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Abstract

Together with various hosts and environments, ubiquitous microbes interact closely with each other forming an
intertwined system or community. Of interest, shifts of the relationships between microbes and their hosts or environments
are associated with critical diseases and ecological changes. While advances in high-throughput Omics technologies offer a
great opportunity for understanding the structures and functions of microbiome, it is still challenging to analyse and
interpret the omics data. Specifically, the heterogeneity and diversity of microbial communities, compounded with the large
size of the datasets, impose a tremendous challenge to mechanistically elucidate the complex communities. Fortunately,
network analyses provide an efficient way to tackle this problem, and several network approaches have been proposed to
improve this understanding recently. Here, we systemically illustrate these network theories that have been used in
biological and biomedical research. Then, we review existing network modelling methods of microbial studies at multiple
layers from metagenomics to metabolomics and further to multi-omics. Lastly, we discuss the limitations of present studies
and provide a perspective for further directions in support of the understanding of microbial communities.
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Summary of microbiome studies
As complex biological systems, microbial communities are not
merely a legion of microbe collections but are also related to
other hosts or ecological communities [1]. Microbes participate
in nearly all biogeochemical cycles on earth and dominate vital
ecosystem functioning and productivity [2]. Human diseases [3,
4], climate change [5], crop yield [6], antibiotic resistance [7]
and many other issues typically involve changes in microbial
communities, which have thus been under intense scrutiny by

researchers. Yet little is known about these complex communi-
ties, due to the heterogeneity and diversity of microbial com-
positions between individuals with different genetic informa-
tion and under different exposures or environmental conditions
[8, 9].

Traditional studies relied on culture techniques to explore
the diversity and functions of microbial communities [10].
However, researchers have realized that more than 99% of
microorganisms in nature could not be cultured alone in vitro

https://academic.oup.com/
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[11]. Moreover, most biological functions cannot be attributed
to just an independent individual [10], but rather to the
complex microbial interactions among the whole commu-
nity. Therefore, culture-independent methods are needed to
fully describe uncultured microbes, as well as the micro-
biome and host–microbiome relationships within communities
[10, 11].

The development of high-throughput Omics technologies
opens a new era to microbiome studies with advantages of
the high volume of data generation, high quality of data
interpretation and fairly acceptable cost [12]. Such technologies
boost the use of meta-omics approaches, including sequencing-
based metagenomics and metatranscriptomics and mass
spectrometry-based metaproteomics and metabolomics [13],
to understand the microbial community with more advanced
and accurate in situ methods that bypass the difficulties of
species isolation [14]. Specifically, metagenomics provides the
total genetic content contained in the community, enabling
the elucidation of the compositions and functional potential
of the whole community [11]. Metatranscriptomics has a focus
on gene expression across the community [13] and characterizes
functional changes across different contexts, in support of the
inference of how microbiome interactions regulate community
activities [15]. However, due to a lack of the finer-level details of
actual function, metagenomic and metatranscriptomic analyses
are not sufficient for drawing the actual biological mechanisms
of a community. With this in mind, metaproteomics was pro-
posed as a complementary approach to approximate the actual
phenotypic traits by studying the protein content of microbial
communities [16]. Additionally, metabolomics provides a
detailed assessment of metabolites within a given biological
sample [17], offering a more accurate snapshot of the global
physiological state of the community. Together, these Omics
technologies lay the foundation for a full description of microbial
communities, including genes, RNA, protein and metabolites
[18].

To our knowledge, a variety of international efforts have
been directed at advancing microbial research. For example,
the Human Microbiome Project gathers the microbiome profiles
from different human body sites, such as the skin, oral cavity
and gut, resulting in population-scale microbiome metagenomic
data [19]. The Interactive Human Microbiome Project, focusing
on the relationships between host and microbiome, provides
multi-omics data from both the microbiome and human host
[20, 21]. Additionally, Metagenomics of the Human Intestinal
Tract provides genome information of the human intestinal
microbiome, identifying previously unknown species and genes
[22]. Collectively, these publicly available datasets provide a
great opportunity to understand the complex microbiome.
Given this landscape, the effective computational analysis
techniques that keep up with vast amounts of data are
necessary to uncover mechanistic insights into microbial
communities.

Help along the way is provided by the great advances in
complex network theories that, in the last few years, have
made progress towards uncovering structures and functions
of microbial communities [10]. Network models utilize experi-
mental meta-omics data to evaluate complex communities from
a global perspective and have been demonstrated powerful for
studying microbiome and host–microbiome interactions [23,
24]. Throughout this review, we present the existing network
analysis methods at multiple layers from metagenomics and
metatranscriptomics to metaproteomics, metabolomics and

multi-omics. In the following section, we overview network
theories in biological research, which can be specifically applied
to the microbial field.

Network theories in biological and biomedical
research
The development of network theories provides a strong oppor-
tunity for applications in biological and biomedical research.
A significant discovery of network theories is that biological
systems share formation and evolution principles with many
other complex systems in nature, such as the World Wide Web
and social networks [25, 26]. This discovery lays the theoretical
foundation for the application of network models to biological
and biomedical research. Specifically, all biological systems can
be viewed as networks wherein nodes represent the compo-
nents in the systems (Box 1), such as metabolites in metabolic
networks and genes or regulators in gene regulatory networks
[27], and linking nodes according to their known or observed
relationships [28].

Box 1. Definitions and clarifications of important terms in
this manuscript

Basic definitions

Node/Vertex——Nodes are basic discrete objects in
networks. In a biological network, the node represents a
member such as a taxon, a molecule, or a metabolite.

Edge/Arc——An edge refers to the line connecting nodes,
which can be directed or not, weighted or not. In bio-
logical networks, they show specific relationships among
the components, such as the correlation of abundance
information or known biological reactions.

