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ABSTRACT

Universities have turned to SARS-CoV-2 models to examine campus reopening strategies' ™. While
these studies have explored a variety of modeling techniques, all have relied on simulated data.
Here, we use an empirical proximity network of college freshmen''V, ascertained using smartphone
Bluetooth, to simulate the spread of the virus. We investigate the role of testing, isolation, mask
wearing, and social distancing in the presence of implementation challenges and imperfect compliance.
Here we show that while frequent testing can drastically reduce spread if mask wearing and social
distancing are not widely adopted, testing has limited impact if they are ubiquitous. Furthermore,
even moderate levels of immunity can significantly reduce new infections, especially when combined
with other interventions. Our findings suggest that while testing and isolation are powerful tools, they
have limited benefit if other interventions are widely adopted. If universities can attain high levels of
masking and social distancing, they may be able to relax testing frequency to once every two to four
weeks.
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Introduction

When SARS-CoV-2 escalated to a pandemic in early 2020, universities and colleges around the world were forced to
rapidly pivot to virtual instruction. Students were sent home and residential campuses were locked down as schools
struggled to adapt to a new normal. As the pandemic continued into the summer, universities were faced with a difficult
choice: reopen campuses with some return to traditional in-person instruction or continue teaching entirely online.

In the autumn of 2020, college administrators around the world turned to simulations to understand how enhanced
public health protocols could mitigate the spread of SARS-CoV-2 on their campuses. Studies examined an assortment
of preventive techniques and made different assumptions about compliance with their proposed policies™®. However,
while researchers explored a variety of modeling techniques, from compartmental homogeneous mixing models to
contact networks to agent-based models, all studies so far have only used simulated data. In their review of COVID-19
modeling studies in a university setting, Christensen et al. advocated for more research to be done using empirical
mixing data”. Here we take up that charge and examine how using a real-world contact network of students on a college
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campus, ascertained using smartphone Bluetooth data, changes our understanding of the role of repeat testing, isolation,
and other strategies in the mitigation of SARS-CoV-2.

While several countries have recently begun to offer SARS-CoV-2 vaccines to their residents, the Council on Foreign
Relations estimates that it will take years for the majority of the world’s population to become immunized against the
virus!l, Furthermore, little is known about how long vaccine-induced immunity will last, whether it will protect against
transmission, and how it will respond to more virulent strains of SARS-CoV-2, such as those that have emerged in early
2021. Yet, in spite of an unprecedented surge in COVID-19 cases in the United States and elsewhere, more colleges are
making plans to reopen for the 2021 spring and fall semesters'?. While mitigation measures like testing and isolation
can be costly and resource intensive, many colleges face dire financial straits if they fail to reopen their campuses.

Methods

Data. We analyze a close proximity interaction network from the Copenhagen Networks Study (CNS), which enrolled
students from the Technical University of Denmark. Over 1, 000 students volunteered for the study, which examined
multiple types of communication networks among this highly interconnected group'?. High-quality network data is
rare, largely due to privacy concerns. As such, the researchers made privacy a central component of the study, providing
participants with a platform to explore and visualize their data before consenting to its inclusion in the study". For this
work, we focus exclusively on the Bluetooth proximity data from 706 students, which was made publicly available as
of December 20191¢,

Loaner smartphones were issued to study participants, who agreed to use the device as their primary phone for the
duration of the study. Devices were configured to be Bluetooth discoverable at all times and to scan for nearby devices
every five minutes. When scanning, a device emits a ping and receives responses from all nearby Bluetooth devices.
Both devices then log this call and response, recording the device ID, timestamp, and an indicator of received signal
strength (RSSI). This RSSI roughly correlates with physical distance; high values indicate close proximity while smaller
values suggest the devices are distant or blocked by a physical barrier. Information on directionality was discarded
so that the resulting data was symmetrical. Additionally, we removed empty scans and identifiers from devices not
participating in the study. While the CNS followed students for several years, Bluetooth proximity data is only available
for 28 days starting in February 2014.

The median number of proximity events per user over the course of the study was 10, 731 with a corresponding
minimum of 1 and maximum of 30, 307. The mean was 11, 190.6 events per user, or about 400 events per day, with
a standard deviation of 5, 131.3 or about 183 events per user per day. 5.9% and 11.2% of users had proximity event
counts below 2800 (about 100 per day) and 5600 (about 200 per day) events, respectively, indicating perhaps not all
participants were fully compliant in regularly using the study-issued device. The number of proximity events per user
per day is shown in Figure 1.

