and therapeutic markers
[13]. More recently, this GEM has been used in conjunction
with FBA to generate personalised, simulation-ready GEMs for
NAFLD patients. This approach identified altered GSH and NAD+
metabolism as a prevailing feature in NAFLD and suggested
a potential treatment strategy for NAFLD patients based on
increased synthesis of GSH and increased oxidation of fat [11].

Aside from cell/tissue-type GEMs, cancer-specific GEMs, such
as the HCC-specific GEM, have been reconstructed using HMR2
and the tINIT algorithm, thus providing insights about tumour
progression and discovering anti-cancer drug targets through
the use of personalised HCC models [8]. This study identified
46 antimetabolites (chemicals which disrupt metabolism by
inhibiting the use of a metabolite) which were specific to
individual patients and hence emphasises the need to stratify
patients according to different metabolic profiles.

The mapping of high throughput datasets onto reconstructed
GEMs allows for the analysis of metabolic conditions between
two different conditions. An invaluable tool used in this mapping
process is RMetD2, which has successfully integrated relative
transcriptomics data into GEMs in several cases. RMetD2 dif-
fers from other tools as it sets gradient constraints, allowing
expression changes to be evaluated over several steps rather
than considering only the overall change in expression as in
MADE. RMetD2 can also be applied without an objective function,
allowing for modelling where no clear objective is defined. To
illustrate one example, transcriptomics data obtained before
and after a carbon-restricted dietary study were integrated into
iHepatocytes2322 to determine the metabolic differences that
occurred in the liver over the course of the study [14]. The
reaction associated with the triacylglycerol pool generation, and
thus indicates the accumulation of liver fat, was among the
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reactions that were significantly downregulated. Furthermore,
transcriptomics data have been integrated into the HepG2 GEM
when investigating the metabolic differences between wild-type
and pyruvate kinase liver and red blood cell (PKLR) inhibited liver
cancer cell line, using constraints and differentially expressed
genes (DEGs) from a recent study [47]. RMetD2 suggested that
the glycolytic reaction that converts glucose 6-phosphate to
fructose 6-phosphate is classified as downregulated in the PKLR-
inhibited HepG2 cell line. This suggests a decreased glucose
consumption at the beginning of the glycolytic pathway, and as
expected, a decreased glucose consumption in PKLR-inhibited
cells was observed in the experimental validation.

INs for liver metabolism
Further integration of biological knowledge into GEMs can be
achieved through integration of GEMs with other biological
networks, including transcriptional regulatory networks (TRNs),
protein–protein interaction networks (PPINs) and signalling
networks (Figure 2A). This integrative approach results in the
formation of INs, which are necessary in order to cover the
entire range of biological functions of cells and tissues in a
holistic manner (GEMs cover only ∼15–20% of all biological
functions). Hence, these INs should enable a better prediction
of the cell phenotype and may lead to a better understanding
of how metabolic processes are altered when a certain enzyme
is activated or inhibited. The Minimum Network Enrichment
Analysis framework can also be applied to GEMs to generate
all feasible alternative minimal networks, each of which
corresponding to a distinct metabolic subsystem that can
synthesise a target metabolite. This approach has previously
been applied to investigate the deregulation of metabolic tasks
in NAFLD and identified key regulators in different NAFLD
phenotypes using transcriptomics data from liver samples [48].

The first attempt at generating an IN involved merging GEMs,
TRNs and PPINs to generate cell-specific INs for hepatocytes,
myocytes and adipocytes of lean and obese subjects [49]. This
integration is performed by first combining sets of interactions
in the TRN and PPIN, and then considering the enzyme-coding
genes which overlap with GEMs. Network topologies provided by
the cell-specific INs could then be employed to perform a co-
regulation analysis for each metabolic pathway in the healthy
and obese subjects. This approach was able to identify the dys-
regulation of fructose and mannose metabolism in obese sub-
jects including plasma mannose levels increasing in response to
obesity. Further associations were also found between plasma
mannose levels and insulin resistance leading to the conclusion
that mannose could be used to explain the variance in obesity-
independent insulin resistance. Hence, this novel strategy of
employing cell-specific INs had proven to be successful in iden-
tifying the dysregulation of biological functions in response to a
disease, which in turn revealed the consequences on relevant
metabolites in plasma and eventually led to the proposal of
new candidate disease biomarkers. These findings prompted
further studies [50] that also found elevated plasma mannose
levels to be strong biomarkers for predicting future risk of sev-
eral chronic diseases, including T2D, cardiovascular disease and
albuminuria.

