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Abstract

Purpose of the review: Immunotherapy strategies alternative to current antiretroviral therapies 

will need to address viral diversity while increasing the immune system’s ability to efficiently 

target the latent virus reservoir. Antibody-based molecules can be designed based on broadly 

neutralizing and non-neutralizing antibodies that target free virions and infected cells. These 

multispecific molecules, either by IgG-like or non-IgG-like in structure, aim to target several 

independent HIV-1 epitopes and/or engage effector cells to eliminate the replicating virus and 

infected cells. This detailed review is intended to stimulate discussion on future requirements for 

novel immunotherapeutic molecules.

Recent findings: Bispecific (bs−) and trispecific antibodies (tsAbs) are engineered as a single 

molecules to target two or more independent epitopes on the HIV-1 Envelope (Env). These Ab-

based molecules have increased avidity for Env, leading to improved neutralization potency and 

breadth compared to single parental Abs. Furthermore, bs- and tsAbs that engage cellular 

receptors with one arm of the molecule help concentrate inhibitory molecules to the sites of 

potential infection and facilitate engagement of immune effector cells and Env-expressing target 

for their elimination.

Summary: Recently engineered Ab-based molecules of different sizes and structures show 

promise in vitro or in vivo and are encouraging candidates for HIV treatment.
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INTRODUCTION

The treatment of HIV-1 infection with antiretroviral therapy (ART) has been effective in 

controlling virus replication, delaying disease progression, and reducing HIV-1 transmission 
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(1). However, life-long daily administration of ART can cause drug-related toxicities (2). 

Infusion of broadly neutralizing antibodies (bNAbs) as an alternative therapeutic strategy to 

ART offers several advantages that include lower toxicity, improved pharmacokinetics (3, 4), 

Fc-mediated effector functions (5-7) to eliminate infected cells, and diversity of treatment 

options for patients not responding to ART (8, 9). Infusion of single bNAb or combination 

of two bNAbs which target independent sites on the HIV-1 Envelope (Env) spike, has 

mediated suppression of viremia (10-13) and delayed virus rebound during analytical 

treatment interruption (ATI) (8, 10, 11, 13-17). However, it has also been shown that 

outgrowth of pre-existent resistant viral variants (11-13, 16, 17) or the development of 

resistance (15, 16, 18) limits the efficacy of bNAb immunotherapy. Therefore, a combination 

of bNAbs is necessary for broader coverage of the epidemic and to prevent development of 

escape mutations following treatment pressure (19). Selected individual and combinations 

bNAbs currently tested in clinical trials are listed in Table 1.

Bispecific (bs−) and trispecific (ts−) bNAbs are single molecules designed to simultaneously 

bind two or three distinct antigens, respectively. Engineered bsAbs and tsAbs represent a 

promising alternative to bNAb combination therapy by pursuing multiple targets on the Env 

protein. This approach may provide increased breadth to overcome HIV’s diversity and to 

cover natural resistance. Moreover, these Ab-based molecules can overcome complications 

related to infusion of multiple bNAbs that include costs associated with preclinical testing, 

manufacturing, and delivery. These molecules and their mechanisms of actions are the scope 

of the current review.

ENGINEERING MULTI-SPECIFIC AB-BASED MOLECULES FOR HIV CURE

Bispecific-Abs are designed to either recognize two distinct HIV-1 Env epitopes via the 

single chain variable fragments (scFv) of two independent bNAbs or to engage cellular 

receptors with one scFv and a single HIV-1 Env epitope with another scFv. The scFvs of 

these molecules are either joined by a single fragment constant region (Fc) to form a 

traditional Y-shaped Ab structure or are connected via a linker. Thus, bsAb molecules can be 

separated into a class of IgG-like molecules and a class of non-IgG-like molecules. When 

designing Ab-based molecules, the optimal molecules for HIV treatment and cure should 

combine bNAbs that display adequate coverage of the viral swarms representing the latent 