Contact Network. Standard Bluetooth technology can detect devices as far as 5-10 meters away'*. However, since
SARS-CoV-2 is generally only spread when individuals are near one another, we focused on close proximity interactions,
excluding data with an RSSI value less than —75 dBm. Previous studies have shown this RSSI threshold roughly
corresponds to one meter- %,

We generated separate contact networks for each day of the simulation. For each day, we computed the number of close
proximity interactions (i.e. RSSI > —75 dBm) between every pair of participants. Because devices were configured
to scan every five minutes, a unique entry is recorded for every five minute time interval where a ping occurred. As
such, the number of close proximity interactions between a pair of students is equivalent to the number of five minute
intervals where a ping occurred. For instance, twelve interactions could represent one long continuous interaction that
spanned an hour or several short intermittent interactions that took place over the course of a day. Both scenarios are
interchangeable in our model, with the number of five minute intervals containing an interaction dictating the spread of
the virus.

In order to model a typical university semester, we looped through the CNS data four times, thereby simulating a total of
16 weeks worth of interaction data. Thus, while the network structure varies from day to day, each four-week segment
is identical. Although our approach does not capture seasonal trends in proximity, it does capture the stark contrast
between weekdays and weekends. Also, the direction and strength of seasonal trends varies by latitude, which might
need to be accounted for depending on the specific locale of the university one wishes to model.

Epidemic Model. To model the spread of SARS-CoV-2 over the proximity network described in the previous section,
we used a discrete-time stochastic susceptible-exposed-infectious-recovered (SEIR) compartmental model, shown in
Figure 2. At each time step, individuals advance to the next compartment or remain in their current one probabilistically.
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Figure 1: Number of proximity events per user per day for 675 students in the Copenhagen Network Study prox-
imity data'?, Only close proximity Bluetooth connections (RSSI > —75, corresponding to physical proximity of
approximately one meter) with participating devices are shown, corresponding to 8.0% of all detected proximity events.
Number of active users indicates users with at least one Bluetooth ping with a fellow participants. All other users only
had empty scans or pings with non-participating devices.

Because a significant fraction of COVID-19 patients are asymptomatic, estimated at 30.0% overall’3, we further divided
the infectious compartment into symptomatic and asymptomatic subcompartments with separate transition probabilities
into and out of these compartments. We allowed asymptomatic individuals to remain asymptomatic for the duration of
their infection; that is, we did not assume all infected individuals eventually developed symptoms.

Transition probabilities were structured as follows. At each time step, for each close proximity interaction, an infectious
individual could transmit the virus to a susceptible individual with probability 5. This parameter could be set to a
universal value across all pairs of individuals, or be pair-specific, allowing for heterogeneous transmission probabilities
that vary based on the pair’s precautions. Each interaction between an infectious individual and a susceptible individual
was treated as an independent event, such that the probability of becoming exposed increased linearly with the number
interactions with an infectious individual. Once an individual entered an exposed state, their symptom status was
determined via Bernoulli trial. At each subsequent time step, exposed individuals transitioned to either a symptomatic
infectious state or an asymptomatic infectious state with probabilities o5 and o, respectively. We set o5 = 0, = 1/3,
leading to an average latent period of 3 days, consist with the hteraturei Infectious individuals then transitioned to a
recovered state with probabilities s and 7, for symptomatic and asymptomatic individuals, respectively. Infectious
times vary by disease severity, with mild to moderate cases infectious for no longer than 10 days after symptom onset
and severe cases infectious for no longer than 20 days after symptom onset”. As such, we selected ~ values such
that asymptomatic cases, which are inherently mild, had an average infectious period of 7 days while symptomatic
cases had an average infectious period of 12 days. Note that in the case of symptomatic infection, this period includes
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Figure 2: Modified SEIR model for the spread of SARS-CoV-2. § is a pair-specific transition probability per
5-minute close proximity interaction. All other transition probabilities are constant at each time step and do not
incorporate the underlying contact network. For specific parameter values, see Table 1.

a pre-symptomatic period where the student is able to infect others. If an individual did not transition to the next
compartment at a given time step, they were considered for transition at each subsequent time step.

