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Abstract

Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for 

human health. These lipids are acquired from the diet and metabolized to apocarotenoids, 

including retinoids (vitamin A and its metabolites). The small intestine is a major site for their 

absorption and bioconversion. From here, carotenoids and their metabolites are distributed within 

the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and 

photoreceptor function in the eyes. In recent years, much progress has been made in identifying 

carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory 

network controls the activity of these components and adapts carotenoid absorption and 

bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding 

these components alter carotenoid homeostasis and induce various pathologies in research 

animals. We here summarize the advanced state of knowledge about intestinal carotenoid 

metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, 

including the eyes, liver, and immune system. The implication of the findings for science-based 

intake recommendations for these essential dietary lipids is discussed.

Keywords

Carotenoid; Apocarotenoid; Retinoid; Intestine; Metabolism; Abbreviations

Introduction

Carotenoids are a class of terpenoid pigments built from eight isoprene units in plants, fungi, 

and bacteria [1]. Scientists took great interest in isolating these pigments from nature in the 

19th century and referred to them by common names long before their structures were 

determined (Figure 1). The eponymous β-carotene was the first carotenoid to be isolated 

from nature by Wackenroder, and its chemical structure was the first of any vitamin or 

provitamin that was determined in 1930 by Karrer [2], who was awarded a Nobel Prize for 

his work.

Carotenoids possess an extended polyene chromophore with up to eleven double bonds that 

can carry terminal hexyl-rings. More than 1000 carotenoids occur in nature [3]. Their 

enormous chemical diversity results from chemical modulations of the core structure, 
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including the shifting of conjugated double bonds and the addition of functional groups to 

the terminal rings (Figure 1). The short chain apocarotenoids (< C40) also are members of 

the carotenoid substance class that derive from oxidative cleavage at specific double bonds 

of the parent carotenoid molecules.

The role of carotenoids in human health is currently a subject of intense investigation. Low 

status of total plasma carotenoids and individual carotenoids is associated with vitamin A 

deficiency and a number of degenerative diseases including cardiovascular disease, cognitive 

impairments, and age-related macular degeneration [4–8]. A number of potential 

mechanisms through which carotenoids can benefit human health have been proposed. The 

most commonly cited is their capability of acting as antioxidants, e.g., as free radical 

scavengers, in lipophilic environments such as membranes and lipoproteins [9]. The 

antioxidant action of carotenoids may decrease lipid peroxidation and eventually reduce 

oxidative stress and inflammation responses in cells and tissues [10].

The blue light filtering properties of carotenoids compose another mechanism of protection 

of cellular components from the environment. Macular pigments have been chemically 

identified as the carotenoids lutein, zeaxanthin, and meso-zeaxanthin [11]. These 

carotenoids are enriched in the fovea in primate retinas and confer its yellow colour. Hence, 

the fovea is traditionally known as the macula lutea, or ‘yellow spot’. The macular pigments 

can protect the retina against light damage [12, 13] and reduce the adverse impact of light 

scattering and chromatic aberration, thereby optimizing contrast sensitivity of the retina 

[14]. The light filtering properties of carotenoids also can provide modest protection against 

ultraviolet -induced erythema in the skin [15].

Importantly, carotenoids make a crucial contribution to vision and gene transcription. 

Seminal research in the molecular basis of these actions led to the discovery of visual G 

protein-coupled receptors and nuclear hormone receptors [16, 17]. Among the carotenoid 

family are provitamin A carotenoids (β-carotene, α-carotene, and β-cryptoxanthin) that 

undergo obligate metabolic conversion to retinaldhyde. Retinaldhyde is the chromophore of 

visual pigments that mediate phototransduction in the retina [18]. Retinaldehyde can be 

further metabolized to retinol (vitamin A), retinyl esters, and retinoic acid by endogenous 

enzymes [19]. Retinol and retinyl esters are the transport and storage form of the vitamin, 

respectively [20]. Retinoic acid binds to nuclear receptors [21], which are ligand activated 

transcription factors that control the expression of genes which are involved in processes 

such as cell differentiation, embryonic development, immunity, and metabolism [22–24].

Mammals cannot synthesize carotenoids and must absorb these pigments from the diet. The 

major site of their absorption and metabolism is the small intestine. A number of studies 

observed that vitamin A status, individual genetics, and disease states affect this process and 

contribute to the observed variability of plasma responses to dietary carotenoids in clinical 

and epidemiological studies [25–27]. In recent years, molecular players of carotenoid 

metabolism have been identified and their interactions have been studied in animal models. 

The principles governing this metabolism and the involved transcription factors, 

metabolizing enzymes, binding proteins, and transporters enzymes are reviewed here. The 
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implications of these studies for recommendations for carotenoid intake in health and 

disease are discussed.

2. Carotenoid absorption in the intestine

2.1 The formation of mixed micelles

Fifty carotenoids are typically ingested with the diet. Of these, 20 are commonly found in 

human tissues [28]. These carotenoids are divided into carotenes (pure hydrocarbons) and 

xanthophyll (oxygenated carotene metabolites). The six main carotenoids circulating in the 

human blood are β-carotene, α-carotene, β-cryptoxanthin, lutein, zeaxanthin, and lycopene 

(Figure 1).

Mammals exclusively acquire carotenoids from the diet. The absorption and bioconversion 

of dietary carotenoids primarily takes place in the intestine, where carotenoids form mixed 

micelles with amphiphilic and hydrophobic compounds including bile salts, cholesterol, 

fatty acids, monoacylglycerides and phospholipids. The hydrophobicity of individual 

carotenoids is the key physiochemical factor that determines their bioaccessibility (octanol-

water partition coefficients log PC > 8) in naturally produced mixed micelles as well as their 

postprandial blood response [29]. Polar side groups of ionone rings play a minor role, 

though it is often stated in the literature that xanthophylls are more readily bioavailable than 

carotenes [30]. In many fruits and vegetables, xanthophylls exist as esters of fatty acids [31]. 

Before carotenoid esters are absorbed, the fatty acid moiety is cleaved by pancreatic 

carboxyl ester lipase to form free xanthophylls in the gastrointestinal tract [32]. Xanthophyll 

ester hydrolysis appears to be an efficient process because the absorption of lutein and β-

cryptoxanthin esters is comparable to that of the free carotenoid forms [33]. Furthermore, 

the uptake of zeaxanthin esters may be even greater than that of the parent carotenoid [34].

Additionally, the geometric form of carotenoids, which easily undergo isomerization from 

the prevalent all-trans-form to cis-isomers following exposure to heat and/or light, affects 

their bioavailability. The relative absorption of geometric isomers varies between 

carotenoids. For example, absorption is reduced for β-carotene cis-geometric isomers, 

whereas uptake is increased for lycopene cis-geometric isomers compared to their respective 

all-(E)-form [35, 36].

The absorption efficiency of carotenoids is also influenced by food matrix, formulation, and 

food processing. The context, or matrix, in which carotenoids is provided, is another 

important factor which determines the bioavailability of these lipids [25, 27]. Carotenoids 

prepared in oil (e.g. red palm oil), or commercially available water-soluble beadlets, have 

superior bioavailability compared with those in raw fruits or vegetables [25, 27]. Fat intake, 

like a modest amount of salad dressing, increases carotenoid uptake by facilitating the 

formation of mixed micelles [37]. The differences in absorption are likely explained by the 

occurrence of carotenoids in different cellular compartments (chromoplast versus 

chloroplast) and aggregate forms in plant tissues. Crystalline or protein-bound carotenoids 

are less well solubilized in mixed micelles than carotenoids that exist in oil droplets and 

membranes. Mild heating and food processing elevate the bioavailability of carotenoids by 

disrupting plant cell walls, binding proteins, and organelles, thus liberating carotenoids for 
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uptake. Fiber, olestra, plant sterol, and stanol esters are dietary compounds that decrease the 

absorption of carotenoids. Antioxidants, such as vitamins C and E, may increase the stability 

of the carotenoids in the gastrointestinal tract and thereby facilitate their absorption [38].