More recently, GEM, PPIN and TRN were merged to generate
an IN for HepG2 cells, which could then be used to model
the effect of inhibition of PKLR in these cells [47]. The find-
ings suggested a global metabolic response to PKLR inhibition,
including a decrease in glycolytic flux and FAB, both of which
were experimentally validated, as later discussed in this review.

Overlap of INs with gene co-expression networks (CNs)
can reveal tissue-specific functional and physical interactions,
which can then be used to determine metabolic pathways that
are regulated specifically in the tissue of interest (Figure 2B).
An example of such an application includes the integration of
TRNs, PPINs and CNs to identify liver-specific co-expression
clusters, from which FASN–co-expressed genes (PKLR, PNPLA3,
PCSK9) were identified as potential therapeutic targets for
treating liver disease [51]. The database of tissue- and cancer-
specific biological networks also employs a similar approach
and has emerged as an invaluable tool towards gaining detailed
insight into disease mechanisms, which in turn will lead to
the development of efficient treatment strategies [52]. Human
CNs were generated for 46 normal tissues and 17 cancers,
and tissue-specific INs were generated for liver, muscle and
adipose tissues through the integration of metabolic networks,
TRNs and PPINs. Consequently, the overlap between functional
and physical interactions provided by CNs and INs could
be investigated, including functional relationships between
genes and their relationships with biological functions. The
comparative analysis of these networks may lead to the
identification of tissue-specific targets that can be used to
develop drugs that have minimum toxic effect on other tissues.

A top-down systems approach considering the interplay of
interactions on many omics levels is preferred to gain a fuller
insight into the global ramifications of perturbing a node in
complex disease. A significant example was demonstrated in
the HepG2 cell line, commonly used for the study of HCC. PKLR,
a gene previously proposed by network analysis as a potential
target for drug development [51], was inhibited in silico using an
HepG2-specific IN reconstructed from an HepG2-specific TRN,
GEM and PPIN [47] as well as RMetD2 for predictions in changes
of fluxes. Simulations predicted the downregulation of path-
ways, including the TCA cycle, oxidative phosphorylation, FAB
and fatty acid β-oxidation (FAO). In addition to these changes,
the NADPH-generating folate cycle was predicted to be down-
regulated and the pentose phosphate pathway was predicted
to be upregulated, in a metabolic flux shift away from the first
half of glycolysis (glucose to fructose 6-phosphate (F6P) steps), to
compensate for the depletion of NADPH. Interestingly, inhibition
of PKLR was predicted to lead to increased flux in the second half
of glycolysis [F6P to phosphoenolpyruvate (PEP) steps] despite
PKLR itself being the enzyme responsible to convert PEP into
pyruvate. Nonetheless, the simulated decreases in the first half
of glycolysis and in FAB were validated by siRNA knockdown
of PKLR in HepG2 cells. The knockdown experiments showed
significant decreases in glucose uptake (down 40% compared
with control) and adjusted total TG levels (down 15% compared
with control). This study clearly demonstrates the benefits of
network-based investigations in providing a deeper insight into
the metabolic flux changes occurring in biological systems as
well as directing hypothesis-driven research in the laboratory.

For various metabolic diseases, comprehensive collections of
integrated clinical chemistry, anthropometric, plasma protein,
metabolite and gut microbiome data have been generated in
a number of longitudinal and cross-sectional studies [15, 53,
54]. Recent investigations that have integrated such omics data
include an isocaloric low-carbon diet being found to be beneficial
for NAFLD patients [14] and a novel glycine and serine deficiency
phenotype being found in patients with NAFLD [11]. Hence, there
is a need for resources and databases to investigate the associa-
tions between different types of omics data. In this context, the
interactive database of multi-omics biological networks (MOBNs)
[55] was created to provide a better framework to facilitate these



Addressing the heterogeneity in liver diseases using biological networks 1759

Figure 2. IN construction. The formation of INs and their overlap with CNs can reveal metabolic pathways that are regulated specifically in a tissue of interest. A,

Formation of an IN through the integration of GEMs with other biological networks, including regulatory networks, PPINs and signalling networks. INs are necessary

in order to cover the entire biological functions of cells and tissues in a holistic manner and should enable a better prediction of the cell phenotype. Arrows with

barbed heads, activatory relationships; arrows with bars, inhibitory relationships; dotted lines, physical interactions; and arrows with filled heads, integration of data.

