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Abstract 70 

Type I interferon (IFN-I) neutralizing autoantibodies have been found in some critical COVID-19 patients; however, their 71 

prevalence and longitudinal dynamics across the disease severity scale, and functional effects on circulating leukocytes 72 

remain unknown. Here, in 284 COVID-19 patients, we found IFN-I autoantibodies in 19% of critical, 6% of severe and none 73 

of the moderate cases. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-74 

cell epitope and transcriptome sequencing from 54 COVID-19 patients, 15 non-COVID-19 patients and 11 non-hospitalized 75 

healthy controls, revealed a lack of IFN-I stimulated gene (ISG-I) response in myeloid cells from critical cases, including 76 

those producing anti-IFN-I autoantibodies. Moreover, surface protein analysis showed an inverse correlation of the 77 

inhibitory receptor LAIR-1 with ISG-I expression response early in the disease course. This aberrant ISG-I response in critical 78 

patients with and without IFN-I autoantibodies, supports a unifying model for disease pathogenesis involving ISG-I 79 

suppression via convergent mechanisms.  80 
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Introduction 86 

The COVID-19 pandemic has led to the infection of at least 100 million individuals worldwide and over 2.2 million deaths. 87 

A perplexing aspect of its pathogenesis is the extreme clinical heterogeneity of infected individuals, with ~15% of 88 

symptomatic patients and < 10% of infected subjects presenting with severe forms of the disease, as defined by dyspnea, 89 

pulmonary infiltrates on lung imaging, and low blood oxygen saturation (1-4). Overall, 26.8% of hospitalized patients 90 

develop critical disease defined as category 7 on the NIH ordinal scale requiring mechanical ventilation (5). These patients 91 

are at the greatest risk for poor outcome and place the most significant burden on the health care system. Despite 92 

increasing vaccine availability, some vulnerable individuals may develop critical disease prior to and even perhaps despite 93 

vaccination, especially in the context of emerging highly transmissible, more virulent, and antigenically distinct variants of 94 

SARS-CoV-2 isolates (6-11). Thus, there is a need to disentangle the immunological consequences of SARS-CoV-2 infection 95 

and the underlying immunological causes of critical COVID-19, for stratifying patients early in their disease course and for 96 

targeting treatment using available or novel therapies. 97 

Evidence is emerging that genetic and immunological features that pre-date SARS-CoV-2 infection could play an 98 

unexpected pathogenic role in severe disease (12). Among patients with critical COVID-19, these features include inborn 99 

errors of type I IFN immunity (13) as well as the production of autoantibodies against type I interferons (IFNs) (14, 15). 100 

Remarkably, these autoantibodies, which seldom occur in healthy controls (< 0.3%) and have not been found in 101 

asymptomatically infected subjects, are observed in at least 10% of critical COVID-19 cases (14). The causal relationship 102 

between autoantibodies against type I interferons and COVID-19 severity has been supported by their documentation 103 

prior to infection and their frequent occurrence in patients with genetic disorders, such as autoimmune polyglandular 104 

syndrome type 1 (APS-1) (15, 16).  105 

However, it remains to be determined whether autoantibodies to type I IFNs occur in COVID-19 patients who do not 106 

require mechanical ventilation, whether they fluctuate longitudinally during the disease course, and what their 107 

consequences are on the composition and phenotypes of circulating leukocyte subsets. Further, few studies have 108 

examined circulating leukocytes over the course of SARS-CoV-2 infection (17, 18) or have compared with patients 109 

presenting with similar respiratory manifestations requiring hospitalization due to other causes (19). Insights into how the 110 

natural innate and adaptive immune responses longitudinally evolve in response to SARS-CoV-2 infection, both in anti-111 
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type I IFN autoantibody positive and negative cases, may enable the early identification of patients who are likely to 112 

develop life-threatening COVID-19 and the discovery of general innate and adaptive mechanisms that can be targeted by 113 

therapy. 114 

 115 

Results 116 

Prevalence of anti-IFN-2 antibodies in San Francisco 117 

Given the recent description of neutralizing type I IFN autoantibodies in > 10% of critical COVID-19 cases, we sought to 118 

determine the frequency of these antibodies in San Francisco in a total of over 4,500 individuals divided over: 1) SARS-119 

CoV-2 positive subjects that span the NIH COVID-19 severity scale (20), 2) a largely asymptomatic community population, 120 

and 3) convalescent serum samples from patients previously infected with SARS-CoV-2.  121 

We first determined the frequency of autoantibodies to the type I IFN IFN-2 in 284 subjects with confirmed SARS-CoV-2 122 

infection using a radioligand binding assay (RLBA). These patients were categorized using the NIH ordinal scale with those 123 

scoring between 1-4 classified as moderate, those scoring 5 or 6 as severe, and those scoring 7 as critical (Table 1). As 124 

positive controls, we also tested 4 COVID-19 negative subjects with APS-1 (Fig. 1a). The 284 patients ranged in age from 125 

0-90+ years, were 69% male, had at least one positive SARS-CoV-2 PCR test, and varied in disease severity (Table 2, 3 and 126 

Table S1, S2). We found the prevalence of anti-IFN-2 autoantibodies to be 5/26 (19%) in critical, 6/102 (6%) in severe 127 

and absent in moderate disease (Fig. 1a). The positive patients were aged 28 to 72 years (mean = 55.7, std = 12.2) and 128 

9/11 (82%) were male. The prevalence of anti-IFN-2 in critical COVID-19 and the trend of positive patients toward male 129 

sex and advanced age is consistent with previously published descriptions (14). 130 

We next examined a community cohort collected during a study of SARS-CoV-2 transmission in San Francisco (21) (Fig. 1b, 131 

Table 4, Table S3). The cohort consists of 4,041 subjects aged 4 to 90 years of Caucasian (36%), Hispanic/LatinX (33%), 132 

Asian/Pacific Islander (9%), Black/African American (2%), and other or unknown (20%) descent. In this cohort, a total of 133 

13 anti-IFN-2 positive individuals (0.32%) were identified. Of these, 5 were male, 6 were female, and 2 were of unknown 134 

gender, and positive samples were identified across all represented ethnic groups. None of the participants who were 135 

confirmed positive for past or present SARS-CoV-2 infection (117/3,851 by serology and 64/3,758 by PCR) were positive 136 
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for anti-IFN-2 antibodies, and all were ambulatory or asymptomatic at the time of testing. These data are consistent with 137 

the previously reported absence of autoantibodies in ambulatory COVID-19 patients (14). Our results also confirm the low 138 

frequency of anti-IFN-2 antibodies in individuals independent of, and likely prior to, infection with SARS-CoV-2.  139 

In addition to assessing the presence of anti-IFN-2 antibodies in San Francisco community cohorts, we analyzed aliquots 140 

of convalescent plasma from a central blood bank supplier, encompassing 175 unique plasma donors who had recovered 141 

from SARS-CoV-2. Compared with five additional APS-1 subjects, we found that none of the donors tested positive for 142 

anti-IFN-2 autoantibodies (Fig. 1c). Reassuringly, this latter cohort suggests that these potentially harmful autoantibodies 143 

are rare or absent in the supply from convalescent donors. 144 

 145 

Profiling leukocytes in critical COVID-19 cases with and without anti-IFN-2 antibodies.  146 