2.2 Molecular components facilitating cellular uptake of carotenoids

Upon being made bioaccessible in mixed micelles, carotenoids are absorbed by enterocytes 

across a membrane bilayer for further metabolic processing within the brush border cells. 

Studies in polarized CaCo-2 cells, a model for the brush border membrane, revealed that this 

process is saturable and selective [39], indicating the involvement of proteins. The proteins 

facilitating carotenoid uptake from mixed micelles were identified as class B scavenger 

receptors [40–45]. Studies in CaCo-2 cells revealed that scavenger receptor class B type 1 

(SR-B1) facilitate carotenoid absorption from synthetic and mixed micelles [46, 47]. The 

involvement of SR-B1 in the absorption of these micronutrients was later confirmed in 

knockout mice which display significantly reduced intestinal absorption of carotenes and 

xanthophylls [40, 43]. Studies in mice also show that SR-B1 facilitates the intestinal 

absorption of fat soluble vitamins E and K [41, 42]. Later it was demonstrated that cluster 

determinant 36 (CD36) also contributes to the absorption of carotenoids from mixed 

micelles [48, 49].

CD36 and SR-B1 are highly expressed in the proximal parts of the mouse intestine and at 

lower levels in distal parts [50]. CD36 and SR-B1 are glycosylated transmembrane proteins 

with a large extracellular domain. Structural prediction, based on the crystal structure of the 

CD36 family member lysosomal membrane protein 2 (LIMP II), [51] indicate the presence 

of a large cavity traversing the entire length of the protein that serves as a tunnel for lipid 

transfer from extracellular to cellular compartments [52, 53].

Outside of the intestine, the functions of CD36 and SRB1 are diverse, and the proteins have 

broad substrate specificity due to their ability to recognize similar molecular patterns rather 

than specific epitopes. CD36 ligands include carotenoids, long chain fatty, native or 

modified lipoproteins, thrombospondin-1, collagen, apoptotic cells, amyloid B, and malaria-

infected erythrocytes [54]. CD36 is expressed in muscle, adipose tissue, intestine and the 

capillary endothelium, where it facilitates long chain fatty acid uptake into target cells in 

capillary beds of tissues [55, 56], [57]. CD36-deficient mice display among other defects, 

significantly increased levels of circulating fatty acids [58]. SR-B1 binds high-density 

lipoproteins (HDLs) [59] and facilitates selective cellular uptake of cholesterol in 

mammalian steroidogenic tissues [60]. SR-B1 is expressed in the liver, intestine, 

macrophages, adrenal gland, and ovary [58, 61]. SR-B1-deficient mice develop 

hypercholesterolemia and multiple pathologies, including male sterility [60].

It was proposed that SR-B1 is also involved in intestinal cholesterol absorption [62]. 

However, these findings could not be confirmed in SR-B1-deficient mice which exhibit 

relatively normal intestinal cholesterol absorption and trans-intestinal cholesterol efflux [63]. 

Furthermore, the cholesterol absorption inhibitor ezetimibe effectively inhibits cholesterol 

absorption in SR-BI-deficient mice [64]. Similarly, CD36 knockout mice display no gross 

alterations in intestinal fatty acid absorption [65]. The minor role of CD36 in this process 

might be explained by the relatively high concentration (micromolar) of fatty acids in the 
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intestinal lumen. This allows for protein-independent uptake of dietary fatty acids by brush 

border cells, whereas absorption of fatty acids in capillary beds (nanomolar concentration) 

requires facilitators such as CD36 (reviewed in [58]).

The role of class 2 scavenger receptors in the absorption of dietary carotenoids is 

evolutionarily well conserved. Initial evidence for this function of class 2 scavenger 

receptors was provided in Drosophila. The neither inactivation nor after potential D (ninaD) 

protein was identified in a screen of Drosophila mutants that lack functional visual pigments 

[66]. Nonsense mutations in ninaD render flies deficient in carotenoids, retinoids [44, 66], 

and tocopherols [45]. Biochemical studies revealed that the ninaD gene encodes a 

transmembrane protein which facilitates uptake of zeaxanthin and β-carotene from synthetic 

Tween 40 micelles [45]. In Drosophila larvae, NinaD is expressed in the midgut and its 

expression is essential for the uptake of carotenoids for retinoid production during 

compound eye development [67]. In silkworms, a NinaD homologous scavenger receptor 

has been identified to be critical for acquiring dietary carotenoids for silk coloration [68, 69]. 

Silkworm mutants display white cocoons because of a lack of yellow carotenoids. In canary 

birds, SR-B1 is needed for carotenoid coloration of feathers and skin [70]. The white 

recessive canary bird possesses a splice site mutation which renders SR-B1 inactive [70]. 

The mutant bird shows white feather coloration and very low levels of carotenoids in blood 

and tissues. These birds also suffer from severe vitamin A deficiency and depend on 

supplementation with preformed vitamin A via the diet [71].

3. Carotenoid metabolism in the intestine

Following absorption, carotenoids with pro-vitamin A activity are converted to retinoids and 

other possible apocarotenoid metabolites (Figure 2). The primary conversion product 

retinaldehyde is further converted to retinol and retinyl esters. Retinyl esters are incorporated 

into chylomicrons together with non-cleaved carotenoids and other dietary lipids and then 

released into the lymph before entering the general circulation [72, 73]. Retinaldehyde, the 

primary cleavage product, can further be converted to the corresponding acids, alcohols, and 

esters by endogenous enzymes. The different carotenoid and retinoid processing enzyme 

classes will now be introduced (Figure 3).

3.1 Carotenoid Cleavage Dioxygenases

In 1930, Moore described the production of vitamin A from β-carotene in the intestine of 

research animals [74]. In 1965, the respective enzymatic activity was independently 

characterized by Olson and Goodman [75, 76]. In these initial reports, β-carotene was 

observed to be cleaved symmetrically at the C15,C15′ double bond to yield two molecules 

of retinaldehyde. Later on, enzyme activity for the eccentric cleavage of β-carotene was 

described in cell-free homogenates of the mammalian intestine [77, 78].

The cloning of two genes, encoding carotenoid cleavage dioxygenases (CCDs) - with 

distinct region selectivity for the cleavage of carotenoids provided the molecular basis of this 

metabolism [79, 80]. CCDs introduce molecular oxygen at specific double bonds of the 

carotenoids polyene backbone, resulting in the formation of two apocarotenoid molecules 

[81–83]. The existence of two CCDs with symmetric and eccentric cleavage modes was 
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subsequently confirmed in many species, including human, macaque, ferret, chicken, 

bovine, rat, and zebrafish [79, 84–92]. Structural analyses showed that CCDs share a 

common fold of a seven-bladed propeller covered by a half dome. The active center of the 

enzymes is accessible through a long tunnel lined with hydrophobic amino acid residues. 

These non-heme iron oxygenases, with characteristic catalytic centers, catalyze oxidative 

cleavage and geometric isomerization of carbon double bonds [93–96]. Biochemical 

analyses with the recombinant BCO1 and BCO2 defined their region specificity of double 

bond cleavage and substrate specificity [88, 89, 91, 92, 97–99]. BCO1 cleaves across the 

C15,C15′ double bond adjacent to a canonical β-ionone ring site of carotenoids and β-

apocarotenoids [88, 91, 100, 101]. Thus, provitamin A carotenoids and apocarotenoids (> 

C20) with at least one β-ionone ring are substrates for this enzyme. In fact, β-apo-10’-

carotenal and BCO1 can rescue normal embryonic development in mice maintained on a 

diet free of preformed vitamin A [102]. Additionally, recombinant BCO1 converts the open 

chain lycopene into acyclic retinoids [86, 88], a reaction that may maintain retinoid 

signaling under condition of severe vitamin A deficiency [103]

Though originally characterized as β-carotene metabolizing enzyme [79], BCO2 displays 

broad substrate specificity for carotenoids (Figure 4). The enzyme catalyzes conversion of 

acyclic lycopene, zeaxanthin, lutein, and cantaxanthin [89, 90, 92, 97–99, 104]. Although 

BCO2 cleaves across the C9′,C10′ positions adjacent of chemical diverse ionone ring sites 

[97], it shows higher turnover rates with substrates with hydroxylated ionone ring sites [97]. 