In addition to infection via the contact network, we also allowed each individual to develop infection due to outside
exposure, i.e., an exposure acquired from the broader community, such as the urban environment within which the
university is located. At each time step, all susceptible individuals had 7., = 0.002 probability of becoming exposed,
regardless of their contact network interactions.

Testing. We considered symptomatic testing and scheduled testing in our simulations, and assumed both types of
testing were done via polymerase chain reaction (PCR). Symptomatic testing occurs when a student seeks testing
after experiencing symptoms. However, at each time step only a fraction of symptomatic individuals seek testing as
inevitably a portion of the population will dismiss their symptoms. For those that do present for testing, we incorporated
a short delay between symptom onset and testing. This delay could be attributed to difficulty in scheduling a testing
appointment, the patient waiting to see if symptoms persist, or some combination of the two. Note that each infectious
symptomatic individual only seeks testing once during their illness; if the individual tests negative, they do not pursue
further symptomatic testing. In order to account for individuals who may experience non-COVID related flu-like
symptoms, a fraction of non-infectious individuals also present for symptomatic testing at each time step. These
uninfected individuals may present for symptomatic testing multiple times over the course of the semester.

Under scheduled testing, every member of the population is tested regularly in an effort to identify additional cases that
would otherwise go undetected. At each time step, a fixed fraction of the population is tested. For instance, if the entire
population is to be tested every 7 days, then 1/7 of the population is each tested each day of the week. Furthermore,
individuals are always tested at regular intervals so that the time between tests is constant for each student. However,
our model allows for a small fraction of the population to be non-compliant at each time step, thereby missing their
scheduled test.

For both types of testing, test sensitivity was dependent on the time since exposure. To model this sensitivity, we used
the nasopharyngeal swab data from Wikramaratna et al''®. However, because their model only included the time after
symptom onset, we had to impute pre-symptomatic test sensitivity. Our model assumes that symptomatic infectious
students develop symptoms two days after becoming infectious. Research has shown that viral load peaks at symptom
onset, with similar loads pre- and post-symptom onset'. As such, we mirrored the post-symptomatic sensitivity so that
the two days prior to symptom onset had the same sensitivity as the two days after symptom onset. We assumed zero
test sensitivity during the latent period and beyond the data available from Wikramaratna et al. We used this model for
all students, regardless of symptom status, as studies have shown viral loads are comparable between symptomatic and
asymptomatic patients'?. Figure 3 illustrates the functional form for our test sensitivity model. Specificity was fixed at
99% for all susceptible and recovered individuals, a widely reported specificity among COVID-19 tests approved for
use by the U.S. Food and Drug Administration",
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Figure 3: SARS-CoV-2 test sensitivity based on nasopharyngeal swab data adapted from Wikramaratna et al'®. Test
sensitivity outside the range shown here was assumed to be zero.

Isolation. Upon testing positive, individuals were considered for isolation, regardless of their true underlying disease
state. Each individual was assigned a delay that dictated the number of days between testing positive and being eligible
for isolation. This delay, which captures both the lag between testing and receiving results and the time needed to
enter isolation, could be set to a universal value for all individuals or be individual-specific. Once an individual’s
delay elapsed, they immediately entered isolation. However, individuals were also assigned an isolation compliance
probability, drawn from a Beta(5,0.5) distribution (mean: 0.91, standard deviation: 0.11). At each time step, each
individual in isolation could either be deemed fully compliant or wholly non-compliant based on a Bernoulli trial using
their compliance probability. If compliant, the individual remained in isolation, unable to infect others for that time
step. If non-compliant, the individual would participate in their usual interactions during that time step and could infect
others via their contact network. An independent trial was conducted each day the individual was in isolation. Isolation
duration was set to 10 days based on the latest Centers for Disease Control and Prevention guidelines!.

Scenarios. Due to the stochastic nature of our model, each simulation was repeated 100 times to capture variability
in the spread of the virus. This is particularly important given our underlying contact network; the location of initial
infections can be highly influential in the ultimate course of the epidemic.

Overall parameter settings are summarized in Table 1. The time step for our simulations was set to one day; transition
probabilities and other parameters were scaled to reflect this choice. For our first scenario, we set the transmission
probability to a universal value for all individuals and explored low, medium, and high transmission scenarios, setting
£ =0.003078, 8 = 0.006157, and 3 = 0.009235, respectively. The small magnitude of these transmission probabilities
reflects the fact that they are per 5-minute interaction. These transmission probabilities roughly correspond to Ry values
of 1.5, 3.0, and 4.5, though there is considerable variability in the frequency of contacts across both participants and
days. For each of these transition probabilities, we examined scheduled testing frequencies of 3, 7, 14, and 28 days.
While our model allowed for individual-specific values, the symptomatic testing delay and isolation delay were set to a
single value for all individuals. Isolation compliance, however, varied across individuals as described previously.