We next sought to specifically assess the effects of anti-IFN-2 autoantibodies in COVID-19 patients on the composition, 147 

transcript abundance, and surface protein abundance of circulating leukocytes. For this, we leveraged the COVID-19 Multi-148 

Phenotyping for Effective Therapies (COMET) cohort in San Francisco where peripheral blood mononuclear cells (PBMCs) 149 

and serum were longitudinally collected from 69 hospitalized patients presenting with COVID-19 symptoms, of whom 54 150 

were positive (C19+) and 15 were negative (C19-) for SARS-CoV-2, in addition to 11 healthy controls (Fig. 1d). Of the C19+ 151 

cases, 18 presented with moderate disease, 17 with severe disease, and 19 with critical disease according to the NIH 152 

severity scale (20) at the time of hospitalization (Table 1 and 3, Table S2, S5). For 8/54 C19+ patients the severity changed 153 

over the course of hospitalization, of whom 6 improved and 2 worsened. The studied hospitalized patients were ethnically 154 

diverse, skewed older than the general population (mean = 59, range = 25 – 90) and were predominantly male (47 men, 155 

22 women) (Fig. 1d). While all C19- cases presenting with symptoms concerning for COVID-19 tested negative for SARS-156 

CoV-2, many were infected with common respiratory pathogens confirmed by metagenomic sequencing (Table S2). Within 157 

the COMET cohort, we identified 4/19 (21%) of the critical COVID-19 cases and none of the moderate to severe cases to 158 

be positive for anti-IFN-2 antibodies (Fig. 1a). All 4 cases had anti-IFN-2 antibodies at the earliest time of sampling and 159 

the level of anti-IFN-2 antibodies remained stable for 3/4 cases across their disease course (Fig. 1e). 160 

For immune cell profiling, we collected ~200 PBMC samples from up to 4 longitudinal timepoints: 0, 4, 7, and 14 days since 161 

hospitalization. Multiplexed single-cell epitope and transcriptome sequencing (muxCITE-seq) was performed across 9 162 
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pools of genetically distinct samples to simultaneously measure mRNA abundances transcriptome-wide and surface 163 

protein abundances of 189 markers from the same cell (Fig. 2a, Table S4). A total of 971,550 cell-containing droplets were 164 

sequenced and 600,929 cells remained in the final dataset after quality control and removal of doublets, platelets and red 165 

blood cells (see Methods). Genetic demultiplexing using Freemuxlet resulted in an average of 3,020 cells per sample (Fig. 166 

S1a). 167 

 168 

Critical COVID-19 is characterized by increased frequency of plasmablasts and classical monocytes 169 

We compared the frequencies of 11 cell types defined using a combination of mRNA and surface protein markers between 170 

C19+ cases, C19- cases, and controls, as well as within C19+ cases separated by severity (see Methods). The assessed cell 171 

types include plasmablasts (PB), B cells (B), CD4+, CD8+, and gamma delta T cells (T4, T8, Tgd), natural killer cells (NKs), 172 

conventional and plasmacytoid dendritic cells (cDC and pDC), classical and non-classical monocytes (cM and ncM), and 173 

hematopoietic progenitor cells (Progens) (Fig. 2b). We first confirmed that muxCITE-seq-derived estimates of lymphocyte 174 

and monocyte frequencies were well correlated with complete blood count measurements reported in the electronic 175 

health record from the same donor within +/- 2 days (Pearson Rmonocyte = 0.59, P = 7.2x10-105; Pearson Rlymphocyte = 0.57, P = 176 

8.2x10-55; Fig. S1b). Qualitatively, C19+ cases exhibited shifts in the Uniform Manifold Approximation and Projection 177 

(UMAP) space of circulating leukocytes, particularly of myeloid cells, that were not confounded by processing batch and 178 

pool (Fig. 2c, Fig. S1c). Comparing critical C19+ cases to healthy controls, we observed statistically significant changes in 179 

frequencies for every cell type, including prominent increases in the frequencies of B, PB and cMs (cM: median change 180 

+10.0%, Differential proportion analysis (DPA) permutation P < 10-5; B: +2.7%, P = 2.1x10-3; PB: +2.1%, P < 10-5), and 181 

decreases in the frequencies of T8 and Tgd (T8: -15.4%, P < 10-5; Tgd: -3.9%, P < 10-5). These changes in T8, Tgd and PB 182 

were most significant in critical C19+ cases and the frequencies in moderate and severe cases were between those 183 

observed in critical cases and healthy controls (Fig. 2d, Fig. S1d, Table 5, Methods). Interestingly, the frequency of T8s 184 

were even lower and the frequency of cMs were even higher in critical C19+ cases with detectable anti-IFN-2 antibodies 185 

than those without (T8: -5.8%, P < 10-5; cMs: +8.3%, P = 0.034) (Fig. 2d, Fig. S1d, Table 5). Importantly, the described 186 

changes in frequencies were significantly different between critical C19+ cases and C19- hospitalized patients, suggesting 187 

these effects are not likely explained by hospitalization in general (Fig. 2d, Fig. S1d, Table 5). For the 14 C19+ donors for 188 
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whom all 4 timepoints were available, we observed decreases in the frequencies of B and PB cells over time (Median 189 

change D0 vs D14; B: -3.7%, P = 6.0x10-5; PB -0.8%, P < 10-5) and increases in the frequencies of cM and ncMs (D0 vs D14: 190 

cM +5.7%, P < 10-5; ncM +2.5%, P < 10-5) for both days since hospitalization and days since onset of first symptoms (Fig. 191 

2e, Fig. S1e, S1f, Table 5, Methods). These longitudinal changes normalized towards frequencies observed in healthy 192 

controls, except for the frequency of cMs which appears to further increase from levels observed in healthy controls. 193 

Previously, the frequency of PBs has been observed to correlate with COVID-19 disease severity (22) and to diminish upon 194 

recovery (18). We observed that the reduced PB frequency was positively correlated with reduced viral titer over time 195 

(Pearson R = 0.46, Padjusted = 0.0065) suggesting coordinated dynamic changes of host humoral immunity and viral load 196 

over the course of hospitalization (Fig. 2f, Fig. S1g, S1h). Overall, these analyses revealed shifts in cell type composition 197 

specific to COVID-19, between patients of varying disease severity, and over time. The general comparable composition 198 

of circulating leukocytes in critical C19+ patients with and without anti-IFN autoantibodies suggests the presence of a 199 

broader, conserved mechanism underlying severe disease, such as additional IFN-related pathology particularly in the 200 

autoantibody negative patients. 201 

 202 

Critical COVID-19 is marked by deficient type-1 ISG expression early in disease course 203 

To further characterize cell-type intrinsic changes in COVID-19 and assess the effects of anti-IFN-2 antibodies, we 204 

compared mRNA and surface protein abundances between C19+ cases, C19- cases, and healthy controls for each cell type. 205 

We identified 161 genes (FDR < 0.05, log2(fold change) log2FC > 1) whose transcripts were differentially upregulated 206 

between C19+ cases at day 0 and healthy controls in at least one cell type (Fig. 3a, Fig. S2a, Table 6). K-means clustering 207 

of the 161 differentially expressed genes aggregated for each of 11 cell types at day 0 identified five clusters, including a 208 

cluster (cluster 1) of genes enriched for type I IFN signaling and viral response primarily expressed in myeloid cells (GSEA: 209 