Mouse and human BCO2 also converts apocarotenoids into dicarbonyl compounds ([97, 99], 

unpublished). In contrast, chicken BCO2 does not catalyze the latter reaction [89]. On the 

one hand, the different substrate specificities of mammalian and chicken BCO2s might be 

attributed to species-specific differences. Birds accumulate 3-hydroxy-dehydro-β-10-

apocarotenol (galloxanthin) in oil droplets of their retinas whereas mammals do not 

accumulate long-chain apocarotenoids when supplemented with xanthophyll [98, 99, 105]. 

On the other hand, there are potentially methodological limitations with enzymatic assays 

and product analysis. Dialdehyde cleavage products of apocarotenoids are chemically labile 

and difficult to detect by standard chromatographic methods when produced in small 

amounts.

BCO1 and BCO2 are expressed in the intestine and several additional tissues [79, 91, 106, 

107]. BCO1 is a monomeric, soluble, and cytosolic enzyme. The cytosolic localization 

indicates that BCO1 interacts with other cellular components, such as membranes, lipid 

droplets, and proteins, in order to extract its lipophilic substrates [91, 100, 108]. BCO2 is a 

mitochondrial enzyme that associates with the inner membrane [89, 99, 104]. This 

localization of BCO2 was discovered by sub-fractionating of isolated hepatic mitochondria 

of mice and by electro-microscopy and immunogold staining of human mitochondria [109]. 

To achieve mitochondrial localization, BCO2 is expressed with a signal peptide sequence in 

many vertebrate species, including human. The signal peptide is removed during 

mitochondrial import to yield a mature protein [109]. Rodent BCO2s contain a shorter signal 

sequence though they also are enriched at the inner membrane of mitochondria [109]. BCO2 

substrates such as zeaxanthin and lutein accumulate at the inner mitochondrial membrane in 

BCO2-deficient hepatic mitochondria of mice [109]. Accumulation of xanthophylls at the 

inner mitochondrial membrane has also been reported in birds [110], but little is known 
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about how carotenoids are shuttled between different organelles and membranes within in 

the cell.

The generation of mouse lines, carrying loss-of-function mutations in BCO1 and BCO2 
genes, set the stage for an in-depth analysis of the physiological roles of these enzymes. 

Phenotypically, these mutants are characterized by a yellow fat phenotype [99, 101, 111]. 

Studies in CCD knockout mice revealed that BCO1 is the major β-carotene metabolizing 

enzyme and the key enzyme for vitamin A production [101, 109, 111, 112]. In its absence, 

only trace amounts of β-apo-10’-carotenoids were produced from supplemented β-carotene 

by BCO2 [101, 113]. Consistent with BCO2’s enzymatic properties and subcellular 

localization, xanthophylls accumulated in hepatic mitochondria of BCO2-deficient mice [99, 

109]. In Bco1 and Bco2 single knockout mice, carotenoid levels were highest in liver and 

adipose tissue [92, 99, 101, 111]. While β-carotene accumulated unmodified in mouse 

tissues [114], xanthophyll accumulated in oxidized form [99, 114]. 4’,5’-Didehydro-retro-β-

carotene-3,3’-dione (rhodoxanthin) and (6RS,6RS)-ε,ε-Carotene-3,3’-di-one were 

respectively identified as zeaxanthin oxidation products in white adipose tissues [43] and in 

blood and liver [99, 114] (Figure 5). Oxidation of xanthophyll has also been reported to 

occur in wild type mice [115, 116]. Lower levels of oxidized carotenoids were measured in 

lung and heart of CCD deficient mice [99, 101, 111]. β-Carotene and xanthophyll also 

accumulate in the eyes of knockout mice with higher levels in the retinal pigment epithelium 

than in the neuronal retina [43, 117]. However, levels of carotenoids in the eyes were low 

when compared to other tissues and blood [92]. This observation clearly reflects a lack of a 

mechanism for ocular accumulation of carotenoids in rodents though the mouse retina 

expresses high levels of glutathione-S-transferase, GSTP [117]. GSTP1 has been implicated 

in ocular accumulation of zeaxanthin in the human macula [118]. BCO2-deficient mice also 

accumulate lycopene in different tissues, whereas levels of supplemented lycopene were 

indistinguishable between wild type control and BCO1-deficient mice [119].

The roles of BCO1 and BCO2 in carotenoid metabolism are well conserved throughout 

evolution. Similar to mice, humans carrying mutations in the BCO1 gene display elevated β-

carotene and reduced vitamin A levels [108]. Mutations in the BCO2 gene have not yet been 

described in humans but are prevalent in other vertebrates. Mutations in the BCO2 gene 

associate with a yellow skin phenotype in chicken [120] and reptiles [121]. Loss-of-function 

mutations in BCO2 gene in cows, rabbits, and sheep cause a yellow fat phenotype [122–

125]. It was speculated that the genetic variability in the BCO2 gene in domestic farm 

animals provides a mechanism to survive in environments with carotenoid shortage [126]. 

Given the importance of carotenoids in vision, development, reproduction, and immunity, it 

is possible that BCO2 mutations in domestic animals helped to adapt them to dietary 

conditions that are vastly different from those of their wild-living ancestors. Notably, Paul 

Bernstein’s laboratory proposed that a four amino acid long insertion renders human BCO2 

inactive and favors the accumulation of the eye protective macula pigment [117]. However, 

it is controversial whether the human BCO2 gene encodes an enzymatically inactive BCO2 

mutant variant. Macaque BCO2 shows overall sequence identity with human BCO2, and the 

recombinant protein displays robust enzymatic activity [92]. Additionally, it was recently 

demonstrated that recombinant human BCO2 is enzymatically active when expressed in E. 
coli cells [127]. Moreover, a recent study provided an alternative explanation for carotenoid 
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accumulation in central parts of the human retina. This study shows that BCO2 mRNA is 

highly expressed in the peripheral retina and at low level in the central (macula) retina of the 

human eye. This pattern of expression may explain the selective accumulation of carotenoids 

in the macula regions of the human retina [128].

The need of tissues to express an enzymatically active BCO2 is indicated by several studies. 

BCO2-deficiency has been associated with oxidative stress in adult tissues [129–132]. 

Additionally, studies in zebrafish and mouse show that BCO2 prevents carotenoid toxicity in 

vertebrate embryos [102, 104]. Accordingly, BCO2-deficient mice exhibit oxidative stress in 

tissues and reduced mitochondrial respiration rates [99, 114, 129]. In vitro studies in human 

hepatoma cells indicate that carotenoid accumulation increases ROS production in 

mitochondria [99, 104]. Oxidative stress is associated with several disease states, including 

cardiovascular and neurodegenerative disease, type 2 diabetes, cardiovascular disease, and 

cancer. Interestingly, human BCO2 is expressed as an oxidative stress-inducible gene [92]. 

This regulation may prevent excessive accumulation of carotenoids in human tissues and 

explain the observation that carotenoid levels decrease in chronic disease states.

