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Abstract

The DNA of all organisms is metabolically active due to persistent endogenous DNA damage,
repair, and enzyme-mediated base modification pathways important for epigenetic reprogramming
and antibody diversity. The free bases released from DNA either spontaneously or by base
excision repair pathways constitute DNA metabolites in living tissues. In this study, we have
synthesized and characterized the stable-isotope standards for a series of pyrimidines derived from
the normal DNA bases by oxidation and deamination. We have used these standards to measure
free bases in small molecule extracts from rat brain. Free bases are observed in extracts, consistent
with both endogenous DNA damage and 5-methylcytosine demethylation pathways. The most
abundant free base observed is uracil, and the potential sources of uracil are discussed. The free
bases measured in tissue extracts constitute the end product of DNA metabolism and could be used
to reveal metabolic disturbances in human disease.
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INTRODUCTION

The DNA of higher organisms is composed predominantly of the canonical bases adenine,
thymine, guanine, and cytosine. In 1948, 5-methylcytosine (5mC) was identified in calf
thymus DNA.1 It is formed by enzymatic methylation of a cytosine residue in DNA
following DNA replication.23 Subsequent studies established that 5mC codes as cytosine
during DNA replication,* but the presence of 5mC profoundly alters DNA-protein
interactions.>® The location of 5mC residues in DNA establishes a cytosine methylation
pattern that is one of the key elements of the epigenetic programming of gene transcription
in eukaryotes.”8

Enzymatic demethylation of 5mC in DNA has been proposed by multiple groups.® However,
evidence in favor of such a pathway was recently supported with the identification of 5-
hydroxymethylcytosine (5ShmC) in the DNA of rodent cerebellar Purkinje neurons.10
Members of the TET family of a-ketoglutarate-dependent dioxygenases have been shown to
convert 5mC to 5hmC in DNA.11 Further details of this pathway are less clear, but evidence
has been reported2-14 indicating further oxidation of 5ShmC to 5-formylcytosine (5foC) and
5-carboxycytosine (5caC), as well as deamination to the corresponding uracil analogues.
The uracil analogues include 5-hydroxymethyluracil (5hmU), 5-formyluracil (5foU), and 5-
carboxyuracil (5cal), as shown in Figure 1.

DNA bases can also be modified by chemical reactions including both oxidation and
deamination.® One of the more frequent endogenous DNA damage events is the hydrolytic
deamination of cytosine, which results in the formation of uracil.16 Recent studies have also
demonstrated that cytosine residues in DNA can be enzymatically deaminated by activation-
induced deaminases (AID) and apolipoprotein B mRNA editing enzyme catalytic
polypeptide 1 (APOBEC-1).17-19 The enzymatic conversion of cytosine to uracil facilitates
somatic hypermutation in immunoglobulin variable genes in mammals, which results in
increased antibody diversity. While uracil is a normal component of RNA, it is recognized as
a damaged base when it is in DNA and is cleaved by members of the uracil-DNA
glycosylase family.20-24 Products of enzymatic modification of 5mC, with the exception of
5hmC,25 such as 5foC, 5caC, and the deamination products 5ShmU, 5foU, and 5caU, can also
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be removed from DNA by glycosylases of the base excision repair (BER) pathway (Figure
1).

While DNA has been considered historically to be a repository of genetic information that
can be passed unmodified to progeny cells, recent evidence suggests that DNA can undergo
multiple enzymatic modifications that can provide epigenetic regulation of gene
transcription, diversity in immunological cells, and, potentially, other functions. The
emerging pattern is that DNA can be metabolically active with the generation of modified
bases that are subject to removal by glycosylases of the BER pathway. Multiple methods
have been reported for measuring DNA modifications as the corresponding 2’-
deoxynucleosides; 2627 however, substantially fewer studies have been devoted to examining
modified free bases. As the free bases can be considered to be the end products of multiple
DNA metabolic pathways, examination of free bases in human cell extracts and tissues could
help to reveal further details of these pathways in normal tissues as well as defective
pathways associated with human disease. In this article, we describe the synthesis and
characterization of the stable-isotope analogues of the potential enzymatic products of the
DNA pyrimidines. Furthermore, we present initial studies in which these analogues have
been used to examine DNA metabolites in the rat brain.

MATERIALS AND METHODS

Materials.

Triethyl orthoformate, ethyl cyanoacetate, diethyl malonate, sodium metal, lithium
aluminum hydride solution, triethylamine, potassium persulfate, silver nitrate, and 1°N,-urea
were obtained from Sigma-Aldrich (St. Louis, MO). Potassium perruthenate,
paraformaldehyde, N-fert-butyldimethylsilyl-A~methyltrifluoroacetamide + 1% tert
butyldimetheylchlorosilane (MTBSTFA + 1% TBDMCS), reagent grade solvents, and
anhydrous solvents were purchased from Fisher Scientific (Pittsburgh, PA). 15N,-Orotic
acid, 2H,-thymine, DMSO-g, and methanol-dj were purchased from Cambridge Isotope
Laboratory (Cambridge, MA). 2H,-5-methylcytosine and 2H,-cytosine were obtained from
CDN Isotopes (Quebec, Canada). 1°N,-uracil was purchased from Euriso-top (Saint-Aubin,
France).