Transmission Mitigation. In addition to these low, medium, and high transmission scenarios, we also considered a
setting where student behavior led to individual-specific transmission rates. Under this setting, each pair of student
had a unique 3 value based on the interventions they had adopted. We specified a proportion of the population that
would wear face masks, and randomly assigned a proportion of the population to abide by social distancing. Since
homophily, the tendency for people to associate with others whom they perceive to be similar to themselves, is typically
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Epidemic Model
Jé] 0.003 — 0.009  probability of transmission per 5-minute interaction™
Tex 0.002 probability of external infection per day
Tai 0.3  probability of asymp. infection'>
|To] 1 number of initial infections
Oa 1/3  transition probability: exposed to asymp. infectious®
O 1/3  transition probability: exposed to symp. infectious'®
Ya 1/7 transition probability: asymp. infectious to recovered
Ys 1/12  transition probability: symp. infectious to recovered-’
Testing
Tse 0 —0.96 sensitivity, time-varying*1®
Tsp 0.99 specificity?"
Tsy 1day delay between symptom onset and symp. testing
Tse 0.01 probability non-compliant with scheduled testing
sy 0.25 probability non-compliant with symp. testing
T s 0.005 probability non-infectious present for symp. testing
Isolation
Tid 1day delay between testing and entering isolation
Tic Beta(5,0.5) isolation compliance
Tip 10 days isolation period!
Transmission Mitigation
Nfm 0.15 reduction in transmission probability for mask wearing??
Nsd 0.18 reduction in transmission probability for social distancing?
Tfm 0 —1 proportion of the population wearing face masks*
Tsd 0 —1 proportion of the population social distancing*
Tim 0 — 0.4 proportion of the population immune*

Table 1: Parameters for simulation scenarios. Transmission probability, 5 is per 5-minute interaction with an
infectious individual. All other epidemic transition parameters are per day, giving an average latent period of 3 days and
an average infectious period of 7 and 12 days for asymptomatic and symptomatic infections, respectively. *Transmission
probabilities, proportion of the population wearing face masks, proportion of the population social distancing, and
proportion of the population immune varied across simulations. Test sensitivity was time-varying. An overview of the
epidemic model is shown in Figure 2. For additional details on parameter values, see the corresponding sections of the
Methods.

present in social networks?, we hypothesized that friend groups might share similar views about COVID-19 and related
mitigation efforts. We therefore considered both clustered and non-clustered assignment of mask wearing across the
network, a scenario which cannot be studied with standard epidemiological models. Under non-clustered assignment,
participants were randomly assigned to either follow one precaution, both precautions, or neither. To create clusters of
mask users, we created a weighted contact network for the entire study period where each edge represented at least
one contact between two participants. Each edge was weighted by the number of contacts over the entire course of the
study. A set of 7 initial seed nodes were randomly chosen to wear face masks. We then “spread” mask wearing to their
contacts where neighbors with more interactions had a higher probability of wearing a face covering. This process was
iterated until the desired proportion of mask wearers was reached.

Based on the work by He et al.“%, we hypothesized that social distancing would reduce baseline transmission by a

multiple of 0.18 and that each face covering would reduce baseline transmission by a multiple of 0.15. Thus, for each
participant who wore a face mask, pair-wise transmission was reduced by 85%. Social distancing is symmetric in
nature, so if one or both participants complied, their transmission was reduced by 82%. For this analysis, we used a
baseline § = 0.006157.

We also performed a sensitivity analysis with reduced efficacy of masking and social distancing using alternative
efficacies found in the literature. For each participant who wore a face mask, pair-wise transmission was reduced by
only 68%2%. Similarly, social distancing reduced transmission by only 23%22.
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Figure 4: Proximity networks by day for 675 students. Each node represents a study participant and each edge
represents the presence of one or more Bluetooth pings on that day. Only close proximity Bluetooth connections (RSSI
> —75, corresponding to physical proximity of approximately one meter) with participating devices are shown. For
each day, the largest connected component is shown at left, with the remaining connected components displayed at
right ordered from largest to smallest.
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We considered the setting where a proportion of the population was immune, either due to previous illness or vaccination.
Participants were randomly assigned to either be immune or susceptible. If a participant was set to be immune, they
remained immune for the duration of the simulation and did not become ill or infectious.