3.2 Metabolism of long chain apocarotenoids

Trace amounts of apocarotenoids were detected in mammalian tissues using modern 

chromatography techniques and sensitive detection methods, such as mass spectrometry 

[133–139]. Emerging evidence implicates these compounds as biologically active 

modulators of physiological processes [103, 140–142]. For instance, pharmacological doses 

of apo-10’-lycopenoic acid can protect mouse liver from damage [143]. Furthermore, β-13-

Apo-carotenone and certain lycopenoids act as retinoic acid receptor (RAR) antagonist and 

can antagonize vitamin A action [135, 141]. However, it is still not clear whether these 

apocarotenoids derive from the diet or are synthesized from dietary carotenoids by 

endogenous enzymatic pathways. A few studies provide evidence that β-10’-apo-carotenol is 

synthesized from carotenoids in a BCO2-dependent manner from β-carotene [113] and β-

cryptoxanthin [97, 101]. Interestingly, it was shown that β-10’-apo-carotenol was 

transported and metabolized by proteins that were originally characterized in the context of 

retinoid metabolism [97, 101]. Though β-10’-apo-carotenol accumulated to some extent in 

mouse tissues upon carotenoid supplementation, no gross transcriptional changes were 

observed in the liver, fat, and lung under the applied conditions [144]. More recently, a study 

provided compelling evidence that BCO2 is involved in the production of a bona fide signal 

molecule that controls lipid transfer in the placenta [145]. While the production and 

occurrence of β-10’-apo-carotenol is now well-documented in mouse tissues, zeaxanthin, 

lutein, and lycopene-derived apocartenoid metabolites have yet not been detected [98, 99, 

119]. Intervention studies in humans also failed to detect these compounds upon carotenoid 

supplementation [146, 147]. These observations indicate that apocarotenoid metabolites of 

carotenoids only exist transiently and are rapidly metabolized. As outlined above, both 

BCO1 and BCO2 can convert long chain apocarotenoids to smaller chemical entities [88, 

97] by pathways that await chemical characterization. Thus, further research is warranted to 

clarify the metabolism and physiological roles of these molecules in mammalian biology.
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3.3 Metabolism of Retinoids

The metabolism of vitamin A and its metabolites has been recently reviewed in several 

excellent articles [18, 20, 148, 149]. The formal first step in this metabolic pathway is the 

generation of retinaldehyde from carotenoid precursors by CCDs. Retinaldehyde can be 

either oxidized to all-trans-retinoic acid (RA) or reduced to all-trans-retinol. All-trans-retinol 

is converted to retinyl esters. The alcohol and ester form of vitamin A are the predominant 

retinoids in most tissues, including the intestine. In contrast, the acidic form of the vitamin 

exists only in very low (nanomolar) concentrations in most tissues [150]. The tissue levels of 

retinoic acid are tightly controlled, and even small amounts of this hormone-like compound 

are sufficient to elicit profound cellular responses through the activation of retinoic acid 

receptors (RARs) [151, 152]. RARs are transcription factors of the nuclear hormone 

receptor gene family, which in conjunction with retinoid X receptors (RXRs), control 

transcription by binding to conserved DNA motifs (retinoic acid response elements) in 

promoter regions of about 500 target genes in the human genome [153]. The amount of 

retinoic acid in tissues is tightly controlled throughout the mammalian life cycle by 

cytochrome P450-dependent hydroxylases [154–157].

The conversion of retinol to retinal is catalyzed by cytosolic alcohol dehydrogenases 

(ADHs) and microsomal retinol dehydrogenases (RDH) [21, 158]. The latter belong to the 

short chain dehydrogenase/reductase protein family (SDR). Adenine dinucleotide cofactors 

NAD(H) and NADP(H) are the redox carriers of these reactions. The enzymes bind their 

cofactors by a conserved sequence motif, the Rossmann-fold, which consists of six to seven 

parallel β-strands flanked by three to four α-helices [18, 159]. ADHs and RDHs use 

different catalytic mechanisms with either a zinc atom or a tyrosine in the active center, 

respectively. In enzymatic assays, ADHs and RDHs catalyze the bidirectional inter-

conversion of retinol to retinal, dependent upon the oxidative state of their redox carriers. 

Under physiological conditions, the ratio of NAD/NADH is around 700 in the cytoplasm, 

and the ratio of NADP/NADPH is 0.005. Thus, enzymes using NAD as redox carriers 

catalyze the oxidation while enzymes using NADP catalyze reduction of retinoids.

Though ADHs and RDHs can use retinol and retinal as substrates, most of these enzymes 

can metabolize other alcohols including sterols [21]. Much of what is known about the 

physiological roles of different ADHs and RDHs stems from loss-of-function studies in 

experimental animals, such as knockout mice [21, 158, 160]. The important role of RDHs 

(RDH5, 8, 10, 11, 12, 13, and 14) in the visual cycle has just been reviewed [18]. For extra-

ocular retinoid metabolism, RDH10 plays a critical role for the conversion of retinol to 

retinal in retinoic acid production [161]. Rdh10 mutations are embryonically lethal [161]. 

The expression of RDH10 in adult tissues, including the eyes, indicates that the RDH10 

contributes to retinoid homeostasis throughout the mammalian life cycle [162]. Evidence 

from knockout mice suggests that RDH1 contributes to retinoid homeostasis in adult tissues 

as well [158, 163, 164]. Though not lethal, mutations in the corresponding gene are 

associated with increased hepatic retinyl ester stores and altered body fat mass [164]. 

Additionally, a critical retinaldehyde reductase (DHRS3) has been identified. DHRS3 

reduces vitamin A aldehyde to retinol, and the levels of this protein are transcriptionally 

regulated by retinoic acid signaling [165]. Loss-of-function studies in mice indicate that 
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DHRS3 is required to control embryonic retinoic acid levels by limiting the availability of 

retinal for oxidation to retinoic acid [165]. Because DHRS3 is expressed in adult tissue, the 

enzyme might be critical for tissue control of retinoic acid levels post-developmentally [162, 

166]. Notably, DHRS3 expression is highly increased in ISX null mice with increased rates 

of intestinal retinaldehyde production and all-trans retinoid acid (RA) levels [167]. Recently, 

studies suggested RDH11 functions as an retinaldehyde reductase in vivo and is essential for 

the maintenance of all-trans–retinol steady-state levels in mouse liver and testis [168].

Esterification of retinol also seemingly contributes to the control of retinoid homeostasis in 

the gut [72]. Early studies demonstrated two independent enzymatic activities for the 

formation of retinyl esters, namely a lecithin-dependent acyl transfer facilitated by lecithin 

retinol acyltransferase (LRAT). LRAT is expressed in most tissues except adipocytes, and 

the acyl-CoA-dependent activity is present in a variety of mammalian tissues such as small 

intestine, liver, adipocytes, skin, testis, and retina. LRAT has been molecularly cloned from 

several vertebrate species, and the generation of LRAT-deficient mice confirmed its pivotal 

role in retinoid metabolism and vitamin A homeostasis [169–171]. LRAT is a 25 kDa 

protein that localizes to the endoplasmic reticulum and is an integral membrane protein with 

a single membrane-spanning helix localized at the C-terminus. On the basis of its amino acid 

sequence and predicted tertiary structure, LRAT is classified as a member of the ancestral 

NlpC/P60 thiol peptidase protein superfamily [172, 173]. Besides LRAT, the human genome 

encodes seven genes belonging to this protein family. Their general structural motif is 

reminiscent of papain-like proteases, and consists of a four-strand antiparallel β-sheet and 

three α-helices. The conserved catalytic residues Cys161, His60, and His72 define the active 

site. LRAT adopts an analogous catalytic strategy as thiol peptidases, whereby the 

deprotonated Cys161 serves as a nucleophile to attack the carbonyl carbon of an ester bond 

at the SN1 position of phosphatidylcholine, eventually leading to an acyl transfer and trans-

esterification of retinol. LRAT-deficient mice lack liver and lung retinyl ester stores and are 

highly susceptible to vitamin A deficiency [72, 174]. Mice deficient for LRAT display 

highly elevated hepatic levels of CYP26A1, a major retinoic acid catabolizing enzyme, when 

maintained on vitamin A sufficient diet It is likely that in the absence of LRAT and retinol 

esterification, CYP26A1 is activated to metabolize retinoic acid in a compensatory 

mechanism [174].