Neighbors of a node——Neighbors are nodes connected to
a selected node via an edge.

Adjacency matrix——An adjacency matrix of a graph is a

matrix A =
{
aij

}
where aij= 1 if and only if the node vi and

node vjare neighbors.

Operational taxonomic unit——Operational taxonomic
units refer to clusters of organisms, generally grouped by
sequence similarity or a specific taxonomic marker gene
[29]. This concept has been extensively used to analyze
the diversity of microbial communities, especially based on
16S ribosomal RNA sequencing data.

Network types

Random networks——A random network (i.e. the Erdős-
Rényi network) consists of n nodes where each pair of
nodes relates to probability p. The node degrees of this type
of networks follow Poisson distribution [30].

Scale-free networks——In scale-free networks, most nodes
have only a few edges, while a few nodes have a large
number of edges [10]. This type of network is usu-
ally characterized by a power-law degree distribution
(Table 1).
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Microbial sequencing technologies

16S ribosomal RNA sequencing——16S ribosomal RNA is
the component of the 30S subunit of a prokaryotic ribo-
some [44]. Due to the slow rates of evolution and mutation
of the hyper variable region of genes coding 16S ribosomal
RNA, such genes provide specific signature sequences of
organisms [44]. 16S ribosomal RNA sequencing is widely
used to identify the diversities in microbial communities
thereby studying the phylogenetic relationships.

Whole metagenome shogun sequencing——Shotgun
sequencing provides all genes present in a given biosample
[45], which allows researchers to explore both taxonomic
and functional information in a community.

Quantitative measurements of pairwise relationships

Bray-Curtis dissimilarity——Bray-Curtis index quantifies
the dissimilarity between two different taxa over multiple
samples. The calculation is as follows [46]:

BCij = 1 − 2Cij

Si + Sj

Where Cij is the number of samples in which taxa i and
taxa j are commonly occurring. Si and Sj are the number of
samples in which taxa i or taxa j occurred, respectively. This
index is robust for compositional data and ranges from 0
and 1. 0 means two taxa are of strong relationships in these
samples, while 1 means these two taxa are completely
independent.

Kullback-Leibler dissimilarity——Kullback-Leibler index
assesses the difference between two probability distribu-
tions. For any two taxa X and Y in microbial communities,

the Kullback-Leibler dissimilarity DKL

(
P
∥∥∥Q

)
is calculated as

follows [47]:

DKL

(
P
∥∥∥Q

)
=

∑
xεα

P(x) log
(

p(x)

Q(x)

)

where P and Q represent the rank distributions of relative
abundances of taxa X and Y, respectively. α is a sample
space of the ranks of relative abundances. The smaller DKL

indicates the more significant relationships between the
two taxa.

Pearson correlation coefficient—— Pearson correlation
coefficient is a measure of the linear relationships between
two taxa. For given n samples with pair abundance data

of taxa X and taxa Y
{(

x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xn, yn

)}
, the

Pearson correlation coefficient rxy is defined as [48]:

rxy =
∑n

i=1

(
xi − x

) (
yi − y

)
√∑n

i=1

(
xi − x

)2
√∑n

i=1

(
yi − y

)2

The correlation coefficient ranges from −1 to +1. The
value of +1 or -1 means the relationship between two taxa

is linearly dependent, where “+” means Y increases when
X increases while “-” means Y decreases when X increases.

Spearman correlation coefficient——Spearman correlation
coefficient, assessing the rank correlation of the relative
abundances, is a measure of the monotonic relationships
between two taxa (whether linear or not). For given n
samples with pair abundance data of taxa X and taxa

Y
{(

x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xn, yn

)}
, the Spearman correlation

coefficient rs is defined as [49]:

rs = cov
(
rgX, rgY

)
σrgX σrgY

where rgX and rgY represent the ranks of abundance data of

taxa X and taxa Y, respectively. cov
(
∗, ∗

)
is the covariance

of rank variables. σrgX and σrgY are the standard deviations of
rank variables rgX and rgY, respectively. The sign represents
the relationships between taxa, which is the same as that
in the Pearson correlation coefficient. A correlation value
of +1 or −1 indicates X and Y are perfectly monotonically.

Researchers traditionally use random network models (Box 1)
to describe real systems [30]. However, the expanded depth of
network theories revealed that most organizational framework
of biological networks is not randomly structured. These frame-
works are better described as scale-free during evolution [50, 51],
meaning that most nodes in the biological network have few
edges but a few nodes have many. The scale-free architecture
(Box 1) allows a given system to remain stable despite internal
or external disturbances [10]. For example, the loss of many
Escherichia coli genes has no effect on their growth rate [52], and
the E. coli chemotaxis system can perform normal functions
despite significant variations in ligand concentrations [53]. In
addition, hierarchical architecture cannot be neglected in biolog-
ical networks, which can be used to account for the relationships
between relatively isolated modules in biological networks [10].
Specifically, a module is defined as a group of highly connected
nodes that are relatively isolated from other nodes. However, the
isolated groups are impossible in a scale-free network, and they
tend to combine to form a hierarchical network [10]. Research
has shown that the hierarchical structure arises in almost all
cellular networks from metabolic, protein–protein interactions
(PPIs) to gene regulatory networks [51, 54, 55]. Based on these
general understandings, the biological networks can thus be
studied in two ways: (1) top-down, from global structure to
specific modules and nodes, or (2) bottom-up, from specific
nodes and motifs to modules [56, 57]. Either way, all components
within the biological system are considered as a whole, providing
a comprehensive view of the system.