Type I IFN signaling pathway, permutation P < 10-5), a cluster (cluster 2) enriched for neutrophil degranulation (GSEA: 210 

neutrophil degranulation, P < 10-5), a cluster (cluster 3) of immunoglobulins and plasmablast activation markers, and a 211 

cluster (cluster 4) enriched for complement activation in non-classical monocytes (GSEA: complement activation, P = 212 

0.026) (Table S6). Given the heterogeneous expression of the IFN signaling cluster (cluster 1) within COVID-19 patients, 213 

we further compared the expression of type I-specific and type II-specific ISGs between C19+ cases and healthy controls 214 
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and within C19+ cases of varying severity. To differentiate type I- and II-specific ISGs, we compared healthy donor PBMCs 215 

stimulated with recombinant IFN-beta or IFN-gamma from an independent single-cell RNA-sequencing (scRNA-seq) 216 

dataset to identify genes specifically upregulated by either interferon (Fig. 3b, see Methods). Strikingly, in myeloid cells 217 

(cM, ncM, pDC, cDC), the average expression of type I-specific and to a lesser extent type II-specific ISGs in critical cases 218 

on day 0 of hospitalization was significantly lower compared to moderate and severe cases (type I: log2FC = -0.51 to -0.82,  219 

P = 2.2x10-4 to 1.7x10-3; type II, cM only: log2FC = -0.46, P = 7.6x10-4) (Fig. 3c, Fig. S2b, S2c). We also found that the 220 

expression of type I-specific ISGs in the four critical C19+ cases with anti-IFN-2 autoantibodies was the lowest among the 221 

C19+ cases at levels observed in healthy controls (C19+ critical IFN vs healthy: n.s. in cM, ncM, cDC, pDC) (Fig. 3c). Through 222 

the disease course, average expression of type I-specific ISGs in moderate and severe cases was high at the time of 223 

hospitalization but quickly diminished, while in critical cases, especially those with anti-IFN-2 autoantibodies, average 224 

expression of type I-specific ISGs remained low (Fig. 3d). These findings suggest that there is a shared causal mechanism 225 

of critical disease in patients with and without autoantibodies to type I IFNs. The latter patients may have undetected or 226 

other acquired or inherited defects in the type I IFN immune response.  227 

 228 

Type I ISG deficiency is inversely correlated with surface expression of LAIR-1 229 

We next sought to identify changes in the expression of surface proteins in COVID-19 patients that may be correlated with 230 

type I ISG expression. The correlation of surface protein and transcript abundance varied across the 189 targeted genes 231 

with lineage specific surface markers exhibiting the highest correlation (Fig. S3a). Comparing C19+ cases at day 0 of 232 

hospitalization to healthy controls for each cell type separately, we identified 5/189 differentially expressed surface 233 

proteins in cMs and an additional 14/189 in other cell types (Fig. 4a, Fig. S3b, |log2FC| > 0.5, FDR < 0.05). Of the five 234 

proteins differentially expressed in cMs, four (TFRC, SIGLEC-1, FCGR1A, and LAIR1) were higher expressed in C19+ cases. 235 

SIGLEC-1 is a known up-regulated ISG whose pattern of surface expression is consistent with the expression of type I-236 

specific ISGs (Fig. 3c, Fig. 4b). In cMs but not other cell types, leukocyte-associated immunoglobulin-like receptor 1 (LAIR-237 

1) was differentially up-regulated in critical C19+ cases compared with healthy controls (log2FC = 0.88, p < 9.8x10-6) and 238 

moderate/severe C19+ cases (log2FC = 0.47, p < 2.0x10-3) (Fig. 4b, Fig. S3b). Further, the four critical C19+ samples with 239 

anti-IFN-2 autoantibodies were among the top 10 with the highest LAIR1 expression in cMs. Note that although LAIR-1 240 
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was an inhibitory molecule discovered in lymphocytes, its expression and differential expression between cases and 241 

controls were highly specific to cM and ncM cells and not to T4, T8, NK, B or PBs (Fig. 4b). Interestingly, LAIR-1 expression 242 

in cMs from critical C19+ cases was high early in the disease course and diminished over time, inversely tracking with the 243 

pattern observed for type I-specific ISGs (Fig. 4c, Fig. S3c). Further, in C19+ cases at day 0, the expression of surface LAIR-244 

1 was inversely correlated with expression of type I-specific ISGs in cMs (Pearson R = -0.47, p < 0.01) and ncMs (Pearson 245 

R = -0.41, p < 0.01) (Fig. 4d, 4e, Fig. S3d). Unlike down-regulated ISG surface proteins (e.g. CD244, SLC3A2) that were also 246 

inversely correlated with the type I-specific ISG score (Fig. 4d), LAIR-1 is not expressed in healthy samples suggesting that 247 

it is not a down-regulated ISG. These results demonstrate LAIR-1 as a highly specific monocyte cell-surface biomarker 248 

predictive of deficient type I-specific interferon response. 249 

 250 

Discussion 251 

The dramatic clinical heterogeneity over the course of SARS-CoV2 infection, ranging from asymptomatic to lethal, is a key 252 

observation and defining feature of this pandemic. It is important to understand what causes life-threatening COVID-19 253 

pneumonia in a minority of infected individuals. Recent work has suggested that pre-existing autoimmunity against type 254 

I IFN can underlie critical COVID-19 pneumonia in > 10% of the cases (14). Here, we have confirmed that neutralizing 255 

autoantibodies to type I IFNs indeed are present in severe to critical COVID-19 patients from two independent cohorts, 256 

showing a combined prevalence of about 9%. Both the C19+ and asymptomatic cohorts studied here had significant 257 

Hispanic representation, a population that has not been previously studied at scale. The presence of anti-type I IFN 258 

autoantibodies in this population indicates that this phenomenon may be widely conserved across a diversity of ancestries. 259 

In terms of age and gender, the majority of autoantibody-positive severe to critical COVID cases were male and > 55 years 260 

of age, consistent with previous reports; however, these numbers did not reach significance as compared to the observed 261 

frequencies among all C19+ patients (14). Interestingly, we observed roughly equal numbers of positive males and females 262 

in our community survey. Further study will be required to determine if there exist differences between the 263 

autoantibodies in male versus female COVID-naïve patients that could partially explain the downstream skewing of 264 

hospitalized patients towards male gender, such as differential neutralization ability or additional accompanying risk 265 

factors. 266 
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In anti-type I IFN positive critical patients in our longitudinally sampled cohort, we were also able to determine that these 267 

autoantibodies were present from the earliest timepoint in their clinical course (collected within 4 to 13 days from the 268 

start of their first disease symptoms). Given the time required for a detectable, stable humoral immune response to form 269 