Lastly, to examine the comparative effectiveness of the interventions we considered, we performed an ordinary least
squares regression analysis for the moderate transmission scenario (8 = 0.006157 or Ry ~ 3.0). The dependent
variable was cumulative incidence over the course of the simulated semester while the independent variables were
testing frequency, proportion wearing face masks, proportion social distancing, and proportion immune. Because
simulations were repeated multiple times, each combination of parameters had 100 realizations.

Results

After removing non-participating devices and empty scans from the Bluetooth data, there were a total of 2, 426, 279
Bluetooth pings (44.3% of all pings) and 692 users (98.0% of all users), indicating 14 users did not have any proximity
events with other study participants. The proximity networks for each of the 28 days of the study are shown in Figure
4. The networks have a large connected component on the weekdays when students are likely active on campus and
attending classes. On the weekends, shown in the first and last columns of Figure 4, the networks are more loosely
connected and fewer users are interacting with fellow study participants.

Incidence for our low (Ry ~ 1.5), moderate (Ry =~ 3.0), and high (Ry ~ 4.5) transmission scenarios are shown in
Figure 5. Regardless of transmission levels, increased testing frequency reduced the number of infections observed
over the course of the semester, though the effect was relatively small for the low transmission scenario. For Ry ~ 1.5,
testing every 3 days resulted in an average of 29.2% of students infected by the end of the semester, while testing
every 7, 14, and 28 days gave rise to 31.8%, 36.4%, and 40.7% students infected, respectively (no testing: 53.2%). For
Ry = 3.0, testing every 3 days resulted in an average of 42.1% of students infected by the end of the semester, while
testing every 7, 14, and 28 days gave rise to 47.4%, 54.9%, and 61.4% of students infected, respectively (no testing:
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Figure 5: Number of students infected over the course of a simulated 16 week semester. Rows show different
epidemic parameters with Ry ~ 1.5, Ry =~ 3, and Ry =~ 4.5, respectively. Columns show scenarios where scheduled
testing was done every 3, 7, 14, and 28 days, respectively, and where no testing was done. Grey lines show individual
simulations, while blue lines indicate the point-wise average trajectory over all 100 replicates. Vertical red lines and text
indicate the average time to reach 20% of the population infected, computed by identifying the time to 20% infected for
each realization and averaging those times.

73.4%). Finally, for Ry ~ 4.5, testing every 3 days resulted in 54.2% of students infected by the end of the semester,
while testing every 7, 14, and 28 days gave rise to 60.3%, 67.3%, and 72.6% of students infected, respectively (no
testing: 81.1%). Thus, while increased testing and subsequent isolation impacted the number of infections for a given
transmission probability, ultimately reducing disease transmission had a greater impact on cumulative incidence.

For Ry ~ 1.5, testing every 3 days resulted in 202.0 cumulative infections on average (standard deviation 19.1),
while testing every 7, 14, and 28 days gave rise to 220.3 (23.5), 251.7 (27.1), and 281.6 (25.8) cumulative infections,
respectively. No testing or isolation resulted in 367.9 cumulative infections on average (standard deviation 25.7).
For Ry ~ 3.0, testing every 3 days resulted in an average of 291.0 cumulative infections (standard deviation 25.9),
while testing every 7, 14, and 28 days gave rise to 328.2 (28.2), 380.2 (26.3), and 425.0 (22.7) cumulative infections,
respectively. No testing or isolation resulted in 507.7 cumulative infections on average (standard deviation 14.3).
Finally, for Ry ~ 4.5, testing every 3 days resulted in 375.1 cumulative infections on average (standard deviation 25.9),
while testing every 7, 14, and 28 days gave rise to 417.6 (22.8), 466.0 (17.9), and 502.4 (17.1) cumulative infections,
respectively. No testing or isolation resulted in 561.4 cumulative infections on average (standard deviation 11.1).

The number of positive tests and isolations for our low, moderate, and high transmission scenarios are shown in Figures
6 and 7, respectively. As expected, more frequent testing leads to more positive tests and isolations. While the number
of positive tests mirrors the number of infections, for each scenario testing captures only a fraction of those infected.
Notably, we see much more variability in the number of positive tests, with the highest variability seen for the more
frequent testing scenarios and for the highest R values.