Analytical Methods.

NMR spectra were acquired with a Bruker UltraShield 300 MHz spectrometer (Billerica,
MA\) using DMSO-a; or methanol-dj as the solvent.

UV spectra were obtained with a Varian Cary 300 Bio UV/vis spectrophotometer (Santa
Clara, CA).

HPLC analysis was performed with a ThermoFinnigan Surveyor HPLC system with a
photodiode array detector (Waltham, MA) using a reverse-phase HPLC column
(SUPELCOSIL-LC-18-S, 15 cm x 4.6 mm, 5 gm). The column was equilibrated with 10
mM ammonium acetate buffer (pH 6.8; flow rate, 1 mL/min). Mobile phases consisted of
(A) 10 mM ammonium acetate at pH 6.8 and (B) methanol. The method was run isocratic
for the first 10 min with mobile phase (A), and then a 20 min linear gradient was applied
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running from 0 to 50% B followed by column re-equilibration with 0% B at a flow rate of 1
mL/min. Analysis was conducted using a photodiode array detector (wavelength, 200-800
nm).

GC-MS data for analytical characterization of the free bases was obtained with an Agilent
Technologies 5975C inert XL EI Triple-Axis detector coupled to an Agilent Technologies
7890A GC. For each free base standard, 50 L of a 2.5 mM solution was placed into a 12 x
32 mm vial containing a 250 g1 fused silica insert (Thermo Scientific; Rockwood, TN), and
the solvent was evaporated under reduced pressure. The dried samples were reconstituted
with 20 yL of acetonitrile and 20 /L of MTBSTFA + 1% TBDMCS, sealed, and heated at
140 °C for 40 min to make their fert-butyl-dimethylsilyl (TBDMS) derivatives. Each
silylated sample was injected (1 /L) onto a GC-MS equipped with a Hewlett-Packard silica
capillary column (30 m x 0.25 mm) coated with cross-linked 5% phenyl/95%
methylpolysiloxane (film thickness, 0.25 gm). The following temperatures were used: 250
°C for the injector and 260 °C for the detector interface. The initial oven temperature was
100 °C for 2 min and was ramped to 180 °C at 10 °C/min and then to 260 °C at 30 °C/min
and held for 7 min.

High-resolution GC-MS spectra, of the TBDMS derivatives, were obtained with a Waters
Micromass GCT (Milford, MA) coupled to an Agilent 6890 GC. Ultra-high-resolution
microelectrospray mass spectra of the underivitized standards were obtained with a Bruker
Solarix 12 T FT-ICR MS. Samples were constantly infused and ionized by positive ion
microelectrospray.28

Synthetic Procedures.

Cytosine Analogues.

15N,-Ethyl Ureidomethylenecyanoacetate (1).: To a 25 mL dry round-bottomed flask were
added the following: 1°N,-urea (1 g, 16.66 mmol, 98% enriched), triethyl orthoformate (4.5
mL, 26.66 mmol), and ethyl cyanoacetate (1.7 mL, 16.66 mmol). The neat reaction mixture
was refluxed for 10 h. The solid was filtered and washed with acetone to obtain 1°N,-ethyl
ureidomethylenecyanoacetate (1.7 g, 55% yield). 1H NMR (DMSO-a, 300 MHz) & (ppm):
10.54-10.58 (d, 1H), 8.07-8.11 (d, 1H), 7.61 (br s, 1H), 7.38 (br s, 1H), 4.20-4.27 (q, 2H),
1.24-1.29 (t, 3H).

15N,-5-Carboxyethylcytosine (2).: To the solution of sodium ethoxide, prepared by mixing
15 mL absolute ethanol and sodium (230 mg, 10 mmol), was added 1°N,-ethyl
ureidomethylenecyanoacetate (1.7 g, 9 mmol), and the reaction mixture was refluxed for 4 h.
The alcohol was removed by filtration, and the collected solid was dissolved in 100 mL of
water. This solution was filtered and acidified with glacial acetic acid to pH 5. The
precipitate was collected on a Buchner funnel and washed with alcohol and then with ether
to obtain 1°N,-5-carboxyethylcytosine (0.8 g, 50% yield). 1H NMR (DMSO-ag) & (ppm):
11.38 (s, 1H), 8.20 (s, 1H), 7.83 (br s, 1H), 7.63 (br s, 1H), 4.18-4.25 (q, 2H), 1.24-1.29 (t,
3H).
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15N,-5-Hydroxymethylcytosine (3) and 15N,-5-Carboxycytosine (4).: To a 10 mL
solution of LiAlH, (1 M in THF) was added 1°N,-5-carboxyethylcytosine (370 mg, 2 mmol)
at room temperature. The reaction mixture was warmed to 40 °C and stirred for 2 h. After
cooling the mixture to room temperature, water (5 mL) was added dropwise to quench
excess LiAIH,4. The solid was removed by filtration and washed with water (50 mL). The
water extracts were combined and concentrated to a volume of 10 mL. GC-MS analysis of
this crude mixture identified the presence of 1°N,-5-hydroxymethylcytosine and 15N,-5-
carboxycytosine. The crude product was purified by HPLC using a Hypersil prep HPLC
column, which was eluted with up to 50% methanol in 10 mM ammonium acetate (pH 5.5)
to obtain °N,-5-hydroxymethylcytosine (84 mg, measured by UV with eyg9 = 5700 M~ cm
1) and 15N,-5-carboxycytosine (21 mg, measured by UV with e,75 = 5800 M~1 cm™). 1H
NMR for 1°N,-5-hydroxymethylcytosine (DMSO-ag) & (ppm): 10.40 (s, 1H), 7.26 (s, 1H),
6.47 (br s, 2H), 4.92-4.95 (br t, 1H), 4.14-4.16 (d, 2H). HRMS (ESI+): m/z calcd for
CsH7N1°N,0, [M + H]*, 144.05508; found, 144.05518. 1H NMR for 1°N,-5-
carboxycytosine (CD30D) & (ppm): 12.34 (s, 1H), 8.38 (s, 1H). HRMS (ESI+): m/zcalcd
for CsH5N1°N,05 [M + H]*, 158.03438; found, 158.03448.