Based on the constructed networks, we can explore the
underlying relationships among components using various
network characteristics. These characteristics are described as
quantified metrics by some concepts (e.g. degree and between-
ness) in the network or graph theory. Table 1 summarizes some
crucial concepts of network theories that have been used in
biological and biomedical research [10, 36, 58]. For example,
characteristics of the established network, including degree,
betweenness and closeness centrality, have been used to identify
hubs in phyllosphere communities [32]. Meanwhile, there are
also valuable concepts whose applications in biology remain to
be further explored, such as eigenvector centrality and coreness,
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Table 1. The crucial network theories in biological and biomedical research.

Continued
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Table 1. Continued.

which can measure the influence of specific nodes on the
network and the robustness of networks, respectively. Under-
standing the biological networks by these measurements gives
valuable insight into the underlying features and observable
functions of the real microbial systems [10].

Network modelling methods and examples
The study of the microbiome, due to the species/strain diversity
and highly complex interactions within communities or with
the hosts or environments, is still in the exploration stage [8,
9]. In view of remarkable network theories in biology, network
modelling methods are increasingly extended to microbial stud-
ies, and they offer a valuable representation of complex micro-
bial relationships as a quantifiable method [10, 24]. We can
portray the whole community based on meta-omics data and
use network characteristics to identify the association between
microbiome and hosts (Figure 1) [6, 31, 59–64]. Here, we discuss
several network modelling methods of different types of micro-
bial meta-omics data and summarize the common tools that
contribute to network constructions [59].

Networks from metagenomics

Advanced sequencing technologies, including 16S ribosomal
RNA (16S rRNA) sequencing and whole-metagenome shotgun

sequencing (WMGS) (Box 1), yield metagenomic information
that has been successfully applied to many fields, including
human diseases, environmental research, etc. [65, 66]. These
two technologies can characterize the taxonomic profiling of a
given biospecimen [6], allowing the investigation of microbial
associations, i.e. co-occurrence and co-exclusion. Furthermore,
WMGS provides all genes in all organisms present in a given
sample, enabling the understanding of underlying functional
profiling within communities.

Networks at the taxonomic level

Based on sequencing data from either 16S rRNA or WMGS,
various approaches have been proposed to construct microbial
networks at the taxonomic level (i.e. co-occurrence networks)
[31, 32, 67], offering insights into associations of microbes
within the communities. Generally, the first step of such
approaches is to determine the taxonomic profiling of the
community, either by 16S rRNA-based taxa identification or
mapping WMGS-based reads to reference catalogues [68].
Common analysis tools include QIIME2 [69], UPARSE [70] and
MetaPhlAn2 [71] (Table 2). Then, the known microbial present–
absent or abundance information is used to infer co-occurring
and co-exclusive relationships between microbial taxa. The
resulting co-occurrence network abstracts the biological taxa,
such as species or optional taxonomic units (OTUs), into
nodes [32, 67] and connects the nodes according to the
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Figure 1. Overview of network studies on host–microbiome relationships. High-throughput Omics technologies produce a large amount of data, including metagenomic,

metatranscriptomic, metaproteomic and metabolomic data, allowing the description of microbial communities at different layers. These molecular profiles of the

microbial community can be viewed in the context of data describing the host and environment. Based on these different types of data, network analyses provide a

viewpoint of host–environment–microbiome relationships.

relationships among taxa (Figure 2). Herein, we present such
approaches as two groups according to the type of relationships,
relationships between two nodes/taxa (pairwise relationships)
and relationships among many different nodes/taxa (complex
patterns). Specifically, we give two examples, corresponding to
WMGS-based data (Example S1 in Supplementary Data) and
16S rRNA-based data (Example S2 in Supplementary Data),
respectively, showing how to construct co-occurrence networks
from different data types.

Pairwise relationships. The simplest and most prevalent method
for constructing a co-occurrence network is to quantify the
pairwise relationship between any two taxa within a commu-
nity. Classically, there are two common quantitative measure-
ments to estimate pairwise associations. The first one is (dis-
)similarity indexes, such as Bray–Curtis and Kullback–Leibler
indexes [67] (Box 1), which assess differences in two taxa over
multiple samples. By calculating the (dis-)similarity scores and
assessing the significance with a permutation test, all significant
interactions could be regarded as links to construct the network.
The other commonly used metric is the correlation methods,
such as Pearson and Spearman correlation coefficients [31, 32]
(Box 1). In such networks, a positive correlation coefficient may

imply cross-feeding or co-aggregation between two taxa, while a
negative coefficient may infer mutual exclusive interactions or
niche differentiation [56].

However, constructing networks based on pairwise relation-
ships is challenging. One such challenge comes from the use
of relative compositional data, which introduces the problem
of compositional bias. Specifically, a significant increase in one
taxon’s abundance will result in a relative decrease in all others’
abundances. Additionally, given that correlation metrics can-
not differentiate direct associations from the indirect ones, the
faulty prediction of relationships between microbial taxa is a
crucial challenge. For example, there will be inferred positive
relationships between two taxa that share interaction partners
(e.g. prey on a third taxon) while no direct relationships between
them actually. Another major challenge is caused by data spar-
sity. In count or abundance data, zeros may imply that the taxon
is absent, or it may imply that the taxon is present at levels below
the detection limit. This ambiguity may cause particular issues
with metrics based on presence or absence (e.g. Bray–Curtis) and
may lead to spurious results.

Several computational approaches have been developed to
address these concerns. Methods that attempt to minimize
composition bias include SparCC [85], REBACCA [86] and CCLasso
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Figure 2. The network modelling methods applied to meta-omics data. Various approaches have been proposed to construct network models based on different types of

microbial meta-omics data. From metagenomics, the taxonomic and underlying functional profiling can be inferred, and we can construct co-occurrence networks and

genome-scale metabolic networks, respectively. From metatranscriptomics, not only can we construct co-occurrence and genome-scale metabolic networks, but also

construct regulatory networks. Additionally, we can construct PPI networks and metabolomics-driven metabolic networks based on metaproteomics and metabolomics,

respectively.