(2-3 weeks) (23), our data strongly suggest that autoantibodies pre-date infection with SARS-CoV2. Consistent with this, 270 

our survey of a community cohort in the San Francisco Mission District also revealed a subset of presumed COVID-19-271 

naïve individuals who were anti-type I IFN antibody positive (0.3%), suggesting that there are individuals who may be at 272 

higher risk for critical disease due to these pre-existing autoantibodies, including both males and females across a broad 273 

range of ages. Moreover, in a community-based population study, we did not detect these autoantibodies in 154 patients 274 

with asymptomatic or ambulatory infection with SARS-CoV-2 (compared to 13/3821 uninfected donors) or in convalescent 275 

plasma donor samples, confirming that the penetrance of severe to critical COVID-19 in infected individuals with 276 

autoantibodies is so far complete. 277 

In addition to validating the presence of anti-type I IFN autoantibodies in severe and critical COVID-19 patients, we further 278 

have shown using scRNA-seq that these antibodies are associated with impaired type I ISG response in several distinct 279 

myeloid populations. While other similar high-dimensional immune profiling studies have found evidence of impaired ISG 280 

responses in monocytes (24, 25) and neutrophils (19), we have now provided additional specificity and a clear mechanism 281 

of how this may unfold in a subset of subjects. Interestingly, we also find impaired myeloid type I ISG expression in 282 

additional critical subjects without detectable anti-type I IFN autoantibodies. This important observation suggests that 283 

impaired type I IFN immunity is a shared mechanism of more severe forms of the disease in patients with and without 284 

autoantibodies to type I IFNs (13). Patients without detectable autoantibodies may have lower titers of autoantibodies, 285 

autoantibodies that neutralize lower amounts of type I IFNs, or autoantibodies undetectable because they are bound to 286 

type I IFNs. Alternatively, these patients may carry inborn errors of the production and amplification of type I IFNs, as 287 

recently shown in other patients (13), or antibody-mediated mechanisms may exist that are independent of the direct 288 

binding to IFNs (19). Genetic and immunological studies are underway in our cohort of patients. These findings, along with 289 

the observation of high type I ISG expression in mild patients early during the disease course that quickly diminishes, 290 

further suggest that impaired type I IFN immunity during the first hours and days of infection may account for the 291 

protracted disease course including pulmonary and systemic inflammation. A two-step model of life-threatening COVID-292 

19 is emerging, with defective type I IFN intrinsic immunity in the first days of infection resulting in viral spread, in turn 293 
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unleashing leukocyte-mediated excessive inflammation in the lungs and other infected organs during the second week of 294 

infection (12). 295 

Our analysis of 189 cell-surface proteins by CITE-seq identified the expression of LAIR-1 in cMs to be elevated in COVID-296 

19 patients and correlated with the impaired type I ISG response. LAIR-1 is an inhibitory surface protein originally 297 

discovered in T and NK cells, and is involved in inhibiting NK-mediated cell lysis and effector T cell cytotoxicity upon FcR-298 

mediated cross-linking (26-28). More recently, it has also been shown in monocytes and pDCs that cross-linking of LAIR-1 299 

can inhibit the production of IFNα in response to TLR ligands in healthy controls and patients with systemic lupus 300 

erythematosus (29, 30). Importantly, LAIR-1 expression is highest in cMs at the time of initial hospitalization and decreases 301 

rapidly by day 4 among a subset of critical patients, including the four with anti-type I IFN autoantibodies. Whether LAIR-302 

1 plays a causal role in deficient type I IFN response would require further investigation. Nevertheless, the ability to use a 303 

highly cell-type specific surface protein to predict impaired type I IFN response in critical COVID-19 patients early during 304 

disease provides an important biomarker. 305 

Our findings have several important implications for the ongoing pandemic and our understanding of patients with a 306 

critical COVID-19 clinical course. First, our results show that an impaired type I ISG response early in the disease course in 307 

multiple immune populations is associated tightly with autoantibodies to type 1 interferons, providing a glimpse into the 308 

immune dysregulation present in patients with a severe clinical course. In this regard, it is critical to be able to identify 309 

patients with an impaired type I ISG response early during disease course; a combination of the highly specific assays for 310 

autoantibodies against type I IFNs and biomarkers for deficient ISGs such as LAIR-1 could quickly allow triaging of patients 311 

during initial hospitalization. Second, treatment strategies with IFNβ might be particularly valuable for those with 312 

preexisting antibodies to type I IFNs. The large immunological differences of severe patients in the earliest timepoints 313 

additionally suggest that identification and treatment would likely need to happen early in the disease course. Third, we 314 

found that autoantibodies to type I IFNs in severe COVID-19 subjects were present at the time of their presentation and 315 

precede the development of antibodies to SARS-CoV2. This, along with the presence of healthy autoantibody-positive 316 

individuals in the community, suggests that anti-type I IFN autoantibodies pre-date infection and that there exists an at-317 

risk group for severe disease in the general population. Going forward, strategic efforts to identify this high-risk population 318 
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early in the disease course could have significant impact on improving clinical outcomes including mortality rates, and 319 

identifying these individuals before infection could have a major impact on preventive measures. 320 

Data availability 321 

Processed (deanonymized) single-cell RNA-sequencing data has been deposited in the Gene Expression Omnibus under 322 

the accession number GSE168453 and is currently being deposited in the data coordinate platform (DCP) of the Chan 323 

Zuckerberg Initiative (CZI) Human Cell Atlas.  324 

Code availability 325 

The original Python code for Scanpy (https://github.com/theislab/scanpy), Freemuxlet 326 

((https://github.com/statgen/popscle), can be found at Github. All custom-made code is currently being checked into 327 

GitHub repository (https://github.com/yelabucsf/COVID-19). 328 
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Table 1: Categorization of moderate, severe and critical patients in COMET and SFGH cohorts. 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

Table 2: Demographics of the SFGH cohort 367 

Demographics and clinical characteristics of patients from the SFGH cohort, including comparison across anti-INF-2 368 

positive and negative patients. Significance values were determined using Fisher’s exact test, except in the case of 369 

continuous distributions (Length of Stay), where a Kolmogorov-Smirnov test was used.  370 

Table 3: Demographics of the COMET cohort 371 

Demographics and clinical characteristics of patients from the COMET cohort, broken down by anti-INF-2 positive C19+, 372 

anti-IFN-2 negative C19+, and C19- patients.  373 

Table 4: Demographics of the community cohort 374 

Demographics of patients from the community cohort, broken down by anti-INF-2 positive and anti-IFN-2 negative 375 

individuals. Significance values were determined using Fisher’s exact test. 376 

Table 5: Differential proportion analyses.  377 

Complete differential proportion analyses results corresponding to Fig. 2d (C19+, C19- and healthy controls at time of 378 

hospital admission, D0) and Fig. 2e (C19+ cases along their hospitalization course, D0-4-7-14). Analyses were performed 379 

on the cell observations per disease severity level (cells from all C19+ moderate and C19+ severe donors, C19+ critical 380 
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donors including the anti-IFN-2 autoantibody donors, all C19- donors, and healthy controls are combined in 4 separate 381 

groups) and per cell type (cellcounts tab). The resulting statistics are based on 100,000 permutations and Holm’s multiple-382 

testing correction (stats tab). Median counts over all donors per disease severity level and cell type are provided in the 383 

mediancounts tab.  384 

Table 6: Differentially expressed genes. 385 

List of differentially expressed (DE) and variable (DV) genes comparing C19+ vs healthy controls at 0, 4, 7 and 14 days 386 

after hospital admission (D0, D4, D7, D14) in each of the 11 defined immune populations. 387 

388 
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Figure 1 389 

 390 

Figure 1: Anti-IFN-2 antibodies in moderate to critical COVID-19. a) Anti-IFN-2 index (y-axis) in four APS-1 patients, 391 