15N,-5-Formylcytosine (5).: A solution of 15N,-5-hydroxymethylcytosine (50 mg, 0.35
mmol) was prepared in 5 mL of 50 mM sodium hydroxide and cooled to 0 °C. To this
solution was added potassium perruthenate (71 mg, 0.35 mmol), and the reaction was
allowed to stir at 0 °C for 2 h and then at room temperature for 10 h. The fine black particles
were filtered through a 3 mL syringe packed with 1 mL of silica and 0.5 mL of sand and
then through a 0.45 zm syringe filter [From bottom to top: filter, 1 mL of silica, and 0.5 mL
of sand]. The collected filtrate was concentrated and HPLC purified using a Hypersil prep
HPLC column, which was eluted with up to 50% methanol in 10 mM ammonium acetate
(pH 5.5) to obtain 15N,-5-formylcytosine (15.3 mg, measured by UV with 576 = 6600 M1
cm™1). IH NMR (DMSO-ds) & (ppm): 9.41 (s, 1H), 8.38 (s, 1H), 7.84-7.86 (br m, 3H).
HRMS (ESI+): mizcalcd for CsHsN1°N,0, [M + H]*, 142.03948; found, 142.03952.

Uracil Analogues.

15N,-Ethyl Ureidomethylenemalonate (6).: To 25 mL dry round-bottomed flask were
added the following: 1°Ny-urea (1 g, 16 mmol), triethyl orthoformate (4.5 mL, 26.66 mmol),
and diethyl malonate (3.5 mL, 21 mmol). The neat reaction mixture was refluxed for 4 h.
The solid was filtered and washed with acetone to obtain 1°N»-ethyl
ureidomethylenemalonate (1 g, 27% yield). 1H NMR (DMSO-dg) & (ppm): 11.41 (s, 1H),
8.14 (s, 1H), 7.55 (br s, 1H), 7.30 (br s, 1H), 4.17-4.24 (q, 4H), 1.23-1.27 (t, 6H).

15N,-5-Carboxyethyluracil (7).: To a solution of sodium ethoxide, prepared by mixing 15
mL absolute ethanol and sodium (100 mg, 4.3 mmol), was added 1°N,-ethyl
ureidomethylenemalonate (0.5 g, 2.15 mmol), and the reaction mixture was refluxed for 3 h.
The alcohol was removed by filtration, and the collected solid was dissolved in 10 mL of
water. This solution was acidified with glacial acetic acid to pH 5 to precipitate the desired
product. The precipitate was collected on a Buchner funnel and washed with alcohol and
then with ether to obtain 1°N»-5-carboxyethyluracil (0.353 g, 93% yield). 1H NMR (DMSO-
a5) 6 (ppm): 11.80 (s, 1H), 11.29 (s, 1H), 8.09 (s, 1H), 4.11-4.18 (q, 2H), 1.19-1.24 (t, 3H).
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15N,-5-Carboxyuracil (8).: A solution of 1°N»-5-carboxyethyluracil (100 mg, 0.53 mmol)
in 10 mL of 1 M NaOH was heated at 60 °C for 12 h. At the end of reaction, the mixture
was allowed to cool at room temperature, and pH of the solution was adjusted to 4.5 using
dilute HCI. The solution was concentrated to the volume of 5 mL and allowed to stand at 4
°C overnight to precipitate 5-carboxyuracil. The precipitates were collected via filtration and
washed with acetone (10 mL) to obtain 15N,-5-carboxyuracil (75 mg, 90% yield). 1H NMR
(DMSO-dk) & (ppm): 12.73 (s, 1H), 11.99 (s, 2H), 8.26 (s, 1H). HRMS (ESI+): m/z calcd
for C5H41°N,0,4 [M + H]*, 159.01838; found, 159.01849.