HIV-1 reservoir (20) and can be present in sufficient concentrations at the site of viral 

reactivation in order to be effective. Ab-based molecules that have neutralizing function can 

bind free virions during acute infection, or post LRA-treatment. This will neutralize the 

virus and prevent re-infection of other target cells. The summary of recently developed Ab-

based molecules is shown in Table 1. These molecules were tested against different panels of 

HIV- isolates with different assay platforms. Therefore, the neutralization breadth and 

potency or cell-mediated killing of each Ab-based molecule is reflective of the utilized 

panel. It should be noted that not every molecule was tested for Fc-mediated functions, 

which could be relevant for eradication of the reservoir (21). The potency of the molecules 

discussed here is based on their neutralizing functions unless otherwise stated.
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IgG-like bsAbs

CrossMAb technology has allowed combining scFvs with a single Fc chain from two 

distinct Abs to form a traditional Y-shaped Ab structure. “Knob-in-hole” modification of Fc 

regions favors the formation of heavy chain heterodimers of desired bsAb (22). Meanwhile, 

the “crossover” of CL and CH1 sequences in one arm of the Ab favors correct heavy (H) and 

light (L) chain pairings in both arms (22). This allows for the generation of a typical 

monoclonal Ab (mAb) in terms of mass and architecture with association of the desired H 

and L chains (23, 24*, 25, 26**) (Figure 1 A-B). Another approach is to exchange the scFv 

of one bNAb with the scFv of another bNAb (26**), or fuse it to a full length bNAb via a 

flexible (G4S)n linker in a scFv tandem format (27*, 28**) (Figure 1C). Both of these types 

of bsAbs demonstrated an increase in neutralization breadth and potency compared to the 

single parental Abs (Table 1). In addition, they have a functional Fc region that can engage 

Fcγ-receptors-bearing effectors to mediate lysis of HIV-infected target cells or phagocytosis 

of virions.

Enhancement in neutralization potency appeared to be more pronounced when combining 

scFvs targeting HIV-1 Env epitopes with those targeting host-cell receptors CD4 or CCR5 

using a CrossMAb approach (27*, 29, 30*) (Figure 1B). iMab is a mAb that binds to domain 

2 of human cellular receptor CD4, on the opposite side of gp120 and MHC class II binding, 

and potently inhibits HIV-1 entry via a noncompetitive mechanism (29, 31). PRO 140 is a 

mAb targeting cellular receptor CCR5 and prevents it from binding to gp120 (32). The 

proposed mechanism of enhanced potency relies on anchoring of the bsAbs by binding the 

cellular receptors, to both effectively concentrate inhibitory molecules at the cell surface and 

to better engage the Env epitopes during virus–cell interaction (29, 33). One bsAb of this 

class, 10E8.4/iMab, is in a phase 1 clinical trial (NCT03875209, Table 1).

Another format of bsAbs uses the heavy chain of llama-derived heavy-chain-only antibodies 

(VHH), which are therefore smaller than typical IgG molecules (34*). The small size of 

VHH (13-15 kDa) allows them to bind the cavities that are difficult to reach for traditional 

Abs (150 kDa), and for the CDR3 loop to protrude further within the cavity to reach 

neutralizing epitopes on the Env. These epitopes are hidden on native HIV-1 Env trimers by 

conformation or glycosylation, and Abs of large size or with short CDR3 length fail to reach 

these neutralizing epitopes. Using covalently linked VHH with “knob-in-hole” technology 

also increases potency due to an increase in avidity (35, 36) (Figure 1D). VHH Abs can also 

be pared with those binding the CD4bs or the co-receptor binding site. The arms of 

multispecific VHH Abs can be joined by flexible (G4S)7 linkers to allow plasticity of the 

molecule and for the arm to reach their target epitopes. Unlike other bsAbs paired with iMab 

or PRO 140, VHH bsAbs combined with other llama-isolated Abs targeting these receptors, 

demonstrated increased breadth but not potency (37). FcR-mediated functions of these 

bsAbs depend on their structure.