B, Overlap of an IN with a CN can reveal tissue-specific functional and physical interactions, which can then be used to determine BPs that are uniquely regulated in a

tissue of interest.

types of investigations. It is highly expected that the integra-
tion of multiple omics data through the MOBN tool and other
alternative tools may offer novel insights and provide a more
extensive understanding of biological functions in the human
body.

Systems biology case studies for stratifying
liver disease patients

Traditional efforts to treat disease through the development
of drugs are generally directed by a small number of links
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associating the drug target with disease on the molecular or
genetic level. Although useful for treating less complex medical
complaints, these simple, single-layer associations are insuffi-
cient in explaining complex diseases, which require stratifica-
tion into subclasses of disease. Biological networks have been
invaluable in identifying underlying mechanisms driving sub-
classes of complex disease. Due to the global overview possible
only by these systems-levels investigations, common funda-
mental pathways, genes and analytes have been identified for
the stratification of patients or therapeutic targeting in multiple
independent investigations. This, along with existing knowledge
of the factors involved, demonstrate more confidently the accu-
racy of the results emerging from systems approaches for the
generation of hypotheses to be tested at the bench or for rational
drug development. Here, we summarise the corroborating find-
ings of recent systems-level investigations involving identifica-
tion of strata of disease, implicating network topology, acetate
utilisation, isoforms and alternative splice products of PKM,
and redox metabolism as important players in heterogeneous
HCC.

Stratification of HCC patients based on
network topology

Networks integrating multi-omics data have also shown to be
more effective than DEGs alone in stratifying individuals of
complex disease into clusters with distinct biological or clin-
ical profiles. It has been demonstrated that by generation of
personalised functional gene-gene networks (fGGNs) for 369
individuals with HCC and 50 matched non-cancer individuals,
fGGNs corresponding to HCC could be clustered to the exclusion
of the non-cancer samples, a result not recapitulated when
considering gene expression data alone due to the large het-
erogeneity among the HCC patients [56]. Integration of patient-
specific transcriptomic data and an HCC-specific GEM was all
that was required to elucidate the clustering, leading to the
characterisation of the three proposed GEMs as described above
(iHCC1, iHCC2 and iHCC3).

Identifying stratifying genes or therapeutic targets based
on network characteristics is an exciting emerging strand
of systems biology that has already proven highly useful to
researchers. By using network controllability theory, minimum
driver set (MDS) nodes—those nodes required to achieve
full control over a network [57]—and indispensable nodes—
those nodes whose removal from the network increases the
MDS [58]—can be identified. In a proof-of-concept study [59],
personalised GEMs were constructed, and biomass production
and ATP consumption were defined as objective functions for
HCC GEMs and adjacent non-cancer GEMs, respectively, and
functionality was determined based on whether the models
could perform 57 and 56 previously documented metabolic
tasks [8], respectively. Based on in silico gene silencing within
these parallel models, eight genes were found to inhibit
growth in all HCC GEMs, while at the same time inducing
no change in non-cancer GEMs. Furthermore, three of these
genes [protein kinase cAMP-activated catalytic subunit alpha
(PRKACA), phosphatidylglycerophosphate synthase 1 (PGS1) and
cardiolipin synthase 1 (CRLS1)] were identified as MDS nodes in
HCC networks but not in non-cancer networks, indicating that
inhibition of these genes would not be toxic to normal cells.
Indeed, siRNA knockdown of these three genes in HepG2 and
HepB3 cells led to promising reductions in cell growth by up to
35% in at least one cell line.

Stratification of HCC patients based on
acetate utilisation

Several studies employing multi-omics network analysis
approaches have been congruent in identifying major pathways
contributing to liver disease. For instance, the genes encoding
the enzymes catalysing the conversion of acetate to acetyl-
CoA—namely mitochondrial enzymes ACSS1 and ACSS3, and
cytosolic enzyme ACSS2—have been identified as stratifying
genes in two independent network analysis studies (Figure 3).