15N,-5-Hydroxymethyluracil (9).: Triethylamine (0.5 mL, 3.3 mmol) was added to a
suspension of 1°Ny-uracil (250 mg, 2.2 mmol) and paraformaldehyde (200 mg, 6.6 mmol) in
10 mL of water. The solution turned clear when heated at 65 °C and was allowed to stir for
12 h at 65 °C. The water was reduced to a volume of 5 mL, and 5 mL of 95% ethanol was
added to the mixture. The mixture was allowed to stand at 4 °C overnight to precipitate
15N,-5-hydroxymethyluracil as a white solid (250 mg, 80% yield). 1H NMR (DMSO-a) &
(ppm): 10.79-11.18 (br m, 2H), 7.22-7.24 (d, 1H), 4.83 (br s, 1H), 4.10-4.11 (m, 1H).
HRMS (ESI+): mlzcalcd for CsHg®N,O3 [M + H]*, 145.03908; found, 145.03920.

15N,-5-Formyluracil (10).: A solution of 15N,-5-hydroxymethyluracil (100 mg, 0.69
mmol) in 5 mL of water was heated at approximately 90 °C. The solution was then cooled to
45 °C, and K»S,04 (187 mg, 0.69 mmol) and AgNO3 (3.5 mg, 0.02 mmol) were added. The
product began to slowly precipitate. The reaction was stirred for 20 min at 40 °C and was
then cooled to room temperature over 15 min while stirring was continued. The suspension
was filtered, and the collected solid was rinsed with 2 mL of cold water to yield 1°N,-5-
formyluracil (70 mg, 71% yield). 1H NMR (DMSO-a) & (ppm): 11.89 (s, 1H), 11.50 (s,
1H), 9.74 (s, 1H), 8.14 (s, 1H). HRMS (ESI+): miz calcd for CsH41°NoO3 [M + H]Y,
143.02348; found, 143.02356.

Animal studies were conducted in a facility approved by the American Association for the
Accreditation of Laboratory Animal Care (AAALAC), and all experiments were performed
in accordance with the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and approved by the Institutional Animal Care and Use Committee
(protocol no. 1312056) of the University of Texas Medical Branch (UTMB). All animals
were housed at the UTMB animal care facility and maintained according to U.S. Department
of Agriculture standards (12 h light/dark cycle, food and water ad /ibitum). Male Sprague—
Dawley (Charles Rivers, Wilmington, MA) rats (400-500 g) were anesthetized and
humanely euthanized, and then their brains were collected and immediately frozen.

Metabolite Extraction from Rat Brain Tissue.

Whole brain tissue (1.75 g) from a male Sprague—Dawley rat was combined with 4 mL of
deionized water and homogenized using a tissue homogenizer (POLYTRON PT 3100) for
45's (15 s x 3) on an ice bath.2° The homogenized tissue was pelleted by centrifugation for
30 min at 14 000 rpm at 4 °C. The clear supernatant (3.5 mL) was aspirated, and 1 mL of
80:20 methanol/water at dry ice temperature (=75 °C) was added to the pellets and mixed.
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After 15 min at =75 °C, the sample was centrifuged at 14 000 rpm for 10 min at 4 °C, and
the soluble extract (supernatant) was removed and mixed with the previously aspirated
fraction. The pellets were then resuspended in 1 mL of 80:20 methanol/water and placed on
dry ice for 15 min. The solution was centrifuged at 14 000 rpm for 10 min at 4 °C to yield a
second clear supernatant, which was aspirated and combined with the previous extracts. The
pellets were resuspended in 1 mL of 80:20 methanol/water, and the resulting suspension was
sonicated in an ice bath for 45 s (15 s x 3) using a Branson Sonifier 450. The suspension was
then centrifuged at 14 000 rpm for 10 min at 4 °C to yield a third clear supernatant, which
was aspirated and combined with previous fractions to give a total extract volume of 6 mL.
The extract was then filtered through a 3000 Da cutoff centrifugal spin filter (Millipore
UFC900324) at 14 000g for 30 min. The clear filtrate (5.5 mL) was collected and mixed
with isotope-labeled internal standards for HPLC purification and GC-MS analysis.

HPLC Isolation and GC-MS/MS Quantification of Metabolites.

A portion of the rat brain tissue extract (2 mL) was mixed with an internal standard mixture
(50 £4_, 1.13 x 107> M, 11 labeled standards) and purified by HPLC over a SUPELCOSIL-
LC-18-S (15 cm x 4.6 mm, 5 um) column, which was isocratically eluted with 10 mM
ammonium acetate, pH 6.8, and 50% methanol for 10 min at a flow rate of 1 mL/min. In 2
mL microfuge tubes, HPLC fractions (0.6-1.5 mL each) were collected based on the HPLC
retention times of the free base standards. To ensure separation of 5caU and 6caU, fractions
were collected between 2.8-3.4 and 3.5-4.1 min, respectively. Each collected fraction was
transferred to an autosampler vial and dried, and pyrimidines were converted to their
TBDMS derivatives as described earlier. GC-MS/MS was used for the quantification of
pyrimidine free base metabolites in the extracted rat brain tissue. For quantification, 1 zL
injections were made on an Agilent Technologies 7000C GC-MS Triple-Quad detector
coupled to an Agilent Technologies 7890B GC. The following temperatures were used: 250
°C for the injector and 260 °C for the detector interface. The initial oven temperature was
100 °C for 2 min and was ramped to 260 °C at 30 °C/min and held for 10 min. Data were
collected in multiple reaction monitoring mode (MRM) using transitions determined using
commercially available and synthetic standards.