156 moderate C19+ cases, 102 severe C19+ cases, and 26 critical C19+ cases separated by disease severity and colored by 392 

hospitalization status. Positive samples were tested for neutralization against IFN-2, with arrows indicating those 393 

samples with partial or full neutralization ability. Dotted line indicates 6 standard deviations above healthy control mean. 394 

b) Distribution of the anti-IFN-2 index across 4,041 subjects in a community cohort from the San Francisco Mission 395 

District. c) Anti-IFN-2 index (y-axis) in five additional APS-1 patients and 175 convalescent plasma donors from the 396 

Vitalant Blood Center. d) COVID-19 Multi-Phenotyping for Effective Therapies (COMET) cohort disease status, severity and 397 

gender breakdown. e) Anti-IFN-2 index over days since first hospitalization for 53 hospitalized COVID-19+ and 14 COVID-398 

19- COMET samples. For 2/69 COMET samples anti-IFN-2 titers were not assessed.  399 
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Figure 2: Shifts in circulating leukocyte composition in critical COVID-19. a) Experimental set-up. Frozen PBMCs are 401 

thawed, multiplexed, stained and processed using cellular indexing of transcriptomes and epitopes by sequencing (CITE-402 

seq). b) Marker genes for each of the 11 cell types identified including CD4+ T cells (T4), CD8+ T cells (T8), gamma delta T 403 

cells (Tgd), natural killer cells (NK), B cells (B), plasmablasts (PB), classical monocytes (cM), non-classical monocytes 404 

(ncM), conventional dendritic cells (cDC), plasmacytoid dendritic cells (pDC), and CD34+ hematopoietic progeneitors 405 

(Progen). c) UMAP projections of PBMCs from donors separated by COVID-19 status and severity. Cells are colored by 406 

type. d) Boxplots (showing median, 25th and 75th percentile) of the percentages of T8, PB, cMs and ncMs (y-axis) by 407 

COVID-19 status and severity level on day of hospital admission (D0). Each dot represents the percentage of a specific 408 

cell type per donor. Shown statistical comparisons are between cells from all C19+ critical donors (including the anti-IFN-409 

2 autoantibody donors) and healthy controls, C19- donors or combined C19+ Moderate-Severe donors. Other cell 410 

types can be found in Fig. S1. e) Boxplots of the percentages of T8, PB, cMs, ncMs (y-axis) in COVID-19 patients over day 411 

0, 4, 7 and 14 since hospitalization (D0, D4, D7, D14). Other cell types can be found in Fig. S1. f) Scatterplot of SARS-CoV2 412 

viral titer as measured by qRT-PCR in tracheal aspirates (inverse dCT, x-axis) and percentage of plasmablasts (PB) (y-axis) 413 

as quantified in donor-matched single-cell PBMC data (R = Pearson correlation). Holm’s multiple-testing corrected, 414 

permutation-based p-values: *** p < 0.001, ** p < 0.01, * p < 0.05, ns = not significant.  415 

    416 

  417 
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Figure 3: Transcript abundance changes of leukocyte subsets in critical COVID19. a) Heatmap of 161 differentially 419 

expressed genes at day 0 (FDR < 0.01, |log(fold change)| >1) in at least one of 11 cell types. CD4+ T cells (T4), CD8+ T cells 420 

(T8), natural killer cells (NK), B cells (B), plasmablasts (PB), classical monocytes (cM), non-classical monocytes (ncM), and 421 

conventional dendritic cells (cDC) are shown. Each row represents a gene and each column is the average expression of 422 

the genes in a particular sample across all cells of a specific type. Samples are grouped by both cases control status and 423 

C19+ severity. Expression levels are row standardized. Genes are grouped by cluster with the enriched clusters annotated. 424 

b) Matrix plot of type I and type II-specific ISGs defined using an orthogonal scRNA-seq data set (left plot) and in the 425 

COMET cohort separated by case control status and disease severity (right). c) Type I and type II-specific ISG scores (y-axis) 426 

at day 0 across 4 myeloid cell types, and pseudobulk of all other cell types, separated by case control status and disease 427 

severity. Boxplots show median, 25th and 75th percentile. Cell types comprising the pseudobulk are in supplementary 428 

materials. d) Type I-specific ISG score (y-axis) over the course of disease for healthy controls, C19- and C19+ cases in 429 

classical monocytes. C19+ cases are separated by severity and the presence of anti-IFN-2 antibodies. *** p < 0.001, ** p 430 

< 0.01, * p < 0.05, ns = not significant. 431 
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 436 

Figure 4: Surface protein abundance changes of leukocyte subsets in critical COVID19. a) Volcano plot of log fold change 437 

between C19+ and healthy controls (x-axis) versus -log10(P-value) (y-axis) in cM cells. Proteins that are statistically 438 

significant (FDR < 0.05) and have a log2(fold change) > 0.5 are highlighted. b) Normalized LAIR-1 and SIGLEC-1 surface 439 
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expression (y-axis) at day 0 across 8 cell types separated by case control status, severity, and presence of anti-IFN-2 440 

antibodies. Boxplots show median, 25th and 75th percentile. Tgd, pDC, Progens are in Fig. S3. c) Normalized LAIR-1 surface 441 

expression (y-axis) in classical monocytes over the course of disease for healthy controls, C19- controls, and C19+ cases. 442 

C19- controls and C19+ cases are separate by severity and the presence of anti-IFN-2 antibodies. d) Barplot of correlation 443 

between the surface expression of xx statistically significantly proteins to type I-specific ISG score in classical monocytes 444 

at day 0. Proteins are colored by their log2(fold change) expression between C19+ cases and healthy controls. Red: Higher 445 

expression in C19+ cases. Blue: Lower expression in C19+ cases. e) Scatterplot of normalized LAIR-1 expression (y-axis) 446 

versus the type I-specific ISG score (x-axis) for C19+ cases colored by severity and anti-IFN-2 status. *** p < 0.001, ** p 447 

< 0.01, * p < 0.05, ns = not significant. 448 

 449 
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Materials and Methods 452 

Cohorts and patient enrollment 453 

The COVID-19 Multi-Phenotyping for Effective Therapies (COMET) cohort includes patients recruited to the 454 

Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study.  All patients hospitalized for symptomatic COVID-455 

19 infection at both the tertiary care center and the safety-net county hospital associated with the University of California 456 

San Francisco, were eligible to participate in the COMET cohort study. Biospecimens may be collected under an IRB-457 

approved initial waiver of consent with subsequent attempts to consent surrogates and study subjects for full study 458 

participation. We selected samples from 69/101 of subjects enrolled in COMET between 4/8/2020 and 6/20/2020. Sample 459 

selection was prioritized in the patients that were hospitalized with longitudinal blood collections and therefore PBMCs 460 

were available during a 14-day time period. This study is approved by the Institutional Review board: UCSF Human 461 

Research Protection Program (HRPP) IRB# 20-30497.  462 

Details of the community-based cohort are described in Chamie et al. 2020 (21). APS1 patients in the study were collected 463 

at the NIH under Protocol #11-I-0187 and were previously published in Ferre et al. (2016) and Ferre et al. (2019) (31, 32).  464 