As shown in Figure 5, in the low transmission setting the time to infect 20% of all students was 44 days on average
without any testing or isolation; testing just once every four weeks increased this time to 55 days, while testing twice a
week resulted in 20% of students being infected at day 75 on average. For the moderate transmission setting, it took
only 31 days to infect 20% of the student population without testing; testing every four weeks only bought the university
6 additional days, while testing every 3 days led to 20% of students infected at day 52 on average. Finally, under the
high transmission scenario, no testing led to 20% of the population infected in less than four weeks, on average at day
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Figure 6: Number of students who tested positive over the course of a simulated 16 week semester. Rows show
transmission probabilities of 5 = 0.003078 (Rg =~ 1.5), 8 = 0.006157 (Ry ~ 3), and 8 = 0.009235 (Ry =~ 4.5),
respectively. Columns show scenarios where scheduled testing was done every 3, 7, 14, and 28 days, respectively. Grey
lines show individual simulations, while blue lines indicate the average trajectory over all 100 replicates. Vertical red
lines and text indicate the average time to reach 20% infected.

25; testing every 28 days only prolonged this by 3 additional days while testing every 3 days bought the university
nearly two weeks, but still led to 20% infected by day 38 on average. Hence, testing frequency delayed spread most
under the moderate transmission setting, where transmission was high enough for testing to have an impact, but not so
high that its efficacy was significantly impeded by delays and compliance issues.

Results for our mask wearing and social distancing scenarios are shown in Figure 8, summarized by relative cumulative
incidence. Each cell displays the cumulative incidence with testing divided by the cumulative incidence without testing
under comparable levels of mask wearing and social distancing. A value of 1 indicates that testing did not increase
or decrease cumulative incidence while a value of 0.5 indicates that testing offered a 50% reduction in cumulative
incidence relative to no testing. Testing was most effective at reducing cumulative incidence under low to moderate
levels of mask wearing and social distancing since there was more room for improvement. If mask wearing and social
distancing were ubiquitous, testing offered only small declines in cumulative incidence since the virus was already well
controlled. For a given prevalence of mask wearing and social distancing, testing less frequently offered fewer gains
than testing more frequently. Somewhat surprisingly, there was little to no decline in efficacy when mask wearing was
clustered on the contact network, perhaps due to the highly connected nature of the network.

Results from our sensitivity analysis are shown in Figure 9. Under this scenario, with only a 23% reduction in
transmission, social distancing had little to no effect on infections. However, despite reduced efficacy, high levels of
masking led to sizeable reductions in cumulative incidence. Compared to our original analysis, frequent testing had a
much greater impact when masking and distancing were less efficacious. In general, if less than 70% of the population
wore masks, frequent testing led to a considerable reduction in infections, regardless of distancing, with more than
frequent testing leading to greater gains.
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Figure 7: Number of students isolated over the course of a simulated 16 week semester. Rows show transmission
probabilities of 8 = 0.003078 (Ry =~ 1.5), 8 = 0.006157 (Ry = 3), and 5 = 0.009235 (Ry ~ 4.5), respectively.
Columns show scenarios where scheduled testing was done every 3, 7, 14, and 28 days, respectively. Grey lines show
individual simulations, while blue lines indicate the average trajectory over all 100 replicates. Vertical red lines and text
indicate the average time to reach 20% infected.

Lastly, we considered the setting where a proportion of the population was immune, either due to previous illness or
vaccination, results of which are shown in Figure 8. Initial immunity, even in a small fraction of the population, reduced
the impact of regular testing. Under no immunity, testing every 3 days offered sizeable benefits if mask wearing and
social distancing were below 60%. However, with 20% and 40% immune, testing every 3 days only offered sizeable
benefits if mask wearing and social distancing were below 40% and 30%, respectively. Thus, if universities can achieve
high levels of mask wearing, social distancing, and/or immunity, our simulations demonstrate they may be able to test
less frequently with little or no change in cumulative incidence.