RESULTS AND DISCUSSION

Synthesis and Characterization of Stable-Isotope-Enriched Pyrimidine Analogues.

Cytosine Analogues.—Previously, Whitehead3% demonstrated that urea,
triethylorthoformate, and ethyl cyanoacetate could be condensed to form ethyl
ureidomethylene cyanoacetate (Figure 2) followed by ring closure to form 5-
carboxyethylcytosine. We utilized the same strategy, but substituted 1N,-enriched urea, to
yield 15N,-enriched 5-carboxyethylcytosine. The product obtained was pure, as indicated by
IH NMR, and no other pyrimidines were observed by GC-MS. Using this procedure,
approximately 1 g of 1°Ny-enriched urea can generate 0.8 g of enriched 5-
carboxyethylcytosine.
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Acid hydrolysis of the ethyl ester of 5-carboxyethylcytosine yielding 5-carboxycytosine did
not go to completion. However, alkaline hydrolysis in 1 N NaOH provided 1°N,-5-
carboxycytosine as the only pyrimidine product.

The reduction of the ethyl ester of 5-carboxyethylcytosine using LiAlH4 to form 5-
hydroxymethylcytosine has been previously reported.3! In our hands, both 15N,-5-
hydroxymethylcytosine and the hydrolysis product 1°N,-5-carboxycytosine were generated
in approximately equal amounts. We therefore used this method to generate the 15N,-
analogues of the 5-hydroxymethyl and 5-carboxy analogues of cytosine, which were
subsequently purified by HPLC. Product identity and purity were verified by GC-MS
analysis.

The last product in the cytosine series, 5-formylcytosine, was generated by oxidation of
enriched 5-hydroxymethylcytosine with potassium perruthenate.32 The product was purified
by HPLC and characterized by GC-MS.

Uracil Analogues.—In the uracil series, the analogous condensation of urea, triethyl
orothoformate, and diethylmalonate has been shown to yield ethylureidomethylene
malonate, with ring closure generating 5-carboxyethyluracil,33 as shown in Figure 3. Using
this procedure, approximately 1 g of 15N,-enriched urea can be converted to 350 mg of
15N,-enriched 5-carboxyethyluracil.

The acid hydrolysis of 5-carboxyethyluracil yields 5-carboxyluracil; however, substantial
amounts of uracil were also observed. Alternatively, alkaline hydrolysis of enriched 5-
carboxyethyluracil generates enriched 5-carboxyluracil as the only pyrimidine product. The
reduction of 5-carboxyethyluracil to 5-hydroxymethyluracil with LiAlHg4, unlike the
reduction of 5-carboxyethylcytosine described above, was unsuccessful. Similarly, reduction
of 5-carboxyethyluracil with sodium borohydride did not proceed with significant yield.34
An alternative approach was needed, therefore, to generate 1°N,-enriched 5-
hydroxymethyluracil and 5-formyluracil.

Previously, it has been established that the condensation of 1°N,-enriched urea with
propiolic acid in polyphosphoric acid yields 1°N,-enriched uracil.3%:36 The conversion of
uracil to 5-hydroxymethyluracil has been reported to proceed in high yield with aqueous
formaldehyde and triethylamine.3” We confirmed the analogous formation of 15N,-5-
hydroxymethyluracil conversion using enriched uracil.

The oxidation of 5-hydroxymethyluracil with silver nitrate and potassium persulfate in water
yields 5-formyluracil,3” completing the synthesis of the uracil series. The 1°Ny-enriched
uracil analogues were purified by HPLC and characterized by GC-MS, NMR, and UV
spectroscopies as described below.

Characterization of the Pyrimidine Analogues.—Synthetic analogues could be
separated from one another in sufficient quantity by HPLC, as shown in Figure 4. HPLC-
purified analogues were characterized by GC-MS, as shown in Figure 5. The corresponding
UV spectral characteristics and pKj; values are shown in Table 1. GC-MS mass and retention
times are provided in Table 2.
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All of the DNA pyrimidine metabolites can be separated by both HPLC and GC, facilitating
identification and quantification. In principle, a mixture of analytes and standards could be
quantified without separation by examining appropriate mass transitions. Within the series of
metabolites examined here, the nominal mass of the unenriched 5-hydroxymethyl analogues
is the same as that of the 1°N,-enriched 5-formyl analogue (isobars) in both the uracil and
cytosine series. However, at higher mass resolution, the analogues can be distinguished
without separation, as shown in Figure 6 and Table 3, based on their exact masses.

Development of a Method To Measure Pyrimidine Frees Bases from Tissue Extracts.

Our initial attempts to measure pyrimidine standards by GC-MS revealed that 10 of the 11
pyrimidines could be resolved by GC alone (Figure 5). Only the isomeric 5- and 6-
carboxyuracil analogues co-eluted. When we first attempted to measure the pyrimidines in
tissue extracts by GC-MS, we observed substantial background noise. Peaks expected for
stable-isotope analogues that were added into the extracts also displayed coeluting
contaminants. Additionally, overall metabolite recovery from the tissue extracts was much
lower than expected.