Convalescent plasmas (CCPs) were collected in the Vitalant system following FDA Guidance for donor eligibility. These 465 

criteria evolved throughout the study period due to testing availability and evolution of the pandemic in the United States.  466 

Evidence of COVID-19 was required in the form of a documented positive SARS-CoV-2 molecular or serologic test, and 467 

complete resolution of symptoms initially at least 14 days prior to donation but then a minimum of 28 days was 468 

implemented.  All CCP donors were also required to meet traditional allogeneic blood donor criteria. At the time of plasma 469 

collection, donors consented to use of de-identified donor information and test results for research purposes.  All CCPs 470 

were tested for SARS-CoV-2 total Ig antibody using the Ortho VITROS CoV2T assay at our central testing laboratory 471 

(Creative Testing Solutions [CTS], Scottsdale, AZ). CCP qualification requires the signal-to-cutoff ratio S/CO of this test to 472 

be at least 1.0. Retention samples of serum and plasma for all donations are archived at the Vitalant Research Institute 473 

Denver. Plasma samples are from 175 unique CCP donors where some had repeated donations for a total of 281 samples. 474 

These samples were selected solely on the Ortho VITROS CoV2T assay results to represent the entire range of high to low 475 

signal to cutoff (S/CO) signal. Collections were from across the US Vitalant system from April 8 to September 1, 2020.  476 
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 477 

Isolation and preparation of PBMCs for scRNA-seq 478 

Whole blood from 80 donors was drawn into plastic EDTA Vacutainer blood collection tubes (Becton, Dickinson and 479 

Company) at the time of hospital admission (D0) and 4 (D4), 7 (D7) and 14 (D14) days later. Of these donors, 69 were 480 

patients with high clinical suspicion of COVID-19 infection that were admitted at UCSF or ZSFG and 11 were healthy donors. 481 

COVID-19 status was assessed for all 69 patients by reverse transcriptase polymerase chain reaction (RT-PCR) tests of nasal 482 

swab samples and confirmed that 15 patients were COVID-19 negative, whereas 54 patients were COVID-19 positive. 483 

During the hospitalization, the severity of each COVID-19 positive patient was assessed using the NIH COVID-19 severity 484 

scale (Table 1) (20). For all analyses we categorized patients based on their severity at time of hospital admission (D0). 485 

Peripheral blood mononuclear cells (PBMCs) were isolated at RT using SepMate PBMC Isolation Tubes (STEMCELL 486 

Technologies) by the UCSF Biospecimen Resource Program. In brief, 7.5mL of whole blood was centrifuged at 1,000 rcf for 487 

10 min with swinging-out rotor and brake off to separate 3.5mL of plasma. Remaining blood was diluted with 8mL of DPBS 488 

and slowly added to a SepMate-50 tube pre-filled with 15mL of Lymphoprep (STEMCELL Technologies). The tube was then 489 

centrifuged at 800 rcf for 20 min with brakes off. After centrifugation, the top layer including the buffy coat was gently 490 

and quickly poured into a 50 mL falcon tube to centrifuge at 400 rcf for 10 min with brake on. The pellet was washed twice 491 

each time with 20 mL of EasySep buffer (STEMCELL Technologies) followed by centrifugation at 400 rcf for 10 min with 492 

brakes on. Washed PBMCs were counted and resuspended at 5x106 cells/mL in cold freezing media (FBS with 10% DMSO). 493 

Cells were aliquoted into cryovials at 1-5x106 cells per vial and transferred in a Mr. Frosty to the -80C freezer for 24 hours 494 

before cryopreservation in liquid nitrogen. 495 

 496 

Single-cell multimodal immunophenotyping 497 

Multiplexed single-cell sequencing was performed following a previously published protocol (33) and manufacturer’s user 498 

guide (Document CG000186 Rev D, 10X Genomics). The complete protocol is available on protocols.io 499 

(https://www.protocols.io/view/10x-citeseq-protocol-covid-19-patient-samples-tetr-bqnqmvdw). In each experiment, 500 

PBMCs from 22-25 participants were used including 16-23 patients and 2-8 healthy individuals. Longitudinal samples of 501 
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the same patient were used in different experiments to allow genetic demultiplexing. Each experiment used samples 502 

collected at different longitudinal time points to prevent that experimental conditions are aligning with potential batch 503 

effects. 504 

In brief, PBMCs were thawed in a 37C water bath for 30 s and washed with 5 mL of cRPMI followed by centrifugation at 505 

350 rcf for 5 min at RT. Cell counts and viability were determined using a Vi-CELL XR Automated Cell Counter (Beckman 506 

Coulter Life Sciences). Equal number of cells were aliquoted from each sample to create a pool of 1.5x106 cells with an 507 

average viability of 85% or higher. Pooled PBMCs were blocked with Human TruStain FcX (BioLegend) for 10 min on ice, 508 

followed by staining with a customized TotalSeq-C human cocktail for 45 min on ice (Table S4). Cells were washed three 509 

times, resuspended in PBS with 0.04% BSA, filtered through a 40 m filter, and counted with Countess II Automated Cell 510 

Counter (Thermo Fisher Scientific).  511 

Single cell suspensions were loaded into a Chromium Single Cell Chip A for single cell encapsulation using the 10X 512 

Chromium controller according to the manufacturer’s user guide (Document CG000186 Rev D, 10X Genomics), and as 513 

previously described (34). In each experiment, the pooled cells of 22-25 participants were loaded into 4-6 individual lanes 514 

aiming for 7x104 loaded cells per lane. 515 

 516 

Single-cell library preparation and sequencing 517 

Single-cell libraries were constructed following the manufacturer’s user guide (Document CG000186 Rev D). cDNA libraries 518 

were generated using the Chromium Single-cell 5’ library & Gel bead kit and i7 Multiplex kit. Surface protein Feature 519 

Barcode libraries were generated with Chromium Single Cell 5′ Feature Barcode Library Kit and i7 Multiplex Kit N, Set A. 520 

In total, libraries generated from 971,550 cells were PE150 sequenced at the CZ Biohub on 18 lanes of an Illumina NovaSeq 521 

6000 sequencer using a NovaSeq 6000 S4 Reagent Kit v1.  522 

 523 

Genotyping, sample demultiplexing and doublet detection 524 

To assign cells to donors of origin in our multiplexed design, we used the genetic demultiplexing tools Freemuxlet and vcf-525 

match-sample-ids, each a part of the Popscle suite of statistical genetics tools (https://github.com/statgen/popscle). 526 
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Freemuxlet leverages the single-nucleotide polymorphisms (SNPs) present in transcripts and performs unsupervised 527 

clustering on the droplet barcodes to assign each to a nameless donor, or assign them as doublets between genetically-528 

distinct nameless donors. The algorithm takes in a list of candidate loci throughout the genome at which to scan for SNPs, 529 

and returns droplet barcodes with donor assignments and a set of observed variants per donor. These sets of variants are 530 

then matched using genotypic similarity to those from an orthogonal bulk RNA-seq assay, done on an individual basis, to 531 

determine which donor is which patient. Once nameless donors are matched to uniquely-identifiable patients, droplet 532 

data are then joined with the other clinical covariates available for the patients, including age, sex, race, and disease status.  533 