In the first study [6], a reconstructed GEM for HCC, known as
iHCC2578, predicted an unusually tightly regulated FAB pathway
in a background of poorly or deregulated metabolic pathways,
as normally expected in cancer. On the basis that the ACSS
enzymes can generate acetyl-CoA to be used as a substrate for
FAB, the authors stratified 361 HCC tumours by ACSS1 and ACSS2
expression level, separately, and found that high ACSS1 expres-
sion was linked to hypoxia, suppression of fatty acid oxidation,
co-expression with the proliferation-specific transcription fac-
tor (TF) Forkhead box M1 (FOXM1) and centromere protein F
(CENPF)—the implications of both of which in HCC are already
established [60, 61]—and a poor prognosis for the patient. In
contrast, no such associations were drawn between high ACSS2
expression and FOXM1 or CENPF, and in fact, a negative correla-
tion could be drawn between high ACSS2 and hypoxic response
(Figure 3A).

A more recent study [56] has also enabled tumour stratifica-
tion by classifying personalised HCC GEMs into one of three HCC
subtypes (iHCC1, iHCC2 and iHCC3)—each of which have distinct
gene expression, biological process (BP) and clinical survival
characteristics. The reconstruction of cancer GEMs differs from
non-cancer GEMs of the same cell/tissue type by having the for-
mation of biomass as an additional metabolic task to ensure cell
growth. The study stratified 369 HCC tumours into three clusters
on the basis of an fGGN for HCC and patient transcriptomic
data: iHCC1, indicating the most favourable survival; iHCC2, indi-
cating intermediate survival; and iHCC3, indicating the least
favourable survival [56]. In agreement with the prognostic char-
acteristics of the ACSS1 and ACSS2 enzymes as described above,
it was seen in HCC subtype-specific GEMs that iHCC1 tumours
favourably expressed ACSS2, iHCC2 tumours ACSS3, whereas
iHCC3 tumours ACSS1 for acetate utilisation (Figure 3B). This
concordance between independent studies highlights acetate
utilisation as a key area of interest for the stratification and
possibly treatment of patients suffering from HCC.

Pyruvate kinase isoform expression profiles can
inform cancer survival rates

PKM expression has been strongly associated with cancer sur-
vival, but the direction of the correlation is contradictory among
different tissues of the human body [62]. To illustrate this point,
high expression is an unfavourable prognostic marker for liver
HCC, pancreatic adenocarcinoma, head and neck squamous cell
carcinoma and lung adenocarcinoma; however, it is a favourable
prognostic marker for other cancers such as kidney renal clear-
cell carcinoma (KIRC), skin cutaneous melanoma, stomach ade-
nocarcinoma and thyroid carcinoma. This heterogeneity can in
part be explained by the fact that alternative splicing results in
14 isoforms of PKM, the major isoforms being PKM1 and PKM2,
which differ by mutually exclusive exons 9 and 10 [63]. Therefore,
contradictory treatment in the activation and inhibition of PKM
has been suggested according to the type of cancer a patient has
been diagnosed with.
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Figure 3. Independent studies highlight convergent conclusions in acetate utilisation in HCC heterogeneity. Separate investigations associated increased expression of

ACSS1 with poor survival outcome. A, Stratification of tumours based on ACSS1 and ACSS2 expression led to the identification of poor prognosis markers in tumours

expressing ACSS1 at a high level [6]. B, Clustering of tumours on the basis of fGGN and transcriptomic data resulted in the characterisation of three HCC subtypes, of

which the subtype conferring the least favourable survival was found to preferentially express ACSS1 for acetate utilisation [56].

To further investigate PKM transcripts at the functional
level, the top and bottom quartiles of gene expression for
each transcript in all cancers were compared in order to find
DEGs, and this was followed by gene ontology (GO) enrichment
analysis. The DEG/GO analysis identified two transcripts
(ENST00000335181 and ENST00000561609), which includes the
transcript for PKM2, associated with favourable survival in TCGA
KIRC datasets. Two further transcripts (ENST00000389093 and
ENST00000568883), associated with unfavourable survival, were
also found. These opposite prognostic effects between the sets
of transcripts were validated using an independent Japanese
KIRC cohort of 100 patients [64]. This previous study confirmed
that the former transcripts were associated with favourable
survival, whereas high expression of the latter transcripts
was associated with unfavourable survival. Thus, there was

agreement between this independent KIRC cohort and the TCGA
KIRC cohort.