Our initial GC-MS results suggested that additional sample cleanup was necessary, so we
turned to HPLC separation as an initial cleanup step. Our work with the synthesis of the
stable-isotope analogues revealed that we could obtain substantial resolution of many of the
pyrimidines by HPLC (Figure 4). Most importantly, we were able to separate the 5- and 6-
carboxyuracil isomers that cannot be resolved by GC-MS.

Although all of the pyrimidines expected from DNA metabolism can be distinguished by
exact mass, the isomer of 5-carboxyuracil, 6-carboxyuracil (orotic acid), is a normal
metabolite in the de novo synthesis of pyrimidines38:39 and therefore its presence in
biological extracts is expected. The 5- and 6-carboxyuracil analogues are inseparable by GC;
however, they are easily separated by HPLC at pH 6.8 (Figure 4). The pKj values for this
pyrimidine series?®-44 are listed in Table 1. We note that the pK; values for the carboxyl
groups of 5- and 6-carboxyuracil differ by 1 pH unit.

The next step in our method development was to combine the HPLC prepurification with
GC-MS analysis, as shown in Figure 7. Freshly obtained animal tissue is homogenized, and
cell debris is removed by centrifugation. The aqueous extract is then combined with water
and methanol, chilled, and cleared by centrifugation, as described in Materials and Methods.
The clear filtrate is then mixed with stable-isotope-enriched standards, and a portion of this
mixture is injected onto the HPLC. Fractions are obtained containing one or more of each of
the pyrimidine analytes, and these fractions are dried under reduced pressure, derivatized,
and analyzed by GC-MS.

Our initial workup used GC separation and a single-quad mass spectrometer. Although
selected ion monitoring on the single quad can be used for analyte identification and
quantification, we observed substantial background peaks coeluting with the pyrimidines of
interest. We therefore used a triple-quad mass spectrometer, which is able to substantially
reduce background noise by trapping ions of interest and measuring selected fragments.
Using this method, the results shown in Figure 8 are obtained. The level of each pyrimidine
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is then determined by measuring the size of the analyte peak relative to the size of the
isotope standard peak. The limit of detection for this method is approximately 1 x 10715
moles of pyrimidine injected. The volume of the derivatized sample is 40 s, of which 1 gL
is injected in splitless mode. Therefore, approximately 10713 moles per sample can be
detected with this method.

Measurement of Metabolites in Normal Rat Brain Extract.

The DNA of all living cells is persistently damaged by oxidation and hydrolysis.2 In
addition to these chemically mediated pathways, DNA bases undergo enzyme-mediated
modifications, including methylation, demethylation, and deamination of cytosine residues.
10-14 Many of the chemically damaged or enzymatically modified bases are removed by
proteins of the base excision repair (BER) pathway, and the damaged DNA is restored by
repair synthesis.20-25 Collectively, these modifications constitute postreplicative DNA
metabolism, and the end products of these pathways are the free base metabolites that are
released into the cytoplasm and subsequently reutilized, excreted, or degraded.

Although substantial work from many laboratories has described the measurement of
damaged bases in DNA, relatively little work has focused on measuring the free bases that
are spontaneously or enzymatically released. In this work, we have prepared a series of
isotopically enriched standards for a series of pyrimidine analogues known to be part of both
endogenous DNA damage and enzyme-mediated DNA maodification pathways. The isotope
standards have been characterized by NMR and high-resolution mass spectrometry. We
demonstrate here the feasibility of measuring the free bases in tissue extracts using stable-
isotope-enriched standards. Following tissue homogenization and methanol-water
extraction, isotope standards are added and small molecules are isolated using a spin filter.
Free bases are separated by HPLC, and selected fractions are dried, derivatized, and
examined by GC-MS/MS.

Nine of the 11 pyrimidines studied here are measurable in the rat brain extract by this
method (Figure 8 and Table 4). Neither the potential metabolite 5foU nor its isotope
standard are observed by GC-MS/MS, suggesting that 5foU undergoes chemical
modification in the procedure described here. Potentially, the activated aldehyde of 5foU
could condense with amines or sulfhydryl groups present in the biological extract. In
contrast, the isotope standard of 5caC is observed. However, the level of unenriched 5caC in
the tissue extract is below the limit of detection (~1 x 10713 mol/g tissue).

The amount of free thymine measured by this method is 9 x 10710 mol/g, which corresponds
to approximately 0.1% of the thymine found in DNA extracted from a tissue of similar size.
In rat DNA, the ratio of thymine to cytosine is approximately 1.34,%5 and the rate of
spontaneous depyrimidination of thymine to cytosine is 1.28.46 Therefore, we would have
expected more thymine than cytosine in the extracts resulting from depyrimidination.
Surprisingly, the amount of thymine found was only about 80% that of cytosine.