Non-IgG-like bsAbs

Besides targeting CD4 and CCR5 receptors necessary for HIV-1 entry, bispecific molecules 

that engage other cellular receptors have been designed. Bispecific T cell engagers (BiTEs®) 

bind to CD3 or CD16 with one arm and to HIV-1 Env with another (38) (Figure 1E). A 
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similar concept, Dual Affinity Re-Targeting (DART®) molecules demonstrated higher KD 

with CD3, improved stability and half-life of the molecule due to the disulfide linking of two 

arms and, therefore, improved ability to engage target CD4 T cells and effector (CD8) cells 

(39) (Figure 1F, Table 1). In vitro studies showed DART molecules retained the 

neutralization breadth and potency of the Ab component (40, 41). Importantly, in absence of 

the Fc-region these molecules mediate lysis of HIV-1-infected cells, measured in vitro and 

ex vivo. Using αCD3 and αCD16 arms these molecules recruiting cytotoxic CD8+ T cells 

or Natural Killer (NK) cells, respectively, to the infected cells expressing the HIV-1 Env, 

leading to elimination of HIV-infected CD4 T cells (40-43). In addition, these molecules are 

smaller in size compared to traditional Abs, have better potential to penetrate tissues and a 

reduced production cost. Currently, enrolment into a phase 1 clinical trial with MGD014 

DART, which targets the C1C2 HIV-1 Env epitope with one arm and CD3 with the other, is 

ongoing (NCT03570918). Nevertheless, the original BiTEs® and DART® molecules had 

limited in vivo pharmacokinetics (bioavailability, solubility, stability, and half-life) 

compared to traditional Abs (44, 45). To improve half-life, MGD011 DART® intended for 

B-cell malignancies, was engineered with Fc region (46). Similar approach can potentially 

be utilized in the design of anti-HIV DART molecules. The BiTE® Blinatumomab, intended 

for treatment of acute lymphoid leukemia, has been reported to induce immune activation by 

cytokines (47). This is one of the most serious side effects, although new technologies allow 

the production of BiTE® molecules with improved pharmacokinetic properties and 

decreased toxicity (48).

Another format of bsAbs is a tandem single chain variable fragment (scFv1- scFv2). These 

bsAbs are similar in structure to BiTE® or DART® molecules but target two distinct HIV-1 

antigens with each arm (Figure 1G). These bsAbs demonstrated increased neutralization 

breadth and potency compared to the parental Abs (27*, 28**). However, have poor 

pharmacokinetics, and do not have an Fc region and thus they lack FcR-mediated function 

necessary to eliminate infected cells.

Trispecific Abs

In the past three years, several novel tsAbs have been designed (27*, 28**, 38**, 49). A 

tsAb targeting MPER, V3 glycan and V2 apex 10E8Fab- PGT121fv-PGDM1400fv.V8.4DS, 

known as SAR441236, protected non-human primates (NHP) against a mucosal challenge 

with multiple SHIVs, demonstrating superior breadth compared to the parental bNAbs 

(49**). This tsAb was designed as a PGDM1400 Ab with one Fab was switched to the 

VRC01 Fab, and the scFv of the other PGDM1400 Fab was linked to the scFv of 10E8.4 in a 

reverse-order tandem-forming Cross-Over Dual Variable (CODV) Ig (Figure 1H). 

SAR441236 is currently being tested in a phase 1 clinical trial (NCT03705169). The 

enhancement in neutralization potency of tsAbs was attributed to improved avidity that 

allows for simultaneous epitope engagement on the same Env (25, 28**). TsAbs that have 

an Fc region or αCD3 arm are also able to recruit effector cells and mediate killing of 

HIV-1-infected cells.

It is important to note that non-IgG-like bsAbs and tsAbs that lack Fc region are cleared 

from the body by renal cells (50) or undergo FcRn-mediated recycling (51). The unnatural 
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architecture of many scFv-format Ab-based molecules may also lead to anti-drug antibody 

responses in vivo.