[87]. Given the large scale and sparsity of microbial networks,
SparCC uses iterative approximation and the log transformation
of composition data to estimate pairwise correlations [85]. While
avoiding direct measurement of compositional data, SparCC
is limited by high computational complexity [88]. By contrast,
REBACCA and CCLasso are considerably faster due to the use
of L1-norm shrinkage [87]. Furthermore, CCLasso used a loss
function for data noise, thereby having a better performance
in terms of compositional data. Additionally, the partial
correlation approaches have been proposed to identify the direct
relationships in a community. It has been successfully applied to
identify the overall patterns of associations between viruses and
bacteria [89]. However, this approach fails when the number of
samples is far less than the number of taxa. Another approach
to sparsity problems is the use of an ensemble approach, as
proposed by Faust et al. [67], which considers the pros and cons
of various similarity metrics and calculates a combined score
from four individual metrics, including Bray–Curtis, Kullback–
Leibler, Pearson and Spearman, to construct the co-occurrence
network. Based on the network, the authors analysed the co-
occurrence or co-exclusive patterns between pairwise microbes.
Many of identified relationships are consistent with known
cell-to-cell interactions (e.g. in the oral cavity, positive corre-
lations were found between Fusobacterium and Capnocytophaga,
Peptostreptococcus and Porphyromonas, where F. species have been
reported as to be important organisms through physical contact
with others) [67].

Complex patterns. Although the networks of pairwise rela-
tionships are relatively easy to construct, they are not able
to capture the complex interactions among multiple taxa.
One obvious alternative is to use regression-based analyses to
infer relationships between a taxon and multiple other taxa
(one-to-many relationships) [89]. In regression-based networks,
relationship patterns are represented as directed hyperedges
pointed from the independent taxa to dependent taxon [89].
Using this approach, van den Bergh identified independent
associations of viruses in the upper respiratory tract of young
children [89]. The results showed a positive correlation between
enteroviruses and other poly-viruses, such as human bocavirus,
parainfluenza viruses and human parechovirus [89], but a negative
correlation between coronaviruses and human rhinoviruses,
leading to disease discovery. However, it is important to
recognize that overfitting is an inevitable problem in regression
models, and thus, some measures (e.g. cross-validation, pruning
and regularization) have to been taken to guard against this
problem [90, 91]. Moreover, biological mechanisms underlying
complex relationships extracted by regression-based methods
are difficult to explain. For example, regression models imply
a directionality, which may or may not reflect true biology
(e.g. it is difficult to decipher whether a microbe affects or
is affected by other microbes given relative abundance data).
For these reasons, regression-based methods have not been
extensively used.
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Based on constructed networks, subsequent topological anal-
ysis can capture the underlying structures of the communities
[6]. The basic network characteristics, from the degree to cluster-
ing coefficient and centrality, have been successfully applied to
distinguish the different roles that microorganisms may play [6].
For example, combining node degree with betweenness central-
ity and closeness centrality, key nodes can be predicted as having
an effect disproportionately crucial on the overall community
[92, 93]. This approach was successfully applied to identify the
mechanism of how abiotic factors and host genotype influ-
ence the phyllosphere microbial structure [32]. A more detailed
case is given as Example S2 in Supplementary Data. Modularity
is another common measure of local co-occurrence patterns
of microbial networks. A module represents a group of phys-
ically linked microbes potentially working together to achieve
a function [10]. Detecting modules sheds light on the complex
assembly principle in communities [94]. A recent study has
shown that modules in microbial communities are made up of
various kinds of microbes rather than being dominated by a
single taxon. From this observation, researchers deduced that
the assembly patterns of the community were determined by
environmental filters rather than species assortment [94], which
has also been previously demonstrated [61].

Globally, co-occurrence network analyses have been exten-
sively applied to study the microbiome in various contexts,
including human diseases, plants and environments [6, 31].
Focusing on inflammatory bowel diseases (IBD), Bahtiyar et al.
analysed conserved modules within co-occurrence networks
from two different intestinal cohorts (with Crohn’s disease
or with ulcerative colitis). The authors demonstrated that
disturbances in these modules do have negative consequences
for patients, such as poor responses to treatment or increased
risk of relapse [95]. Further, Abbas et al. applied network-based
features (node scoring integrated betweenness, closeness and
average neighbour degree) within 973 samples (657 IBD and
316 healthy samples) to identify potential disease biomarkers
[96], which significantly improves the predictive performance
over other methods [96]. These studies suggest the significance
of network studies to human health. Additionally, Poudel et al.
proposed four types of frameworks to determine the roles of
microbes in oak phyllosphere communities [6]. By constructing
the co-occurrence network on OTUs, they first identified
candidate taxa that contribute to maintaining the structure and
function of the existing microbial community and determined
whether these taxa had positive or negative relationships with
host responses, pathogens as well as specific diseases under a
given condition [6]. Such frameworks provide valuable insights
into suppressing plant diseases or improving plant growth by
the addition of appropriate microbes to a plant’s environment.
To associate geographic patterns with symbiosis patterns of the
microbial communities, Ma et al. collected soil samples from 110
continental-scale sites across 5 climate regions and constructed
the co-occurrence networks based on OTUs [31]. Both the node-
level and network-level topological analyses showed that soil
microbiomes in the North seemed to have stronger phylogenetic
relatedness but weaker ecological relatedness compared to
those in the South [31].