To investigate the comparative effectiveness of testing and isolation, mask wearing, social distancing, and immunity, we
conducted a regression analysis of cumulative incidence over all of our moderate transmission simulations (R ~ 3.0).
Cumulative incidence drops by 4.00 or 0.58 per 100 students for every one week increase in testing frequency. Every
10% increase in the proportion of the population social distancing reduces cumulative incidence by 4.56 or 0.66 per
100 students. Likewise, every 10% increase in the proportion wearing masks reduces cumulative incidence by 5.74 or
0.83 per 100 students. Lastly, every 10% increase in the proportion immune decreases cumulative incidence by 17.08
or 2.47 per 100 students. Thus, though testing might be the easiest intervention for colleges to enforce, it also offers the
smallest reduction in cases.

Discussion

When universities abruptly shifted to virtual instruction in the spring of 2020, few anticipated that schools would be
grappling with these same challenges nearly a year later. While the past year has given us the promise of effective
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Figure 8: Relative cumulative incidence for various proportions of the population social distancing and/or
wearing masks. Each cell displays the cumulative incidence with testing divided by the cumulative incidence without
resting under comparable levels of social distancing and mask wearing. Rows one and two show the setting where
precautions were randomly assigned to participants and where mask wearing was clustered on the network, respectively.
Rows three and four show random assignment of mask wearing and social distancing, but with 20% and 40% of the
population immune to SARS-CoV-2 at the outset, respectively. Columns show scenarios where testing was done every
3, 7, 14, and 28 days. In each panel, we consider the moderate transmission scenario with Ry ~ 3. A value of 1
indicates that testing offered no reduction in cumulative incidence while a value of 0.5 indicates that testing reduced the
cumulative incidence by 50% relative to no testing. All comparisons are for comparable levels of mask wearing and
social distancing.

vaccines and more insight into the dynamics of SARS-CoV-2, schools are still facing an uncertain future. With bumpy
vaccine roll-outs and the financial strains of decreased enrollment, many colleges wonder when they will be able to
return to some sort of normalcy and what steps they can take to get there sooner<?. In this paper, we have endeavored
to attenuate some of that uncertainty by examining the efficacy of regularly scheduled (i.e., screening) testing in a
residential college population. We found that while testing should be an integral part of every university’s mitigation
strategy, steps to reduce transmission among students have a far greater impact. As such, if colleges can achieve low
transmission rates, they may be able to relax testing to once or twice a month. While our focus is on a university setting,
our methods and results could be applied to other residential environments.

Unlike previous studies, we used a real-world contact network as the basis for our simulation, allowing us to capture
the underlying heterogeneous social behavior of college students, which undoubtedly alters how the virus spreads.
Additionally, much of the previous work in this area accounted for only a handful of implementation obstacles and
compliance issues. Not only do we allow for external infections, a background rate of influenza-like illness, time-
dependent test sensitivity, and test result delays, but we also allow for student non-compliance throughout the testing
and isolation process.

While our model incorporated many of the challenges we expect to occur on campus, we did not explicitly model
contact tracing or vaccine roll-out. We also do not estimate the number of adverse outcomes expected to occur, though
deaths and hospitalizations could be approximated from our results if additional assumptions were made. Furthermore,
the close proximity data we use dates from well before the pandemic when students were not limiting their interactions
with others. Thus, our simulations represent a worst case scenario where students go about their daily lives until they test
positive and enter compulsory isolation. However, if universities encourage social distancing, mandate mask-wearing,
enhance cleaning protocols, and improve ventilationZ, they may be able to reduce interpersonal transmission to the
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Figure 9: Relative cumulative incidence for various proportions of the population social distancing and/or
wearing face coverings with reduced efficacy of masking and distancing. Values are relative to a scenario with
comparable proportions of social distancing and mask wearing, but with no testing. Columns show scenarios where
testing was done every 3, 7, 14, and 28 days, respectively, with Ry ~ 3.

levels we have explored here. These approaches, along with conduct codes, could offer schools a buffer against risky
student behaviors.

While this work offers a different look at how repeat testing, isolation, and other strategies can reduce the spread
of SARS-CoV-2 on college campuses, it is important to note that there is no one size fits all approach@. The most
successful schools will tailor their approach to their specific situation and adapt as circumstances changes. Indeed, the
most advantageous strategy may be an agile one where testing frequency is adjusted based on current transmission
dynamics, an approach which has yet to be studied rigorously.

Data and materials availability: Proximity network data from the Copenhagen Network Study are in the public
domain (https://doi.org/10.6084/m9.figshare.7267433). All models and code for this project are available through
GitHub (https://github.com/onnela-lab/covid-campus).
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