In an attempt to explain the differing survival rates between
the sets of transcripts, the protein products of the prognostic
transcripts were characterised and aligned with a template
structure for PKM (Figure 4A). Amino acid sequence analysis
revealed large deletions in the unfavourable survival transcripts,
with ENST00000389093 and ENST00000568883 having deletions
in the A1 and B domains (Figure 4B), which may impede
dimerisation [65]. The amino acid alignment of translations of
uncharacterised transcripts also revealed that ENST00000561609
had deletions in the C-terminal region, which may impede
tetramerisation. Moreover, the region at residue range 389–433
more closely resembles PKM1 rather than PKM2 for isoforms
ENST00000561609 and ENST00000568883. In this region, fructose
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Figure 4. Alternative splice isoforms of PKM. Homology modelling and structure alignment can reveal functionally important sites and identify functionally significant

deletions that occur in different PKM isoforms [62]. A, The template structure for PKM consists of four domains. The A-domain participates in the formation of dimers

and the C-domain mediates the interactions between dimers that allow them to form tetramers. The active site (K270) and FBP binding site (K433) are shown. B, The

alternatively spliced forms of PKM reveal large deletions corresponding to the ADP binding site in isoforms ENST00000389093 and ENST00000568883, which may impede

dimerisation. In TGCA KIRC datasets, these transcripts are associated with unfavourable survival.

1,6-bisphosphate binds K433 (present in PKM2 but not PKM1),
activating tetramer formation in PKM2 [66]. In contrast, PKM1
exists as a stable tetramer that has high constitutive activity
[67].

Homology modelling and structure alignment with PKM1 and
PKM2 revealed that ENST00000389093 lacked the catalytic site
for ADP binding at residues 59–132 as a number of key contact
residues within this range were missing. A newly ordered loop
was found in place of the ADP binding site and it is unknown
whether this loop can bind ADP in place of the active site. Mean-
while, ENST00000568883 had deletions in the A and B domains
as well as the entire N-terminal domain, compared with PKM1
structure. Hence, the large deletions in the unfavourable survival
transcripts corresponded to the ADP binding site, but it is still
unknown whether these isoforms can bind ADP.

A further example of pyruvate kinase isoforms informing
on cancer survival rates includes the aforementioned study on
the fGGN-assisted stratification of HCC patients. Here, it was
revealed that the gene expression in the poor-survival iHCC3
cluster was enriched for genes associated with cancer hallmarks
compared with the good- and intermediate-survival iHCC1 and
iHCC2 clusters [56]. In particular, PKM was identified as a poten-
tial stratifying gene for iHCC3: this cluster being associated with
poor prognosis of HCC. Interestingly, it was seen that iHCC1 and
iHCC2 cluster tumours use liver-specific PKLR for the utilisa-
tion of pyruvate rather than the muscle isoform PKM, signify-
ing metabolic dysregulation on multiple pathways, indicative of
more advanced or aggressive cancer.

Dysregulated redox metabolism and hypoxia as
hallmarks of HCC

It is known that imbalances in redox metabolism influence pro-
liferation and tumourigenesis, thus making redox metabolism

a potential target for cancer treatment. Hence, several recent
efforts have targeted redox metabolism in cancer [68, 69].
In addition, a systematic examination of redox behaviour
in HCC has been performed [70], which has allowed for a
greater understanding of redox behaviour in HCC and its
relationship with metabolism, signalling and patient clinical
data.

This recent study stratified 360 HCC patients based on
the expression of 132 redox metabolism genes identified two
distinct clusters of redox genes. These two groupings, named
the glucose 6-phosphate dehydrogenase (G6PD) cluster and the
aldehyde dehydrogenase 2 (ALDH2) cluster based on the key
genes existing in each, were found to be positively co-expressed
with genes in the same cluster but negatively co-expressed with
genes in the opposite cluster. ALDH2 cluster genes were enriched
for GO BP terms such as lipid oxidation and metabolism,
amino acid metabolism and biosynthesis and carbohydrate
metabolism; however, G6PD cluster genes were associated with
hallmarks of cancer-related functions [71] such as inflammation,
morphogenesis and hypoxia. From the generation of cluster-
specific GEMs for HCC, a four-gene signature consisting of PKM,
folate metabolism gene MTHFS, G6PD and hypoxia-inducible
factor 1 alpha (HIF1A) was proposed, indicating the activation of
hypoxia response genes and the regulation of redox metabolism
as targets of interest for the stratification and/or treatment of
HCC patients (Figure 5A). HIF1A affects glycolytic genes, such
as PKM, enabling them to cope with reductions in oxygen
availability and consumption [72]. Enhanced expression of such
glycolytic enzymes results in high rates of glycolysis. In cancer
cell subpopulations, however, enhanced glycolytic flux and
reduced oxidative phosphorylation can be achieved even in
aerobic conditions [71], resulting in a change in metabolism
known as aerobic glycolysis, or the Warburg effect [73], further
contributing to cellular redox imbalance.
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Figure 5. Independent studies reveal redox metabolism as a commonly dysregulated cellular function in heterogeneous HCC. Three separate investigations identified