In contrast to LRAT, which utilizes lecithin as an acyl-donor, acyl-CoA:retinol 

acyltransferase (ARAT) takes advantage of a pre-activated acyl-moiety coupled to coenzyme 

A. ARAT has never been purified or cloned, however, the existence of such vitamin A ester 

forming enzymes is supported by several lines of evidence. Studies of LRAT-deficient mice 

revealed that the intestinal absorption decreased to 10% of that in wild type animals after 

gavage of a physiological dose of the vitamin [72, 73]. Though the critical function of LRAT 

for intestinal vitamin A metabolism is evident, the consequences of mutations in the LRAT 
gene for provitamin A metabolism have yet not been investigated.

4. Quality control of vitamin A production in the intestine

Dissection of the carotenoid metabolic pathway using knockout mouse models clearly 

showed that BCO1 is required for β-carotene metabolism [101, 111], and that BCO2 is 
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required for the metabolism of non-provitamin A carotenoids [99, 119]. Provitamin A 

carotenoids must contain at least one unsubstituted β-ionone ring and include the symmetric 

β-carotene as well as asymmetric β,ε-carotene (α-carotene) [175] and 3R-β,β-Caroten-3-ol 

(β-cryptoxanthin) [176]. In the test tube, recombinant BCO1 splits asymmetric provitamin A 

precursors into canonical and non-canonical retinaldehyde moieties [88, 91, 97]. 

Recombinant BCO2, also converts these compounds into various apocarotenoid products 

[89, 90, 92, 97, 101]. Hence, the enzymatic conversion of a single asymmetric provitamin A 

carotenoid could result in many apocarotenoid products which can be further metabolized to 

alcohols, acids, and geometric isomers. Surprisingly, the main apocarotenoids in mammals 

are retinoids, indicating that there must be a mechanism for their selective production.

Using β-cryptoxanthin as the model carotenoid, evidence has been provided that the 

enzymatic properties of BCO1 and BCO2 provide a quality control mechanism for vitamin 

A production [97, 101]. In this pathway, BCO2 removes the non-canonical ionone rings, 

followed by cleavage of the resulting long chain apocarotenoid into retinaldehyde by BCO1 

(Figure 6A). This mechanism produces one molecule of retinoid from one molecule of 

carotenoid without non-canonical retinoid byproducts. In the mouse intestine, all metabolites 

of this pathway were identified [97]. Notably, a two-step mechanism for the conversion of 

the asymmetric provitamins 5,6-epoxy-β-carotene was already proposed in 1966 [177]. 

These authors proposed a removal of the non-canonical ionone ring site by eccentric 

cleavage which is then followed by a chain shortening of the β-apo-10’-carotenal by a β-

oxidation-like mechanism.

The two-step enzymatic processing of β-cryptoxanthin is made possible by the different ring 

site selectivity of the two CCDs. The enzymes’ respective centric and eccentric cleavage 

mode complements this process [79] (Figure 6). Biochemical studies showed that 

recombinant BCO2 favors non-canonical ionone ring sites over canonical β-ionone ring 

sites, and that this mode of cleavage primarily leads to the production of β-10’-apocarotenal 

from asymmetric provitamins [97]. In the test tube, recombinant human BCO1 centrically 

cleaves β-cryptoxanthin into retinal and 3-hydroxy-retinal [88, 91]. However, 3-hydroxy-

retinal was not produced from supplemented β-cryptoxanthin in the mouse intestine [97]. 

Previously, Lindqvist and Andersson [91] elegantly demonstrated that the catalytic 

efficiency of human BCO1 for β-crypoxanthin is very poor. This enzymatic property is 

consistent with the lack of β-cryptoxanthin cleavage in mice [97].

Determination of the structure of CCDs provide an explanation for the substrate selectivity 

of BCO1 and BCO2. Structural prediction indicates that the enzymes share the common 

CCD fold that consists of a rigid seven bladed propeller with a long, non-polar substrate 

tunnel running through the middle [178]. The mouth of this tunnel is surrounded by large 

hydrophobic patches that aid membrane interaction of the enzyme. In the active site in the 

tunnel, there is a Fe2+ cofactor, necessarily coordinated by four His residues, which activates 

oxygen for an otherwise spin-forbidden reaction. Once in the tunnel, the substrate is cleaved 

at this site [93]. In homology models for BCO1 and BCO2, the retinoid isomerase RPE65 

was used as the template for structural prediction [179]. RPE65, a retinoid isomerase in the 

visual cycle [180–182], is the third family member of the mammalian CCD enzyme family. 

When comparing the predicted structures of BCO1 and BCO2, researchers reasoned that the 
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diameter of the mouth of the BCO2 tunnel should be wider than that of BCO1 because 

BCO2 can accommodate bulky hydroxylated ionone ring sites in the substrate tunnel. 

Structural comparison identified two candidate amino acid residues at the mouth of the 

substrate tunnel. In BCO1, these amino acids narrow the entrance (Trp270 and a Leu168) 

and were well conserved in BCO1 across different species. Exchange of these amino acids 

with the corresponding amino acids of BCO2 (Trp270Phe and Leu168Gly) by site-directed 

mutagenesis produced a mutant BCO1 enzyme that is able to cleave zeaxanthin with two 

hydroxylated ionone rings [97]. Thus, a small change in an overall conserved fold provides 

the structural basis of the ring site specificity of BCO1 and BCO2. In the future, it remains 

to be clarified whether the described pathway for β-cryptoxanthin metabolism can be 

applied to the conversion of other asymmetric carotenoids with only one β-ionone ring site.

Distinct enzymatic properties of BCO1 and BCO2 also contribute to the metabolism of β-

carotene diastereomers such as 9-cis-β-carotene (Figure 6). Symmetric cleavage of this 

dietary compound would result in one molecule of all-trans-retinal and one molecule of 9-

cis-retinal. The early literature considered 9-cis-retinal as a precursor for 9-cis-retinoic acid 

that can bind RXRs and control transcriptional activities [183, 184]. Furthermore, 9-cis-

retinal can bind to opsin to form isorhodopsin in the eyes [185] and can be used as a 

chromophore surrogate in treatment of blinding diseases [186]. Additionally, 9-cis-13,14-

dihydroretinoic acid has been implicated as a natural endogenous ligand of this nuclear 

receptor [187]. However, there is presently no consensus as to whether these retinoid 

diasteromers are produced in meaningful amounts in mammals [24].

Studies in gerbils showed that 9-cis-β-carotene can be used as a dietary source of vitamin A 

but with only about 38% efficiency as compared to all-trans-β-carotene [188]. The lower 

efficiency of 9-cis-β-carotene in providing vitamin A might be partially explained by lower 

intestinal absorption of the 9-cis-geometric isomer when compared to the all-trans-β-

carotene isomer [35, 189]. Notably, no increase of 9-cis-retinoid levels was observed in the 

mouse liver upon 9-cis-β-carotene supplementation [190]. Studies in humans brought up the 

proposal that the 9-cis-double bond of β-carotene is isomerized to an all-trans-double bond 

during absorption, and that this mechanism explains the lack of 9-cis-retinoid production 

[35]. After supplementation with [13C]-labeled 9-cis- β-carotene, the resulting [13C]-

retinoids existed mainly in the all-trans-configuration [191]. Upon BCO1 cloning, 

biochemical studies with the recombinant murine enzyme showed that 9-cis-β-carotene is 

converted into the all-trans-retinal, 9-cis-retinal, and 13-cis-retinal stereoisomer in a molar 

ratio of 9:3:1 [190] (Figure 6). Notably, Jim Olson’s group previously obtained a similar 

result with cell free extracts of rat intestine [192], indicating that BCO1 possesses intrinsic 

isomerase activity. This finding contrasts with a reports suggesting that 9-cis- β-carotene is 

converted to 9-cis-retinal and all-trans-retinal in one to one molar ratio [193, 194]. It also 

contrasts the more recent proposal that 9-cis-β-carotene is not enzymatically converted by 

recombinant human BCO1 [88]. Isomerase activity has been also described in other CCD 

family members, including the insect vitamin A forming enzyme NinaB [195, 196] and the 

mammalian retinoid isomerase RPE65 [180–182]. Biochemical analysis with insect NinaB 

provided a reaction mechanism for a combined isomerization and oxidative cleavage 

reaction of double bonds of carotenoid substrates [83]. A similar mode of action of BCO1 
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would explain why 9-cis-β-carotene is mainly converted to the all-trans-retinoid 

diastereoisomer.