Notably, the method chosen to measure relationships among
taxa plays a key role in the resulting network. Therefore, several
major factors should be seriously considered when choosing the
network construction method, including the types of hypothet-
ical relationships (e.g. the Pearson correlation assumes the rela-
tionships are linear, while regression approach assumes these
are non-linear), the robustness to noise and outliers and the

sensitivity to composition bias and data sparsity issues. Addi-
tionally, most studies focus on pairwise relationships within
communities while lacking approaches that truly disentangle
complex relationships among multiple taxa [56]. Additional
developments will be required to solve this problem. More
importantly, the networks at the taxonomic level fail to clarify
potential mechanisms behind observed results due to the weak
relationships between correlation and causality [97, 98]. Further
experimental work is needed to validate relationships and
specify possible causality.

Networks at the functional level

Given that communities could be functionally similar even if
they differ at the taxonomic level [99], an alternative approach
is proposed based on WMGS data to construct networks at
the functional level (i.e. genome-scale metabolic networks,
abbr. GMNs), which provides an important entry point for
the mechanistic understanding of microbiome and host–
microbiome relationships.

By quality filtering of raw data and gene prediction, we
can predict present genes and infer their potential functions
in microbial communities [100]. Then, we can utilize gene
annotation information to find functional changes associated
with host states at the level of a pathway or a module based
on GMNs [60]. A common network construction approach is
to identify functional profiling by genome annotation from
current databases, such as the Kyoto Encyclopedia of Genes
and Genomes [101], and then to identify all enzyme-coding
genes. Based on prior reaction-level knowledge (biochem-
ical reaction databases, e.g. MetaCyc [102]), each detected
enzyme is annotated with one or more metabolic reactions
in which it is involved. Hence, we can take the annotated
enzymes or reactions as nodes and connect the enzymes that
catalyse successive reactions as edges to construct metabolic
networks (Figure 2) [60, 103]. In recent research, some tools
have been proposed to determine the functional profiling
from metagenomic data, such as HUMAnN2 and MG-RAST
[77, 78], enabling more automatic reconstruction of GMNs
(Table 2).

GMNs provide a global perspective to assess the overall
metabolic capacity of a community. In this way, it is possible to
associate special network topological features functionally with
host states [60]. For example, Greenblum et al. constructed the
phenotype-specific metabolic networks of the gut microbiome
for different cohorts, including individuals suffering from
obesity and IBD, along with healthy controls [60]. By analysing
basic topological characteristics of the networks, they found
that enzymes associated with obesity/IBD individuals were
distributed at the periphery of the networks, and these
enzymes were involved in different functions [60]. From these
results, the authors inferred that the relationships of microbial
metabolisms with the host differ in individuals with and without
diseases [60]. Also, the network-level studies showed that the
microbial communities of obesity/IBD individuals had lower
modularity compared to healthy individuals [60], which could be
a functional manifestation of the decrease of microbial diversity
in diseased individuals [104]. Nevertheless, the analyses of
overall communities cannot decipher functions to specific
microbes, hindering the understanding of which microbes are
associated with specific functions.

Another study gives a complementary viewpoint of under-
standing the functions of specific components based on the
community-level network. Enzymes can be linked to the taxo-
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nomic groups according to the gene ID obtained from the read
annotation [103]. Then, the Simpson index, analogized to the
previous definition for identifying the dominating species in a
sample, here is used to measure dominating taxonomic groups
regarding a given function [103]. In this way, we can quanti-
tatively evaluate the contribution of the key taxonomy groups
to the whole community based on the constructed metabolic
network [103]. Moreover, the pipeline developed by Franzosa
et al. uses an annotated species-level pangenome database (i.e.
ChocoPhlAn) to identify the functions of species within the
community [78], allowing a deep understanding of species-level
functional profiling.

Taken together, in contrast to taxonomic level networks,
functional level networks not only focus on various taxa but also
enable us to extract functional information (e.g. networks from
HUMAnN2). Such approaches provide complementary views
for taxonomic studies, bridging the gap between microbiome
compositions and functions [60, 105]. However, networks at
the functional level rely heavily on the complete and accurate
genome annotation [106]. Therefore, frequent updating of
biochemical information and efficient automatic annotation
approach are indispensable, to avoid missing information
in resulting metabolic networks and to get comprehensive
conclusions.

Networks from metatranscriptomics

While metagenomics tries to explore the taxonomic and func-
tional potential of the whole community [11], metatranscrip-
tomic analyses produce a read-out of microbial genes that are
transcribed as RNA [15]. By evaluating gene expression, we can
understand the active functions of communities [13].

Currently, several efficient metatranscriptomic approaches
have been developed to analyse the structure and active
functions of microbial communities, such as HUMAnN2 [78],
MetaTrans [75] and SAMSA [76]. These tools can identify
taxonomic or functional profiling from metatranscriptomic data
(Table 2). Consequently, we can construct the co-occurrence
and metabolic network as described in metagenome sec-
tion. The networks from metatranscriptomics provide more
pertinent information on functional activity compared to
the metagenomic description of the communities [63], as
metatranscriptomics can reveal details of genes that are
transcriptionally active under specific conditions and time
[15]. Focusing on human gut microbiome, a seminal study
compared the core metagenome and metatranscriptome in
372 men across different time points to evaluate gene and
transcription pathways within individuals across time and
between individuals [63]. Of particular interest, the authors
identified a core set of metatranscripts that were universally
transcribed across time and individuals [63]. This core set was
enriched for genes essential for housekeeping functions and
was often associated with different microbes, suggesting that
different microbes may activate shared pathways [63]. These
results perfectly demonstrate the complementary nature of
analysing the metagenome and metatranscriptome together
and how deviations in each contribute to a given state of an
individual.

In addition, metatranscriptomic data could be applied
to discover regulatory mechanisms and to construct global
regulatory networks of the microbial communities (Figure 2)
[15]. Such networks can represent gene-level interactions (e.g.
activation and repression) between transcription factors and
the corresponding target genes, supporting the mechanistic

understanding of microbiome and host–microbiome relation-
ships. However, transcriptional regulatory networks are still
not as mature as metabolic networks [23], and relevant studies
based on metatranscriptome are even rarer perhaps due to the
incomplete transcriptional regulatory database and immature
computational analysis techniques.