common redox metabolism genes (shown in red) as being associated with poor favourable survival of HCC. A, Stratification by antagonistic clusters of co-expressing

redox metabolism genes reveals that the cluster associated with the least favourable survival is enriched for genes associated with inflammation, morphogenesis and

hypoxia [70]. B, Differential expression between iHCC3 and iHCC1/iHCC2 tumours also identified elevated G6PD and PKM expression [56]. C, Differential expression of

high ACSS1 HCC versus low ACSS1 HCC also revealed increased PKM and HIF1A [6].

The fGGN-based HCC stratification study [56] showed that
the differentially upregulated genes in iHCC3 also included the
mammalian target of rapamycin (mTOR), the oncogene Myc,
genes involved in the G-to-M–phase progression of the cell
cycle and genes involved in the epithelium-to-mesenchymal
transition. In particular, redox metabolism genes were once
again identified as potential stratifying genes for iHCC3: these
included the aforementioned G6PD and PKM, as well as ALDOA
(aldolase, fructose bisphosphate A), thus strengthening the
association between redox metabolism and poor prognosis of
HCC (Figure 5B).

In the differential expression analysis between high- and
low-expressing ACSS1 HCC tumours [6], it was seen that high
ACSS1 was associated with the suppression of FAO and increased

PKM, a combination that has been previously linked to hypoxia
and de-differentiation in HCC [74]. This, taken with the fact
that HIF1A was found to be significantly positively co-expressed
with ACSS1, suggests malignant growth under hypoxic response
and a strong Warburg effect in cells highly expressing ACSS1
(Figure 5C).

Using diverse systems methods, three independent studies
have separately converged to a conclusion implicating dys-
regulated redox metabolism and hypoxia as active hallmarks
of cancer in subsets of HCC. Given that we have already
highlighted similarities in the acetate utilisation of high ACSS1
tumours and iHCC3 tumours, it is not inconceivable that
these three independent subsets of HCC may not be mutually
exclusive.
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Conclusion
The heterogeneity in complex diseases strongly indicates that
personalised therapies are required for treatment through
the stratification of the heterogeneous disease population.
We highlight the recent progress made in context-dependent
analysis of high-throughput data through reconstructed GEMs
and give examples of how this approach has greatly contributed
towards addressing the heterogeneity in liver diseases. The
focus of our chosen examples revolves around the application
of cancer-specific GEMs and biological networks in identifying
key genes for stratifying and treating HCC. Namely, we identify
acetate utilisation, PKM isoform expression and dysregulated
redox metabolism as sources of HCC heterogeneity, identified
across several independent systems-level studies. Hence, future
studies should employ similar biological network analyses to
identify additional sources of disease heterogeneity for the
development of efficient stratification and treatment strategies
for complex disease. In this effort, we illustrate the power of
GEMs for modelling energy metabolism, INs for the integration of
multi-omics data and utilising patient data (e.g., patient-specific
transcriptomes) for the personalised treatment of HCC. Finally,
novel methods for simulating the whole body functions should
be developed analogous to a recent study that applied multi-
scale, whole-systems models of liver metabolic adaptation to
sugar and fat in NAFLD [75].

With 9.4 million patients with neurological disorders in
2015 [76] over 200 million patients with chronic kidney disease
[76], and cardiovascular disease—the leading cause of deaths
globally—causing over 17 million deaths each year worldwide
[77], it is clearly of utmost significance to researchers to
study more intensively the underlying causes of complex non-
communicable diseases. Similar tools and methods have been
successfully applied for the development of efficient treatment
strategies for liver and other diseases, and the current growing
library of natural therapeutic substances shows that the liver
disease field is ready for personalised medicine.

Key Points
• Integrated multi-omics networks have been used to

identify potential biomarkers and treatment strategies
for the patients of complex liver diseases.

• Independent systems-level studies have yielded results
that are consistent with one another as well as with
previous knowledge.

• Systems biology could aid with hypothesis generation
for the study of other complex diseases.
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