Taken together, with the large variety of carotenoids available in food, mammals require a 

reliable and robust mechanism for vitamin A production. Recent biochemical studies 

indicate that ring site selectivity and intrinsic isomerase activity of involved CCD enzymes 

play an important role in this process. These enzymatic properties of CCDs are essential for 

avoiding production of abberant apocarotenoid metabolites which can interfere with vitamin 

A-dependent physiological processes.

5. Regulation of carotenoid absorption and vitamin production

Several studies indicate that the vitamin A status of the host affects carotenoid absorption 

[197, 198] and metabolism [199] in the intestine. Early biochemical studies revealed that 

activity of the vitamin A forming BCO1 is higher in the intestine of vitamin A deficient rats 

[200]. Van Vliet et al. [201] showed that high doses of vitamin A or its precursor β-carotene 

decreased intestinal BCO1 enzyme activity, indicating that BCO1 activity is under negative 

feedback regulation of vitamin A. After the cloning of BCO1 gene, Bachmann and 

colleagues provided evidence that the negative feedback regulation occurs at the 

transcriptional level by showing that retinoic acid decreased the intestinal expression of 

Bco1 mRNA in the gut but not in the liver of chickens [202].

The protein that controls the intestinal Bco1 mRNA expression was discovered by a 

screening for gut specific transcription factors [203]. The intestine specific homeodomain 

transcription factor ISX is a 242-amino protein highly expressed in epithelial cells of the 

brush border membranes. ISX expression initiates early in development just prior to the 

transition from a gut endoderm to a columnar epithelium [203]. Isx−/− mice are grossly 

normal and healthy when raised on a standard vitamin A-rich mouse chow [203]. Analysis 

of their intestinal transcriptome suggested that ISX regulates intestinal expression of SR-B1 

[203]. Seino and colleagues then showed that similar to SR-B1, intestinal expression of 

Bco1 is significantly increased in Isx−/− mice, suggesting that ISX is involved in the 

regulation of vitamin A production and absorption [204] (Figure 7). This conclusion was 

supported by the finding that intestinal expression of Isx is low in vitamin A deficiency and 

high in vitamin A sufficiency [204]. A mechanistic explanation for the vitamin A 

responsiveness of ISX expression was provided by the identification of an RAR binding 

element in the promoter of the human ISX gene [205]. It was further shown that RA can 

induce intestinal Isx expression, and that this induction is accompanied by a down-regulation 

of SR-B1 and Bco1 expression [205]. The increased expression of Bco1 and SR-B1 in the 

absence of ISX is driven by other transcription factors that control the activity of these genes 

[206, 207].

For ISX to control Bco1 and Scarb1 expression, it must interact with the promoter region of 

their genes. Using gel retardation assays, a 21-bp stretch about 1.3 kb upstream of the start 

ATG of the mouse Bco1 gene was identified as the ISX binding region [208]. ChIP 

experiments in human CaCo-2 cells indicated that human ISX also interacted with this 

binding motif. Furthermore, studies in CaCo-2 cells showed that the identified promoter 
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element decreased expression of a luciferase reporter gene in the presence of ISX. A similar 

binding motif was later identified in the murine SR-B1 promoter [43]. Thus, ISX acts as a 

transcriptional repressor via binding a conserved DNA motif. Interestingly, the putative ISX 

binding site in the human BCO1 promoter region is afflicted by a common genetic 

polymorphism that associates with serum and tissue carotenoid levels [208–210].

The physiological basis of the ISX-dependent regulation of carotenoid absorption and 

vitamin A production was demonstrated in mice. ISX-deficient mice produce significantly 

higher amounts of vitamin A from dietary β-carotene than wild type mice [208]. Amounts of 

stored vitamin A in these animals well exceed that of mice fed with preformed vitamin A. 

The absolute increase of retinyl esters was most pronounced in the liver, where ~80% of 

postprandial retinyl esters are stored [20]. Peripheral tissues such as the lung and white 

adipose tissue also showed a significant increase in retinyl ester accumulation [208]. The 

vitamin A-dependent regulation of SR-B1 expression by ISX also explains the reported 

interactions between xanthophyll and β-carotene absorption. For instance, it has been 

observed that dietary vitamin A reduces xanthophyll absorption in chickens [211]. Studies in 

mice clearly demonstrated that BCO1 and β-carotene can affect intestinal SR-B1 expression 

and xanthophyll absorption [43].

In the intestine of vitamin A sufficient mice, ISX is expressed at higher levels in distal rather 

than in proximal parts [204]. The ISX target genes, encoding BCO1 and SR-B1, reveal a 

reverse pattern of expression [204]. Thus, in the vitamin A deficient state, the expression of 

BCO1 and SR-B1 spreads to more distal parts of the intestine. This pattern of expression 

significantly enlarges the surface of the intestine available for carotenoid and fat soluble 

vitamin absorption by SR-B1. Similarly, SR-B1 and BCO1 are highly expressed throughout 

the intestine in ISX-deficient mice. The consequences for intestinal vitamin A production on 

a diet rich in provitamin A are depicted in Figure 8. In wild type mice, retinol and retinyl 

esters content is low. In contrast, the levels of these compounds are significantly increased in 

all parts of the intestine with highest levels in the jejunal parts. Thus, the ISX dependent 

regulation does not only increase the expression levels of SR-B1 and BCO1 but also the 

surface area by which carotenoids and fat soluble vitamins can be acquired from the food 

matrix.

There is an ongoing debate about the ‘right’ supplementation strategy for vitamin A, 

especially in early postnatal life [212]. Studies in animal models demonstrate that 

imbalances in vitamin A supply have significant effects on the offspring. For example, 

elevated maternal vitamin A affects lymphocyte differentiation in the developing 

gastrointestinal tract, and too much dietary vitamin A promotes aberrant immune responses 

and inflammation in the mouse intestine [167, 213, 214]. A recent study reported on the 

long-term epigenetic effects of preformed vitamin A on early neonatal life [215]. The 

analyses in rat pups revealed that even modest supplementation of preformed vitamin A 

during the suckling phase can impact methylation marks in developing white adipose. 

Physiologically, the amount of preformed vitamin A in breast milk is relatively constant and 

not affected by dietary fluctuations. The vitamin A-induced genomic imprinting of 

adipocytes of the pups is in keeping with the finding that neonatal vitamin A 

supplementation favors body fat gain later in life [216]. Notably, dietary β-carotene does not 
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exert such effects on adipocytes in the same experimental setup [217], most likely because 

its absorption and bioconversion is tightly controlled by bodily demands via ISX (28, 29).

Taken together, the diet-responsive regulation of vitamin A production provides an elegant 

mechanism to cope with seasonal fluctuations in food supplies [218] and unbalanced diets 

[219]. Central to this regulation is the negative feedback mechanism regulated by the 

transcription factor ISX which controls the expression of the genes encoding the vitamin A 

forming enzyme BCO1 and the SR-B1 protein in epithelial cells of the intestine [43, 205, 

208]. This regulation secures effective carotenoid absorption and vitamin A production when 

the dietary supply of these nutrients is limited and prevents excessive production of vitamin 

A when the supply with β-carotene is abundant [43, 208]. This regulation also affects the 

absorption of xanthophyll and other fat soluble vitamins [43, 208]. In the future, the specific 

roles of ISX in fat soluble vitamin A and lipid homeostasis needs further elucidation [24].