Globally, metatranscriptomics holds great potential to
uncover the function and activity mechanisms of microbial
communities. Nevertheless, it cannot be ignored that metatran-
scriptomic sequencing needs improvement, especially the iso-
lation of high-quality RNA samples and the accurate detection
of rapid responses to permutations [15]. In addition, mRNA is
not always translated into the protein that carries out the actual
function [15]. Therefore, the integration of metatranscriptomics
with other omics can enable a comprehensive understanding of
the microbial communities.

Networks from metaproteomics

Metaproteomics measures the proteins expressed by the entire
microbial communities [107]. Using metaproteomic data, we can
compare similarities and differences of protein expression in the
communities and, more importantly, analyse PPI [107].

After the processing of proteomic samples and mass spec-
trometry, proteins in the microbial communities can be iden-
tified by IdentiPy or Trans-Proteomic Pipeline (Table 2) [79, 80].
From these measures, PPI networks are built where nodes rep-
resent proteins and edges denote physical interactions between
proteins (Figure 2). Identification of protein interactions in bac-
terial species has been a powerful means to explore the role
of proteins in pathways and pathogenesis [108]. A recent study
explored the interactions of proteins in Streptococcus pneumo-
niae. Based on the topology of the PPI network, Wuchty et al.
assigned putative functional roles to a large number of previ-
ously uncharacterized proteins, providing valuable hypotheses
for future analysis of protein functions in S. pneumoniae [108].

However, current metaproteomic studies are still hampered
due to sample complexity (e.g. sample heterogeneity and
biomass amount) and redundant protein identification [109].
To take full advantage of the potential of metaproteomics,
more efficient protein extraction, enhanced mass spectrometry
and accurate protein identification are urgently needed [109].
Additionally, current PPI maps are far from complete, and the
investigation of true PPIs from vast amounts of proteomic data is
challenging [110, 111]. One common method integrates available
genomic data (e.g. genome and transcriptomic data) to define
likely interactions [110, 111]. Lv et al. predicted high confidence
PPIs in cyanobacteria using seven different data types, including
genome context and gene expression profiles [111]. Such an
integrated approach provides a novel resource to subsequent
functional analyses, e.g. the exploration of function-unknown
proteins. Collectively, metaproteomics is not a completely stand-
alone method, and its integration with other omics will provide
a more comprehensive insight into microbial communities.

Networks from metabolomics

Metabolism, as the ultimate manifestation of an organism’s
response to internal or external perturbation, is essential to
maintaining the normal activities of organisms [112]. It thus
plays a vital role in biological systems, and the microbiome plays
a crucial role in maintaining a steady state of host metabolism
[112, 113]. For example, microbes are crucial for breaking down



Network analyses in microbiome 1649

larger molecules (e.g. proteins) into metabolites, and certain
metabolites are only produced by the host in the presence
of certain microbes [114]. Compared to other meta-omics
information, the metabolites and metabolic pathways seem
more conserved across species [115], thus providing a means for
deciphering the functional mechanisms of the microbiome and
host–microbiome relationships [116].

From raw metabolomics data, metabolic networks can
be constructed by some automatic methods (Table 2), such
as Pathos [82], MetaboAnalyst [83] and Netome [84]. Such
networks (called metabolomics-driven networks to distinguish
it from GMNs), consisting of nodes as metabolites and edges
as metabolic reactions (Figure 2), provide a comprehensive
description of a community’s metabolic processes.

Based on the constructed metabolic networks (both GMNs
and metabolomics-driven networks), various topological-based
approaches (as the section titled ‘Networks from Metagenomics’)
have been used to associate network characteristics with
functions of microbial communities. Furthermore, the mech-
anistic understanding of microbiome and host–microbiome
relationships is the key focus of metabolic networks [61, 62].
Generally, the determination of relationships relies on metabolic
interfaces (i.e. metabolites involved in metabolic exchanges)
between species and communities, by which we can identify
current microbiome and host–microbiome relationships specif-
ically [61]. There are two common ways to identify metabolism
interfaces. The first one is to predict the seed set according
to the connectivity of the network, which has a complete
theoretical framework. The seed set indicates the minimal set of
exogenous compounds as the interface with other microbes or
host [117]. This approach has been applied to assess interaction
patterns between species [61]. A recent study detected the
microorganisms’ seed set by the reverse-ecology framework
[61]. Then, the study identified two interactions between
species, including competition or synergism [61]. However, the
results obtained by the seed set method depend solely on
the metabolic interfaces computationally identified; thus the
inferred interactions may be inaccurate. Another method is
to identify metabolites that are exchanged between microbes
and the host based upon the prior biological knowledge,
mitigating the limitations of the computational method. Sung
et al. manually collected an extensive data resource from a
mass of published literature, including small-molecule transport
and macromolecule degradation events of the gut microbiome.
From these, they constructed a global metabolic transport
network, called NJS16, providing a reference for determining
microbiome or microbiome–host relationships [62]. Based on
this global network, they measured the interactions between
microbial taxa (e.g. a positive or negative effect on growth)
and respectively built community-level metabolic influence
networks for diseased and healthy individuals [62]. Such a study
allows us to associate representative metabolic features with
host states and infer the mechanisms of diseases. Despite
its intuition in the biological sense, we have to realize that
the prior knowledge may be incomplete or misleading due to
gaps in experimental data collected to date. Given that the
completeness and accuracy of this prior knowledge directly
affect the downstream analysis, expanding experimental data is
indispensable [62].