Freemuxlet was run on each of the 9 droplet reaction runs separately, using a list of exonic SNPs that were expected to 534 

be found in the 5’-end scRNA-seq data and that have a minor allele frequency > 0.05, based on data from the 1000 535 

genomes project (35).  536 

 537 

Bulk RNA-sequencing 538 

Bulk RNA-seq data was generated to extract genotype information, so that single-cells could be demultiplexed and 539 

matched to single donors. For each donor, RNA was extracted from PBMCs using the Quick RNA MagBead kit (Zymo 540 

Research) on a KingFisher Flex system (Thermofisher Scientific) according to the company’s protocol. RNA integrity was 541 

measured with the Fragment Analyzer (Agilent) and library generation was continued when integrity was at least 6. Total 542 

RNA-sequencing libraries were depleted from ribosomal and hemoglobin RNAs, and generated using FastSelect (Qiagen) 543 

and Universal Plus mRNA-seq with Nu Quant (Tecan) reagents. Pooled libraries were PE100 sequenced on an HiSeq4000 544 

or PE150 sequenced on an Illumina NovaSeq 6000 S4 flow cell at the CZ Biohub. 545 

 546 

Single-cell epitope and RNA-sequencing preprocessing and alignment 547 

CellRanger v3.1.0 (run 1 to 7, cDNA library generation of run 6 failed) or v4.0.0 (run 8 to 10) software with the default 548 

settings was used to demultiplex the sequencing data and generate FASTQ files (Cellranger mkfastq), align the sequencing 549 

reads to the hg38 reference genome, and generate a unique molecular identifier (UMI)-filtered gene and protein 550 

expression count matrix for each lane (Cellranger count for scRNA-seq and CITE-seq data). Count matrices were then 551 
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concatenated across all 50 lanes to generate two matrices: one mRNA matrix with 971,550 cells and 36,601 genes, and 552 

one surface protein matrix with 971,550 cells and 189 proteins. 553 

 554 

Single-cell epitope and RNA-sequencing processing and quality control 555 

Resulting gene and protein expression count matrices were further processed in the Python package Scanpy v1.5.1 (36). 556 

Processing of the concatenated mRNA count matrix was done using a novel two-step process. We have found empirically 557 

that traditional workflows for the processing of droplet-based RNA-seq data for PBMCs can sometimes create unwanted 558 

effects in the downstream endpoints. In particular, filtering of cells with a high percentage of mitochondrial cells may 559 

create visual artifacts in UMAP projections, and filtering of the matrix to only a few hundred highly-variable genes, while 560 

reducing the memory footprint of the data, can sometimes lead to spurious clustering of cells based on only a few genes. 561 

Our iterative process yields a UMAP projection that captures all available heterogeneity with minimal filtering in the first 562 

iteration, then removes non-target cells and corrects for non-biological signal in the second iteration. By doing this, we 563 

use a relatively large number of components to inform projections and clustering, but observe that the outputs in our 564 

dataset match the known biology better (e.g. proximity of similar cell types and states in UMAP space) and yield higher-565 

confidence annotations.   566 

In the first step, the mRNA matrix was filtered to remove doublet droplets, as annotated by freemuxlet, and very lowly-567 

expressed genes with less than 100 UMIs across the 9 runs. The matrix was then normalized to yield a constant UMI sum 568 

per cell and log transformed. Matrix values were scaled to yield a mean of zero and standard deviation of 1, per gene. 569 

Principal component analysis (PCA) was performed, followed by nearest neighbors, UMAP projection and Leiden 570 

clustering, using an input of the 150 PCs with the highest variance explained and otherwise default Scanpy parameters. At 571 

this stage, Leiden clustering resolution was adjusted and restricted to certain clusters to separate out clusters of cells that 572 

projected into similar UMAP space. These clusters were subsequently annotated to mark those with a high percentage of 573 

mitochondrial content, which typically represent dead or dying cells, as well as mark clusters with high levels of 574 

hemoglobin and platelet factor expression, representing the non-target cell types of red blood cells and platelets. At this 575 

stage, we also observed that there were prominent batch effects in UMAP space that required correction.  576 
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In the second iteration, non-target cell types marked in the first step were removed prior to processing. Then, the same 577 

processing was followed starting from the raw data, with the exception that ComBat batch correction (37) was performed 578 

(to correct for the “run” covariate) after scaling and before performing PCA. Finally, further filtration of a relatively small 579 

number of cells with high expression of platelet, red blood cell, and mitochondrial genes was performed, as well as removal 580 

of donors that declined study participation. After processing, 600,929 cells and 18,262 genes remained in the mRNA 581 

matrix. 582 

The surface protein matrix was filtered to the cells found in the mRNA matrix. One protein was removed from the matrix, 583 

as it appeared to have very low counts relative to the other surface proteins. The remaining proteins were then normalized 584 

using the centered-log ratio (CLR), computed for each gene independently. The CLR has typically been used for CITE-seq 585 

data with the recognition that antibody counts are typically not zero-inflated and FACS-like Gaussian distributions are 586 

achievable when treating the data as compositional. However, we recognized that the CLR-normalized distributions were 587 

affected by a relatively small number of cells that had extremely high or low expression, skewing the visualization of the 588 

Gaussian mixture distributions. To remedy this effect, we identified boundary values of the distributions for each gene 589 

using a bin height threshold when values were plotted on a histogram, clipped the values to these boundaries, and scaled 590 

the remaining values between 0 and 1.   591 

 592 

Cell type classification 593 

After processing, Leiden clustering was adjusted to match the clustering of cells projected into UMAP space. Cell type 594 

annotation was performed at 3 levels of granularity based on known marker gene and protein expression, as well as 595 

differentially expressed genes between clusters using a Wilcoxon rank-sum test. At the lowest level of granularity, we 596 

identified 11 cell types corresponding to the known major cell types present in PBMCs: T4, T8, Tgd, cMs, ncMs, NK, B, PBs, 597 

cDC, pDC and Progen cells. At the next level of granularity, we separate out memory, naïve, and proliferating subtypes in 598 

the lymphocytes; two different subtypes known in each of the NK cells, and conventional DCs; regulatory T cells (Tregs) 599 

from the T4 group; mucosal-associated invariant T (MAIT) cells from the T8 group; subpopulations of lineage-committed 600 

progenitor cells; and a subpopulation of B cells that seemed to be committed to the PB lineage. At the highest level of 601 

granularity, we further separate out a CD8+ effector memory population, an NK population with CD3 transcript expression, 602 
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early and late proliferating subpopulations in the lymphocytes, and a few subpopulations that were either donor-specific 603 

(patients 1002 in the B cells and 1006 in the monocytes) or run-specific (i.e. cells from run 3, which exhibited some 604 

processing issues and for which ComBat (37) was unable to correct).  605 

 606 

Differential proportion analysis  607 

Differences in cell type proportions were assessed in C19+ versus C19- cases or Healthy controls by aggregating cell type 608 

observations per COVID status at timepoint D0. Additionally, in the C19+ cases for which all 4 timepoints were available, 609 

cell type proportion changes were assessed over time. Differential proportion analysis was performed using a 610 

permutation-based approach that compares observed cell type proportion differences with those calculated from a null-611 

distribution that is generated by randomly shuffling cell type labels (100,000 permutations) for a fraction (w=0.1) of the 612 

total cells, as described previously (38). Resulting p-values were corrected for multiple testing using Holm’s correction, 613 

after which an adjusted p-value of <0.05 was considered significant. 614 

 615 

Differential expression analysis 616 

Differences in gene expression levels were determined for each of the myleoid cell types between C19+ cases at D0, D4, 617 