6. Cross talk between carotenoid metabolism and immunity

The intestine constitutes an effective barrier against toxins, antigens, and enteric flora. 

Hence, the intestinal mucosa harbors one of the largest populations of lymphocytes in the 

body. Several studies showed that sufficient intake of dietary vitamin A is critical for 

maintaining immune homeostasis at the intestinal barrier. The vitamin A metabolite retinoic 

acid induces the expression of gut-homing receptors on T and B cells, promotes conversion 

of regulatory T cells, and provokes T cell-independent IgA switches in naϊve B cells [220–

222].

Accordingly, vitamin A deficiency compromises intestinal immunity and makes mice more 

susceptible to infection with bacterial pathogens [223, 224]. Vitamin A deficient mice also 

display a dramatic increase of interleukin-13 (IL-13)-producing type 2 innate lymphoid cells 

and display resistance to nematode infection [224]. However, too much dietary vitamin A 

may also compromise immunity. Increased intestinal retinoic acid in conjunction with IL-15 

can act as an adjuvant to enhance secretion of IL-12 and IL-23 [213]. This scenario can 

promote inflammation [225, 226] and loss of tolerance to dietary antigens [213]. Thus, an 

increasing amount of studies indicate that imbalances in dietary vitamin A affect immune 

cell differentiation and function.

A recent study shows that ISX acts as a sensor for dietary vitamin A and has a profound 

impact on intestinal immune homeostasis [167] (Figure 8). ISX-deficient mice display an 

increase in the size and number of secondary lymphoid organs in the gut [167]. This increase 

can already be maternally imprinted in the offspring when ISX-deficient dams are 

maintained on β-carotene-rich food during pregnancy [167]. The immune phenotype of ISX-

deficient mice can be likely attributed to alterations in intestinal carotenoid absorption and 

bioconversion. ISX-deficient mice show elevated intestinal retinoic acid levels when fed a β-

carotene-rich diet. This retinoic acid synthesis can take place in dendritic cells of lymphoid 

organs [227] as well as in epithelial and stromal cells of the mucosal lymphoid tissues [228–

230] where BCO1 is expressed [106]. In wild type mice, excessive retinoic acid production 

is prevented by the retinoic acid -dependent induction of ISX that regulates the absorption 

and bioconversion of β-carotene.
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Interestingly, ISX-deficient mice develop pancreatic insulitis that is associated with 

decreased insulin production and systemic deregulation of glucose metabolism [167]. In this 

context, it is worth mentioning that failure to establish tolerance against commensal flora 

and food antigens has been implicated in the pathology of type 1 diabetes and other 

autoimmune diseases [231]. retinoic acid is an important signal for the differentiation of 

regulatory T-cells in the intestine [23, 232, 233], and the invasion of activated gut-derived T 

helper cells has been reported in pancreatic islet lesions of diabetic mice [234]. Thus, 

uncontrolled retinoic acid production in ISX-deficient mice most likely impairs T cell 

immunity and caused the diabetic phenotype of this mouse mutant.

Taken together, ISX plays an important role in the control of intestinal vitamin A 

homeostasis as required immunity and tolerance at the intestinal barrier. In vitamin A 

deficiency, the ISX-dependent regulation of vitamin A production guarantees that even 

minute amounts of dietary carotenoids are used for vitamin A production to maintain 

immunity. In periods of excess supplies with carotenoids, ISX prevents excessive vitamin A 

production that eventually can trigger inflammatory responses in the intestine. In future 

studies, the ISX-deficient mouse will be a versatile model to study the molecular details of 

these processes. A better understanding of the factors which control mucosal immune 

development and tolerance will aid nutritional intervention strategies to improve health in 

neonatal and adult life.

7. Transport and body distribution of carotenoids and retinoids

7.1 Formation of Chylomicrons

For transport and distribution in the body, intact carotenoids and retinyl esters are packaged 

into chylomicrons along with other dietary lipids [235] (Figure 10). Pre-chylomicron 

assembly starts at the endoplasmic reticulum and requires surface proteins apolipoprotein 

B48 (apoB-48) and apolipoprotein A-IV. For initiation of this assembly, amphipathic surface 

lipids (phospholipids and cholesterol) and neutral core lipids (triacylglycerol and cholesterol 

esters) must be present. Microsomal triglyceride transport protein (MTP) catalyzes the 

lipidation of apoB-48 in the inner leaflet of the ER [236]. The addition of triacylgycerol, 

cholesterol esters, and phospholipids to apoB-48 generates secretion-competent primordial 

chylomicrons. The assembled pre-chylomicrons translocate to the Golgi apparatus. In this 

compartment, pre-chylomicrons acquire apolipoprotein A1, and apoB-48 undergoes 

significant glycosylation. Mature chylomicrons are then secreted into the lymph and reach 

the circulation at the level of the subclavian vein. In the circulation, chylomiocrons interact 

with lipoprotein lipase of peripheral tissues [237]. The resulting chylomicron remnant is 

taken up by the liver for processing of its remaining lipid cargo. Retinyl esters are cleaved 

into fatty acid and retinol by a yet not molecularly identified retinyl ester hydrolase(s) and 

transported to stellate (Ito) cells. Here, they are re-esterified by LRAT and stored in lipid 

droplets [20, 72].

7. 2 Transport of stored vitamin A

Retinol is released from hepatocytes, bound to RBP4, into the circulation [20, 238] (Figure 

10). This complex is named holo-RBP4 and is the major retinoid in the fasting circulation. 
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Holo-RBP4 forms a complex with the 55 kDa transthyretin (TTR) homotetramer at a 2:1 

molar ratio [239]. The cellular uptake of retinol from holo-RBP4 is mediated by a receptor 

localized at the cytoplasm membrane of target tissues [240–243]. This receptor is encoded 

by the Stra6 gene [244, 245]. Structural analysis revealed that STRA6 is assembled as an 

intricate dimer with 18 transmembrane helices (nine per protomer) and two long horizontal 

intramembrane helices interacting at the dimer core [246]. The receptor complex displays a 

lipophilic cleft to which holo-RBP4 binds with high affinity [244, 246]. Studies in cell lines 

indicate that STRA6 facilitates the bidirectional flux of retinol between RBP4 and cells 

[247, 248]. Cellular accumulation of retinol is driven by esterification by LRAT [247–250]. 

STRA6 allows for a higher flux of vitamin A into cells than is possible when this process is 

reliant on passive diffusion [251]. The evolutionary adaptation to store the fat-soluble 

vitamin and distribute it in a controlled manner provides a key pro-survival advantage to 

endure periods with little to no dietary supply of the essential nutrient [248, 249, 251–255]. 

In healthy subjects, blood holo-RBP4 levels are homeostatic and only decline under 

conditions of severe vitamin A deficiency (VAD) when body retinoid stores become 

exhausted [148, 256].

The pathological consequences of mutations in the STRA6, RBP4, or LRAT genes highlight 

the importance of vitamin A transport for ocular health. To date, 24 missense and nonsense 

mutations in the STRA6 gene have been identified to cause Matthew-Wood syndrome 

(MWS) [257–259]. MWS is characterized by severe bilateral microphthalmia, often in 

combination with pulmonary dysplasia, cardiac defects, and diaphragmatic hernia, among 

other anomalies and malformations [257]. The symptoms of MWS are consistent with the 

pivotal role of vitamin A in mammalian embryonic development [260] but are highly 

variable even within the same family ranging from isolated microphthalmia to fatal 

syndromes [261]. Similarly, mutations in the RBP4 gene can cause congenital eye 

malformations, including microphthalmia [262–264]. Again, even within the same family, 

large variations in the phenotypic manifestation of the RBP4 mutation exist [262]. It has 

been suggested that there is a maternal mode of inheritance of the phenotype, [262] and that 

the availability of dietary vitamin A impacts the severity of birth defects in affected patients 

[252, 262]. Mutations in the LRAT gene are associated with blindness in humans [265]. 