Other potential mechanisms could also modulate thymine levels. Perhaps the deamination of
5mC to thymine, followed by glycosylase removal, could also contribute to the thymine
levels;4” however, the ratio of 5mC to thymine in rat DNA is small, only about 1:30.
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Therefore, this pathway would not be expected to contribute substantially to the free
thymine levels. DNA from dead and dying cells can be degraded to generate 5'-
monophosphates that can be either reutilized for DNA synthesis or dephosphorylated to 2”-
deoxynucleosides that can by degraded to free pyrimidines by phosphorylases. Uracil and
thymine free bases can be generated and utilized by thymidine phosphorylase.8 In addition,
uracil and thymine free bases analogues can be metabolized by dihydropyrimidine
dehydrogenase and excreted.*® For example, the chemo-therapeutic agent 5-fluorouracil can
be incorporated into the nucleotide pool by thymidine phosphorylase,>° which suggests a
pathway for reducing thymine levels in the brain extracts. The observed levels of thymine in
the extracts, therefore, most likely reflect thymine generated by spontaneous hydrolysis
minus that which is salvaged or degraded.

Both cytosine and 5mC are observed in the tissue extracts. This result was unexpected, as
most glycosylases do not target cytosine derivatives, although 5mC glycosylases have been
reported in some species.51-53 In rat brain, approximately 4% of the cytosine residues are
methylated.>* The ratio of 5mC to cytosine observed in our rat brain extracts was
approximately 2.5%. Both cytosine and 5mC can be lost from the DNA by spontaneous
hydrolysis of the glycosidic linkage, and the rates of depyrimidination for both are similar.46
Cytosine and 5-substituted cytosine bases are not enzymatically deaminated in animal cells,
although the corresponding nucleoside and nucleotide analogues are rapidly deaminated in
animal cells.5® For example, 5-fluorocytosine serves as a prodrug of 5-fluorouracil and is
activated in mammalian tissues only by deamination in the presence of microbial cytosine
deaminase.56 Unlike the uracil analogues discussed below, cytosine is not reutilized by
salvage pathways, and it is not degraded by dihydropyrimidine dehydrogenase. Therefore,
the cytosine and 5mC free bases observed in these extracts most likely reflect endogenous
depyrimidination.

Among the oxidized bases, both 5hmU and 5hmC can arise by chemical oxidation of the
corresponding thymine and 5mC methyl groups.>” An enzymatic pathway has also been
identified for the conversion of 5mC to 5hmC in DNA.11-13 |n mouse brain, the ratio of
5mC to 5hmC is approximately 10.%8 The amount of thymine in rat DNA exceeds the
amount of 5mC by a factor of 30. Therefore, the amount of 5ShmU in the extracts would be
expected to exceed that of 5hmC if only endogenous chemical pathways were considered.
Furthermore, 5hmuU is removed from DNA by the BER pathway, but 5ShmC is not a substrate
for TDG glycosylase, and no activities have been observed that remove 5hmC from DNA.25
The observation of similar levels of 5hmU and 5hmC in the extracts is, therefore, surprising
and might suggest an as yet unidentified pathway for the removal of 5hmC from DNA.

Both 5hmU and 5hmC can be further oxidized to the corresponding 5-formyl analogues
5foU and 5foC.4° The enzymatic oxidation of 5hmC can also generate 5foC in DNA.59
Unlike 5hmC, 5foC paired with guanine is a preferred substrate for the TDG glycosylase, 22
and 5foU is repaired by multiple members of the uracil-DNA glycosylase family.59 Neither
5foC nor 5foU would be expected to remain in DNA for long due to the BER pathway. In
this study, neither 5foU nor the isotopomer standard was observed. It is known that 5foU can
react with both amines and thiol groups, likely explaining its disappearance in this study.
61,62 1n contrast, substantial amounts of 5foC are observed. The observation of 5foC is
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consistent with enzymatic 5mC demethylation, where 5mC is first oxidized to 5hmC and
then to 5foC and released from DNA by the BER pathway.

Further oxidation of 5foU and 5foC can generate the 5-carboxy analogues 5caU and 5caC.22
The human single-strand-selective mispaired uracil DNA-glycosylase (SMUG1) can remove
5caU from DNA,*2 and human thymine-DNA glycosylase (hnTDG) can remove 5caC.22
Although 5caU is observed in the extracts, 5caC is not observed. Unlike 5foU discussed
above, the internal standard 5caC added to the extracts is measurable. Since the level of
5caC free base in the rat brain is below the level of detection in this study, it is unlikely to be
a significant DNA metabolite.

The measurement of 5caU created an analytical challenge, as 6-carboxyuracil (6caU, orotic
acid) is a normal metabolite in the de novo synthesis of pyrimidines.38:3° The isomeric 5-
and 6-carboxyuracil analogues are inseparable by GC-MS; however, they can be separated
by HPLC and subsequently measured in independent GC-MS/MS runs. Similar levels of
both 5caU and 6caU are observed in this study.

The observed level of 5caU exceeds that of 5ShmU by a factor of 10. As the analogues 5hmU,
5foU, and 5caU are generated by sequential oxidation, it is unlikely that the observed 5caU
arose by endogenous oxidation. It has been proposed, however, that enzymatic oxidation of
5mC followed by enzymatic deamination to the corresponding uracil analogue is an
additional pathway for 5mC demethylation.24 As 5foU is not observable by this method, the
sequence of transformations leading from 5mC to 5¢caU cannot be established. However, the
simultaneous observation of 5foC and 5caU suggests that multiple pathways exist for the
modification of 5mC residues in DNA.