D7 or D14 versus Healthy controls. To assess whether these changes are specific for C19+ cases or are a more general 618 

phenomenon as a consequence of acute respiratory distress syndrome, we also compared the upregulated genes with the 619 

C19- cases. Differential expression analysis was performed per run on the raw gene expression matrix using Memento 620 

v0.0.4 (unpublished, Kim MC et al. https://github.com/yelabucsf/scrna-parameter-estimation), after which results were 621 

meta-analyzed over all runs. Genes were pre-filtered based on a minimum raw mean expression of  0.07 within at least 622 

90% of both comparison group. A false discovery rate of <0.05 was used to determine statistical significance.  623 

 624 

Differential expression heatmaps 625 

Heatmaps show the pseudobulked, Z-scored expression values of the donors present at each time point for the top 626 

significantly upregulated genes. To generate the heatmaps, cells were first subsetted from the larger mRNA matrix to only 627 
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those of a given cell type. Counts were pseudobulked across all genes by patient present at each time point, yielding a 628 

single gene-by-sample matrix, with 179 unique donor-timepoint samples. The genes in this matrix were subsetted to the 629 

union of the top 150 genes with the highest differential expression coefficient at each timepoint, using the 1-dimensional 630 

memento results that tested gene counts in C19+ cases vs. healthy controls. Genes were further filtered to remove those 631 

that had high variance in healthy controls (standard deviation > 0.5), since these were enriched for what seemed to be a 632 

non-biological signal (e.g. ribosome-associated genes). The matrix, now with 204 genes, was then Z scored and separated 633 

by time point to 4 matrices, with healthy samples being distributed to each matrix. 634 

Ordering of the rows and columns were computed such that they would be consistent among the heat maps. Genes were 635 

clustered by k means using only the values of the day 0 time point, with k=6 chosen by the “elbow” point of the graph 636 

plotting distortion (using a sum of square errors cost function) with increasing numbers of clusters. Columns of each 637 

heatmap were determined by taking the 80 columns across all heatmaps that had the earliest time point for each donor, 638 

subsetting according to their disease status (Healthy, COVID-19 negative, and COVID-19 positive), and then hierarchically 639 

clustering within each of those groups. With this ordering, each donor then had a unique position along the horizontal 640 

axis, which was then applied to all the heatmaps, omitting those samples that were absent from a given time point. GSEA 641 

was done using the GOATOOLS Python package (39), filtering to terms with at least 2 associated genes. 642 

 643 

Interferon Stimulated Gene Score Method 644 

An orthogonal scRNA-seq dataset containing PBMCs stimulated with IFN beta and gamma was used to identify the specific 645 

and shared type I and type II ISGs in the cMs (unpublished). The gene list was used to calculate a type I, type II and shared 646 

ISG score based on the average gene expression count of the unique or shared type I and type II ISGs. These ISG scores 647 

were calculated for each unique combination of cell type, donor and timepoint. Subsequently, ISG scores were averaged 648 

over each of the disease categories (C19+ moderate/severe, C19- moderate/severe, healthy control) and then log2-649 

transformed. A Welch’s T-test was performed to compare the ISG score between C19+ patients and healthy control. 650 

Significance was defined as Bonferroni-adjusted p-value < 0.05. 651 

 652 
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SARS-CoV-2 detection by clinical qRT-PCR 653 

Viral titers were quantified in a subset of the C19+ patients in the UCSF CLIAHUB Clinical Microbiology Laboratory. For this, 654 

RNA was extracted from tracheal aspirate samples and used for qRT-PCR as previously described (40). In short, viral titers 655 

were assessed using primers targeting the SARS-CoV-2 N gene (Ct1), E gene (Ct2) and human RNAse P gene (Ct_host, 656 

positive control). The Ct value of the viral N or E gene was subtracted from the human RNAse P gene (delta Ct: dCt1 and 657 

dCt2) and number signs were reversed to obtain a measurement for viral load. As there was an almost perfect correlation 658 

between dCt1 and dCt2 values (Pearson R = 0.99, p = 1.9 x 10-283) and dCt2 had the least missing values, viral load is 659 

represented by the dCt2 values. dCt2 values as measured in the tracheal aspirate samples were linked to the scRNA-seq 660 

PBMC data of the same donor, and the closest possible timepoint (up to 2 days apart).  661 

 662 

Radioligand binding assay for anti-IFN-2 autoantibody detection 663 

A DNA plasmid containing full-length cDNA sequence with a Flag-Myc tag (Origene #RC221091) was verified by Sanger 664 

sequencing and used as template in T7-promoter-based in vitro transcription/translation reactions (Promega, Madison, 665 

WI: #L1170) using [S35]-methionine (PerkinELmer, Waltham, MA; #NEG709A). IFN-2 protein was column-purified using 666 

Nap-5 columns (GE Healthcare, Chicago, IL; #17-0853-01), incubated with 2.5ul serum, or 2.5ul plasma, or 1ul anti-myc 667 

positive control antibody (CellSignal, Danvers, MA; #2272), and immunoprecipitated with Sephadex protein A/G beads 668 

(Sigma Aldrich, St. Louis, MO; #GE17-5280-02 and #GE17-0618-05, 4:1 ratio) in 96-well polyvinylidene difluoride filtration 669 

plates (Corning, Corning, NY; #EK-680860). The radioactive counts (cpms) of immunoprecipitated protein was quantified 670 

using a 96-well Microbeta Trilux liquid scintillation plate reader (Perkin Elmer). Antibody index for each sample was 671 

calculated as follows: (sample cpm value – mean blank cpm value) / (positive control antibody cpm value – mean blank 672 

cpm value). For the COVID-19 patient and convalescent plasma cohorts, a positive signal was defined as greater than 6 673 

standard deviations above the mean of pre-COVID-19 blood bank non-inflammatory controls. For the large asymptomatic 674 

San Francisco community population cohort, a positive signal was defined as having a z-score greater than 3.3 (p=0.0005) 675 

relative to the whole cohort. 676 

 677 
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Luciferase reporter assays 678 

The blocking activity of anti-IFN- autoantibodies was determined by assessing a reporter luciferase activity. Briefly, 679 

HEK293T cells were transfected with the firefly luciferase plasmids under the control human ISRE promoters in the 680 

pGL4.45 backbone, and a constitutively expressing Renilla luciferase plasmid for normalization (pRL-SV40). Cells were 681 

transfected in the presence of the X-tremeGene 9 transfection reagent (Sigma Aldrich) for 36 hours. The, Dulbecco’s 682 

modified Eagle medium (DMEM, Thermo Fisher Scientific) medium supplemented with 10% healthy control or patient 683 

serum/plasma and were either left unstimulated or were stimulated with IFN-, IFN- or IFN-β (10 ng/mL) for 16 hours 684 

at 37°C. Each sample was tested once. Finally, Luciferase levels were measured with the Dual-Glo reagent, according to 685 

the manufacturer’s protocol (Promega). Firefly luciferase values were normalized against Renilla luciferase values, and 686 

fold induction is calculated relative to controls transfected with empty plasmids. 687 

 688 

 689 

 690 

  691 
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