Globally, metabolic networks, including both metabolomics-
driven networks and GMNs, focus on metabolic information
pertaining to functions, providing a mechanistic understanding
of behaviours of microbial communities. However, GMNs depend
on the prediction of functions of communities from genome-

scale data and emphasize the underlying functional profiling,
lacking a true response to microbial phenotypes. By contrast,
metabolomics-driven networks are sensitive to changing exper-
imental and phenotype conditions due to the direct detection
of metabolites, which seems more suitable for functional
studies of communities. Nevertheless, the metabolomics-driven
approaches rely on an accurate characterization of species- or
strain-specific metabolites [116], making it difficult to scale well
to study complex communities. Moreover, current experimental
approaches to characterize the global metabolite profiling of
microbial communities are costly and difficult [104]. Given
that metagenomic and metatranscriptomic data are readily
available, some computational approaches have been proposed
to aid with these experimental challenges. A recent study
used a model trained from known paired metabolomes and
metagenomes within multiple samples to recover unobserved
metabolites in new microbial communities that currently only
have metagenomes available [116]. Such an idea provides
useful insights into more reliable community metabolic trends.
Together with many advances in metabolomics technologies
and the integration with other omics [116], metabolomics
would offer a wider application prospect to achieve accurate
characterization of metabolic activities.

Networks from multi-omics

Analysis of each Omics independently does not yield a holistic
view of a system. For example, due to the spatiotemporal
specificity of gene expression and diversity of protein mod-
ifications, metagenomics analyses give no information as to
which microbial characteristics are truly related to phenotype
[18]. The networks from metatranscriptomics alone provide
global expression information without a depiction of actual
functions. The known transcriptomic regulatory information
is extremely incomplete [23]. Additionally, metaproteomics
and metabolomics analyses are limited in the number of
identifiable proteins/metabolites and reactions [17]. Although
each omics analysis has its limitations, the integration of these
Omics approaches helps to maximize the interpretation of the
taxonomies and functions of a microbial community.

The rapid advancement of experimental technologies allows
the simultaneous extraction of samples representing the
multi-omics information, including DNA, RNA, proteins and
metabolites [118]. The integrated analysis of these Omics has
got more attention in recent studies [18, 63, 64]. Such approaches
provide a highly integrated landscape of environment-specific
true expression and functions of the microbiome. For instance,
Roume et al. integrated metagenomic, metatranscriptomic and
metaproteomic data to construct a community-wide metabolic
network [64]. Then, the authors evaluated the features of
nodes and the levels of gene expression to extract genes
encoding key functionalities, e.g. the subunits of ammonia and
methane monooxygenase that are involved in nitrification and
methane oxidation, respectively [64]. This study exemplifies the
utility of combining different levels of evidence (copy number,
metabolism, etc.) to link biological functions to microbial
communities, deepening the understanding of communities’
metabolic capacity. Yet another example of multi-omics integra-
tion is the assessment of the shift of community structures
linked to familial type 1 diabetes using the metagenome,
metatranscriptome, metaproteome and metabolome [18]. The
authors identified several populations of microbes that could
contribute to functional differences (as measured by the
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Figure 3. The exploration of host–microbiome relationships in the context of

human health and disease. The gut microbiome plays an influential role in

human diseases, including cancer, chronic diseases and inflammatory diseases.

Integrated metagenomic and metatranscriptomic data of the microbial com-

munity with clinical measurements of the specific disease can unravel causal

relationships between the microbiome and diseases, using the Bayesian network

approaches for an example.

metatranscriptome, metaproteome and metabolome) related to
familial type 1 diabetes [18]. Collectively, these studies illustrate
the value of multi-omics analysis for identifying relationships
within microbial communities and their effect on the host.

The tools for multi-omics analysis are currently in progress.
A recent study developed a computational pipeline, called
MetaQUBIC, to predict condition-specific gene modules for
microbial functional profiling based on metagenome and
metatranscriptome [74], which provides a useful strategy to
understand the functions of microbial communities and specific
disease phenotypes. Furthermore, we can apply computational
approaches, such as Bayesian networks, to elucidate the
underlying molecular mechanisms of diseases by associating
the microbial community, both at the level of taxonomy (metage-
nomics) and functionality (metatranscriptomics), with disease
phenotypes and clinical measurements (Figure 3), providing
mechanistic insights into host–microbiome relationships in the
context of human health and disease [18].

Multi-omics studies have been increasingly employed
to decipher communities. Most of these studies focus on
separate omics analysis first and then integrate different omics
layers based on available data and extensive prior knowledge
(e.g. enzymatic reactions to associate metagenomics and
metabolomics), to provide a deeper understanding of complex
microbiome [64]. However, such approaches may miss important
associations among multiple omics layers. Much attention
should be given to developing novel approaches for microbial
multi-omics data integration. Given the current approaches
used in other fields [119], one can try to extend those relevant
to microbial studies. A promising example is the approach

proposed by Tuncbag et al. [120], which uses a multi-weighted
graph model to integrate multi-omics information measured in
the same samples. This approach considers available properties
of microbial communities, such as transcriptional profiling and
proteomics, to explore structural and functional mechanisms.
Another study applied the message-passing theory to fuse
networks from multiple types of data, making use of the
complementarity of different data types [121]. Tenenhaus et al.
focused on a multivariate dimension reduction technique,
sGCCA [122], to select common features from multi-omics
datasets [123]. Based on such integrative data, both known and
novel multi-omics biomarkers between multiple phenotypic
groups were identified [123]. All these approaches represent
a treasure trove that can be continually mined for in-depth
insights into microbial communities. Notably, these approaches
rely on accurate connections among different omics layers (i.e.
corresponding relationships from gene and mRNA to protein and
metabolomics), which is a well-known challenge of meta-omics
data to be solved.