The most abundant pyrimidine observed in the tissue extract is uracil. As with thymine,
uracil can be both a product of and substrate for thymidine phosphorylase,*8 and both are
degraded by dihydropyrimidine dehydrogenase.*® In addition, uracil and its analogues are
both products and substrates of uridine phosphorylase.®® For example, exogenous 5-
fluorouracil is incorporated into both DNA and RNA. Therefore, the phosphorylases would
tend to decrease uracil levels, as opposed to increasing the level of uracil over that of
thymine in the extracts.

There are two mechanisms by which uracil can be incorporated into DNA. In the first
pathway, dUTP is incorporated by DNA polymerases during DNA replication. In the second
pathway, cytosine residues in DNA are hydrolytically deaminated to uracil.54 In both
pathways, the uracil in DNA is removed by members of the uracil-DNA glycosylase family,
generating free uracil in the extract. The dUTP misincorporation pathway would
predominate in replicating cells, whereas the deamination pathway would predominate in
postmitotic cells. Both replicating and postmitotic cells would be present in the tissue
extracts observed here. If the deamination pathway predominated, then we would expect
uracil levels to be similar to cytosine levels in the extracts since the rates of DNA
depyrimidination and cytosine deamination are similar. However, the level of uracil is more
than an order of magnitude greater than that of cytosine. This suggests that uracil transiting
through the DNA due to dUTP misincorporation might account for more of the released
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uracil. Because dUTP levels can be modulated by manipulation of one carbon metabolism,
future studies using the methods presented here could resolve this question.85.66

CONCLUSIONS

While DNA is the repository of genetic information that is passed onto progeny cells, it is
metabolically active in all cells due to persistent endogenous damage and repair. It is also
subject to enzymatic modifications in cells that undergo differentiation, and both damage
and enzymatic modification can occur simultaneously. When enzymatically removed from
DNA, the modified free bases are released into the cytoplasm and are either excreted, further
metabolized, or reutilized. Free bases can be recovered from cell and tissue extracts and
analyzed. In this article, we describe the synthesis and characterization of a complete series
of 13N,-enriched analogues of the possible base metabolites described to date. These
analogues can be used to study DNA synthesis, modification, and base turnover in both
normal tissues and cells with metabolic defects. Such studies should shed additional light on
these increasingly important DNA metabolic pathways.
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ABBREVIATIONS
e molar absorptivity
Amax lambda max
AAALAC American Association for the Accreditation of Laboratory Animal
Care
AID activation-induced deaminase
APOBEC-1 apolipoprotein B mRNA editing enzyme catalytic polypeptide 1
BER base excision repair
dUuTP 2’-deoxyuridine 5’-triphosphate
ESI* electrospray ionization in positive ion mode
FT-ICR MS Fourier transform ion cyclotron resonance mass spectrometer
GC-MS/MS gas chromatography/tandem mass spectrometry
GC-ToF-MS gas chromatography time-of-flight mass spectrometry
HRMS high-resolution mass spectrometry
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hTDG human thymine DNA glycosylase
[M+H]* protonated molecule
MRM multiple reaction monitoring mode
MTBSTFA N-tert-butyldimethylsilyl- A-methyltrifluoroacetamide
TBDMCS tert-butyldimetheylchlorosilane
TBDMS tert-butyl-dimethlylsilyl
TDG thymine DNA glycosylase
TET ten-eleven translocation
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HPLC chromatogram of oxidized pyrimidine free bases obtained with UV absorbance. A
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rate, 1 mL/min).
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acquired in the selected ion mode and is presented as the total ion chromatogram.
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Figure 6.
Ultra-high-resolution 12 T FT-ICR MS positive ion microelectrospray ionization spectrum

of a mixture of 1°N,-5foC and 5hmC showing a zoomed spectrum over a 60 mDa window.
FT-ICR MS easily baseline resolves the biologically active 5hmC that differs in mass by
only ~22 mDa from the isotope-labeled standard 1°N,-5foC. Mass accuracy was ~350 ppb
for 15N,-5foC and ~210 ppb for 5hmC. Spectra were acquired on a 12 T Bruker Solarix
Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS).
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Workflow diagram for the isolation and analysis of pyrimidine free bases from a rat brain.
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GC-MS/MS analysis of HPLC-purified pyrimidines obtained from a rat brain. Red, isotope-
enriched internal standards; Black, unenriched metabolites from rat brain extract.
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Table 4.
Quantities (mol/g of Tissue) of Normal and Oxidized Pyrimidines in a Rat Brain Extract Measured Using

Isotope-Labeled Standards”

compound moles of free bases/g of tissue

uracil 1.20+0.11 x 1078
thymine 9.01 +0.46 x 10710
cytosine 1.18+0.15 x 107%°
5-methylcytosine 2.90+0.13 x 1071
5-formylcytosine 1.21+0.15 x 10709
5-hydroxymethyluracil 6.58 +0.37 x 10711
5-carboxyuracil 8.76 +0.05 x 10710
6-carboxyuracil 7.11+0.08 x 10710
5-hydroxymethylcytosine 7.77+0.10 x 10711
5-carboxycytosine <1.14x 10718

a o . R
The data represent the average and standard deviation (SD) values from three different injections.
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