Design challenges: spatial orientation and linker length

Not all HIV-1 Envs expressed on the surface of infected cells are trimers. Therefore, the 

scFvs that target epitopes based on trimeric assembly of HIV-1 Env will have limited 

efficacy based on trimeric Env expression (26**). In addition, Env detected on the virion or 

infected cell surface is sparse and not evenly distributed. Thus, it is possible that two Envs 

will never be in close enough proximity to be engaged by one bs- or tsAbs molecule at the 

same time and rather there will be engagement of different epitopes on the same Env (52, 

53). Proximity of epitopes is important when engineering bsAbs or tsAbs: the linker 

between the arms ensures the proper binding of epitopes and the orientations of the VH and 

VL regions of the scFvs in the bs- or tsAbs can influence the potency of such molecules. The 

linker length must be sufficiently flexible to allow each arm to bind its epitope but not 

impair folding and assembly of the rest of the molecule, nor to be cleaved during 

manufacturing or by the host proteases. Several studies have reported on modifications in the 

linker between scFvs (49**), as well as with the rest of the molecule (23, 26**, 29, 34*, 54, 

55).

Fc-mediated function of Ab-based molecules

In addition to preventing primary infections, bsAbs can prevent cell-to-cell transmission, 

which likely mediates a significant fraction of viral spread (56). Thus, targeting the cell 

receptor with one arm could potentially block cell-mediated spreading of infection. Abs can 

also eliminate infected cells via Fc-mediated functions that include antibody dependent 

cellular cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP), 

complement-dependent cytotoxicity (CDC) and, perhaps, trogocytosis. ADCC activities 

have been correlated with slow disease progression in HIV-1-infected individuals (57-60). In 

addition, the Fc region has been shown to enhance protective efficacy in vivo (5, 61). 

Therefore, the Fc region was added to several non-IgG-like molecules to improve overall 

therapeutic potential of the molecule, such as DART® A32xCD3 MP3 and scFv tandem-Fc 

10E8Fab-PGT121fv-PGDM1400fv.V8 (Table 1).

An important factor to consider in the design of Ab-based molecules is modifications in the 

Fc region to improve Fc-mediated functions of Abs (62). Among those modifications are the 

triple S298A/E333A/K334A (AAA) (63) and S239D/I332E/A330L (64) amino acid 

mutations previously reported to augment antibody ability to bind to FcγRIIIa and to 

enhance ADCC activity. Ramadoss et al. demonstrated fusion of the Fc region of anti-HIV 

Abs to the scFv of the anti-CD16 Ab, NM3E2, which increased binding to FcγRIIIA on NK 

cells with subsequent enhancement in killing of infected cells (65). In addition, utilization of 

an IgG3 Fc backbone instead of IgG1, 2 or 4 allows greater flexibility due to a longer hinge 

region of IgG3 (23, 66, 67): artificial modification of hinge length has been shown to 

increase ADCP function of Abs (68). Lastly, glycosylation of the Fc region has also been 

shown to increase Ab effector functions (69-72). Besides effector function, M428L/N434S 

(referred to as LS) mutations in Fc improves in vivo stability and the half-life of Abs (3).
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Targeting tissue reservoirs of HIV

Several studies have shown that B cell follicles, and germinal centers (GCs) in particular, are 

major sites for HIV-1 reservoir establishment (73). Low levels of HIV-1 replication in 

lymphatic tissues may also contribute to the persistence of the HIV-1 reservoir (74-76). To 

overcome this low level expression in the tissues, Latency Reversing Agents (LRAs) have 

been identified and used to induce proviral transcription in latently infected cells (41, 77) 

with consequent expression of viral antigens on the cell surface that can be targeted by 

cytotoxic effector cells. Originally termed the ‘shock and kill’ strategy, this combination of 