Conclusions and discussions
A significant challenge in microbiome research is understanding
complex structures and functions and how perturbations of
them impact the hosts. Making use of large amounts of meta-
omics data, network-based analyses provide many significant
insights into this issue. Here, we highlighted the merits and
limitations of several common network-based approaches for
microbial studies. Given that each approach has specific charac-
teristics, the appropriate modelling methods should be selected
for a specific objective of the study.

Globally, current approaches have some issues that need to
be addressed before achieving a system-level understanding of
microbiome. First, one of the major limitations is that meta-
omics data lack direct associations of species/strains and
specific functions. Although several tools (e.g. HUMAnN2) have
been proposed to overcome this problem, they rely heavily on
incomplete reference genomes [78], contributing to missing
taxonomic and functional information of communities and
influencing downstream network analyses. Thus, much atten-
tion should be given to solving the difficulties in metagenome
assembly for a more comprehensive understanding of species
without reference genomes. Currently, the major challenge for
assembly is to bin assembled contigs from the whole community
into species- or strain-level clusters [124]. Given that single-
cell technologies can directly provide nucleotide frequency
composition and gene content information of the target single
cell and capture microbial diversity and heterogeneity at the
species/strain level [124], the combination of metagenomics and
single-cell genomics will improve the accuracy of metagenomic
data binning [124]. Then, one could envision that a pseudo or
draft genome, by scaffolding for contigs within each cluster
based on the studies about organizational principles of the
genome [125, 126], provides a reference for species/strains
without a reference genome, giving a sufficient resolution of
microbial communities on both taxonomic and functional lay-
ers. However, single-cell sequencing of microbial communities
is not popular due to technical challenges. For example, isolating
microbial cells from primary samples, especially from solid tis-
sues, remains difficult [127]. Chimeric reads and uneven single-
cell genome coverage are also inevitable due to the genome
amplification process [127]. As such, technical improvements
and refinements of single-cell workflows are promising for
new insights into microbial studies. Superior whole-genome



Network analyses in microbiome 1651

amplification chemistry and microfluidic droplet barcoding are
beginning to help such advancements [128].

Second, network construction methods need to be further
developed. Most studies focus on a specific layer of communities,
e.g. gene regulation or metabolism. With the rapid develop-
ment of experimental technologies, more integrated analyses
of multi-omics, as referred to in ‘Network from Multi-omics’
section, should be introduced to form a network of networks
and interpret all the properties of the communities as a whole.
Moreover, the dynamics of microbial communities have not
been well-described with most network methods. The majority
of present microbial networks focus on the interactions in a
selected time or environment. A promising research topic is
the development of experimental methods and novel analy-
sis pipelines to construct temporal networks, including at the
gene level and spatiotemporal transcriptomic and metabolic
levels [129]. The resulting networks, due to their dynamic nature,
would make it possible to elucidate relationships over time
within the microbiome or between the microbiome and its hosts.
Notably, the resulting microbial networks are of large scale due
to the high diversity and heterogeneity within communities,
and to the intricate relationships between individuals, leading
to the high complexity of subsequent analyses. For example,
the shortest path length calculation of a selected node to all
other nodes by Dijkstra algorithm with time complexity O(n2),
where n is the number of nodes, is time-consuming for microbial
networks containing a large number of nodes [130]. Another
common example is the alignment between two networks to
explore relationship variations between disease and healthy
cohorts. Such alignment is extremely complex for networks with
a large number of edges (e.g. the algorithm MAGNA++ with
time complexity O(|E1| + |E2|) where |E1| and |E2| represent the
number of edges of two networks, respectively [131]). Therefore,
development of novel computational approaches is needed for
more efficient analyses of microbial networks.

Last, additional experiments should be performed to effec-
tively expand current knowledge. Increasing experimental data
to more accurately annotate microbes and their functions are
critical to improving the utility and accuracy of network models.
To facilitate this process, active machine learning approaches
could be applied to inform future experiments that would best
improve the performance of current models and to build the
most up-to-date models [132]. These two steps, including exper-
imental selection and model update, are iteratively proceeded
until the model can accurately adapt to current knowledge.
These ideas will provide valuable insight into the construction
of network models and, meanwhile, improve the generalization
ability of the model in microbiome research.

In summary, the development of network models provides a
powerful way to understand microbial communities. Combined
with a large amount of data, a more widespread application of
advanced network models is expected. Once such a pipeline is
well developed, it will be possible to enhance the manipulation
of the composition and function of microbial communities, giv-
ing rise to meaningful ideas for practical applications, especially
disease prevention and treatment.
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Key Points
• The microbiome is a complex biological system that

consists of a mass of microbes, including bacteria,
archaea and viruses. These microbes closely interact
with each other, as well as their hosts and environ-
ments, performing various biological functions.

• Along with the development of complex network the-
ories and increasing meta-omics data, network models
have been widely applied to study microbial communi-
ties. For example, co-occurrence networks focus on co-
occurrence or co-exclusion patterns between microbial
taxa, while metabolic networks emphasize the func-
tional level of microbial communities. In addition, reg-
ulatory and PPI networks based on meta-omics data
should be further explored.

• Networks that combine multi-omics data offer a unique
multilayered viewpoint of the community and enable
the assessment of how microbial communities affect
and are affected by other factors (e.g. host genome
and environment). These approaches have been used
in various contexts, including human gut, plant and
environment.

• Despite much progress, there are still some challenges
due to experimental and computational limitations, e.g.
the detection of rare microbes, the incomplete genome
annotation and the choice of network models. There-
fore, future progress is expected in many directions.

• The utility and predictive capacity of computational
models are most directly affected by the amount and
quality of experimental data. In turn, one could envision
that computational methods, such as active machine
learning, could effectively inform which experimen-
tal data are needed to subsequently enhance network
models. These ideas will give valuable clues to obtain
appropriate network models and, meanwhile, improve
the generalizability of the model.
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