LRAs, ART and virus-induced immune responses has proven to be limited by the ability of 

the LRAs to induce sufficient virus replication and/or of the cytotoxic effector cells to reach 

the sites of replications (78, 79). Therefore, the efficacy of Ab-based immunotherapies 

depends on the recruitment of effector cells in immunologically privileged areas. Besides 

blood (80) and lymphoid tissues, the HIV-1 reservoir may be found in spleen (81), adipose 

tissue (82), gut (83), bone marrow (84, 85), CNS (86, 87), lungs (88), kidney (89) and in 

reproductive organs (90, 91) (Figure 2). ART can penetrate these tissues to various degrees 

and prevent viral replication but will not eliminate the HIV-1-infected cells (92). Ab-based 

molecules with effector functions could have a potential to engage tissue resident effector 

cells (Figure 2) to eliminated infected cells (93-113). In addition to whole virions, shed HIV 

Env gp120 monomers have been reported to accumulate in lymphoid tissues and other 

organs during chronic HIV-infection (114). The impact of Abs and Ab-based molecules 

binding to shed gp120 has not been reported and could be addressed upon completion of 

ongoing clinical trials with individual or combinations of bNAbs for HIV prevention and 

treatment. When designing novel Ab-based molecules, the binding to shed gp120 and other 

“off target” effects should be considered and evaluated in in vitro and in vivo models.

CONCLUSION

Engineered Ab-based molecules for treatment of HIV have advantages over single Ab or 

combination of Abs that are mainly related to the ability to target different epitopes using a 

single molecule which increases breadth and prevents viral escape. These molecules will 

also provide advantages related to cost effective production and clinical administration, 

including infusion platforms and dose intervals. Small Ab-based molecules may have 

improved delivery to the tissues, where reservoir-bearing cells are concentrated. Ab-based 

molecules will ultimately be required to engage effector cellular subsets at sites of virus 

replication for improved viral clearance. A critical aspect of the efficacy of engineered 

antibody-based immunothereapy for cure of HIV-1 will depend on new and improved 

strategies aimed at reactivating the integrated virus in order to detect the infected cells (115).

It is possible, that one molecule may not have all the necessary features to improve beyond 

traditional mAbs. Therefore, it will be important to further analyze combinations of IgG-like 

and non-IgG like Ab-based molecules with complementary functions and different structures 

to achieve a functional cure.
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Key points

• Abs-based molecules are promising therapeutic candidates for a long-term 

control and treatment of HIV-1 infection

• bsAbs or tsAbs demonstrate increased antiviral potency compared to single 

parental Abs

• Engagement of cell-mediated immunity is crucial for elimination of infected 

cells

• Combination of Ab-based molecules with complementary functions should be 

considered for HIV therapy and cure
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Figure 1. Structures and functions of multi-specific Ab-based molecules.
These constructs represent bsAbs and tsAbs that simultaneously bind with antigen-binding 

domain to multiple independent HIV-1 antigens (HIV Ags) on virions or HIV-1-infected 

target cells and/or cellular receptors. Most of the presented constructs (with an exception of 

G) are able to bind to effector cells and induce cell-mediated effector functions. The binding 

to effector cells is facilitated via Ab Fc region (CD8, NK and/or monocytes) or αCD3 and 

αCD16 arms to recruit CD8 and NK cells, respectively. (A) classical IgG, (B) CrossMAb 

with “knob-in-hole” mutations, (C) scFv-(G4S)n-IgG, (D) VHH CrossMAb, (E) BiTE® (Bi-

specific T cell Engager), (F) DART® (Dual Affinity Re-Targeting molecule), (G) scFv-scFv, 

(H) CODV-Ig. Created with BioRender.com.
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Figure 2. Tissue reservoirs of HIV.
Accumulation of HIV tissue reservoir. Resident effector cells (indicated in blue) that may be 

utilized in cell-mediated lysis of infected target cells. Created with BioRender.com.
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