Currently, there are 11 identified mutations in the LRAT gene that cause Leber congenital 

amaurosis or retinitis pigmentosa in humans. Although effects of these mutations on LRAT’s 

activity have not been studied systematically, the severity likely depends on the degree of 

inactivation of the enzyme [149].

Mouse models for all major players of vitamin A transport have been established and used 

for an in-depth analysis of this important process: early in life, Stra6−/− mice largely display 

decreased ocular vitamin A levels and visual impairment including reduced ERG responses 

and shortened outer segments [252, 255]. Blood and other tissues such as the lungs, fat, and 

liver display normal vitamin A levels when mice are bred and raised on vitamin A-rich diets 

[252, 254]. A comparable phenotype has been reported for RBP4-deficient mice [238, 252]. 

These findings clearly indicate that retinyl ester in chylomicrons, when dietary supply with 

the vitamin is abundant, can compensate at least in part for the RBP4/STRA6 system. 

Genetic disruption of the Lrat gene renders mice blind because of the inability to acquire 

vitamin A and produce retinyl ester for visual chromophore production [169]. LRAT-
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deficient mice also lack major retinoid stores of the body and are highly susceptible to 

dietary vitamin A deficiency [72, 174].

7. 3 Transport of carotenoids to the periphery

For hepatic secretion, carotenoids are packaged into very-low-density lipoproteins (VLDL) 

and secreted into the blood. Carotenoids are not equally distributed among lipoproteins in 

the fasting circulation. The hydrophobic carotenes are found predominantly in low-density 

lipoproteins (LDL), while the more hydrophilic xanthophylls tend to be found in higher 

amounts in high-density lipoproteins (HDL) (Figure 11).

Genetic studies in Drosophila revealed that the Santa maria gene is required for uptake of 

carotenoids from circulating insect lipoproteins for visual chromophore production [67]. The 

Santa maria gene encodes a class two scavenger receptor that is required to render 

carotenoids available from lipoproteins to support photoreceptor development and vision. 

Studies in human retinal pigment epithelia cell lines indicate that SR-B1 facilitates uptake of 

carotenoids from HDL [266, 267]. In the circulation, zeaxanthin and lutein exist in higher 

concentration in HDL than in low density and very low density lipoproteins [114, 267]. The 

retinal pigment epithelium cells acquire fat soluble vitamins and other nutrients to deliver 

them to the adjacent neuronal retina to support photoreceptor function. This mechanism may 

play an important role in the uptake of macula pigments that are concentrated in the fovea of 

the macula region in the retina. β-Carotene in circulating LDL is absorbed by LDL receptor 

mediated endocytosis in to the retinal pigment epithelium [267] (Figure 11). Human RPE 

cells express relatively high levels of BCO1, the vitamin A forming enzyme, which converts 

β-carotene to retinaldehyde, and local vitamin A synthesis may contribute to ocular retinoid 

homeostasis [268].

Carotenoid content and composition is variable between tissues. The high concentration of 

carotenoids in the fovea region of the retina of the human eyes supports the idea of active 

uptake and retention mechanism for these lipids. An isoform of glutathione-S-transferase, 

GSTP1, and a steroidogenic acute regulatory domain protein, StARD3, were suggested as 

zeaxanthin and lutein binding proteins in the human retina [269, 270]. However, given the 

very high levels of xanthophylls in the macula, it is unlikely that these pigments 

predominantly exist in protein-bound form unless GSTP1 and StARD3 would be present in 

comparable amounts.

8. Implication for carotenoid intake levels and human health benefits

In 2000, the Food and Nutrition Board reviewed the evidence for role(s) of carotenoids as 

antioxidants and determined that specific functions beyond that related to provitamin A 

activity had not yet been sufficiently identified [271]. No dietary recommendations for 

individual non-provitamin A carotenoid intake exist, as it was thought that their absence 

from the diet causes no specific deficiency symptoms. Recent research challenges this 

statement and indicates urgent need for action. Studies in primates showed that deficiency of 

lutein and zeaxanthin can impair vision and make the retina susceptible to light damage [6, 

13]. The outcome of the Age-Related Eye Disease Study 2 (AREDS2) study provided 

compelling evidence for beneficial effects of low dose zeaxanthin and lutein (2 and 10 mg) 

von Lintig et al. Page 18

Biochim Biophys Acta Mol Cell Biol Lipids. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



supplementation for eye health [272, 273]. While the importance of these carotenoids for 

eye health has been now acknowledged [11], intake of 10 mg/d have been advocated by 

several researchers [11, 274].

For provitamin A carotenoids, the Food and Nutrition Board of the National Research 

Council initially established conversion values of 2:1 for purified all-trans-β-carotene from 

supplements and 6:1 for dietary all-trans-β-carotene from food. Other dietary provitamin A 

carotenoids (mainly α-carotene and β-cryptoxanthin) were considered to have half the 

vitamin A activity of dietary all-trans-β-carotene. In 2001, the Food and Nutrition Board 

revised the original conversion values based on human trials revealing that the bioavailability 

of all-trans-β-carotene from foods was half of what was originally believed [275]. To 

decrease confusion in making the changes, a new term was coined: “retinol activity 

equivalent” (RAE = 1 μg all-trans-retinol). The RAE ratios of conversion for purified all-

trans-β-carotene in oil, dietary all-trans-β-carotene, and other dietary provitamin A 

carotenoids were set at 2:1, 12:1, and 24:1, respectively.

In 2009, a consensus conference on β-carotene in Hohenheim, Germany, concluded that the 

mean dietary intake of β-carotene in Europe is in the range of 1.5–1.8 mg/d, and that 

provitamin A intake is <3 mg/d in most European countries. Since provitamin A carotenoids 

are the major source of vitamin A, it was recommended to increase the β-carotene 

consumption to 7 mg/d [276]. The role of carotenoids as vitamin A source will become even 

more important with the growing trend for vegetarian and vegan life styles.

A problem with recommendations for dietary carotenoid intake in health and disease is the 

variable plasma responses upon supplementation. As reviewed here, many host-related 

factors affect the bioavailability and bioconversion of carotenoids. It is now generally 

acknowledged that intestinal absorption of carotenoids is a saturable and protein-mediated 

process. Moreover, the conversion rate of carotenoids to retinoids is affected by vitamin A 

status and genetic makeup of the host [26]. The regulation of the bioconversion of 

carotenoids to vitamin A helps humans to adapt to the fluctuating dietary supplies of these 

lipids [19]. A study in Zambian children impressively reports the consequences of this 

regulation under conditions of excessive dietary vitamin A supplies [277]. During mango 

harvest, a period of high provitamin A supply, these children experienced 

hypercarotenodermia. This indicate that provitamin A carotenoid bioconversion to vitamin A 

by BCO1 is inhibited by negative feedback regulation. The hypercarotenodermia is elicited 

by the uptake of carotenoids by other receptors such as CD36, which are not regulated by 

ISX. The equivalency ratios for provitamin A carotenoids do not consider vitamin A status 

and one can assume that the ratio differs significantly between vitamin A sufficient and 

deficient populations.

The need to control intestinal carotenoid metabolism is also indicated by the critical role of 

vitamin A in immunity [23]. There is increasing body of evidence that excessive dietary 

levels of preformed vitamin A can promote inflammation and loss of tolerance at the 

intestinal barrier [213, 278]. A failure to establish tolerance against commensal flora and 

food antigens has been implicated in autoimmune disease such as celiac disease, Crohn’s 

disease, and type 1 diabetes [231]. These diseases are on the rise in many industrialized 
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countries. Studies in mice revealed that mammalian genomes specifically devote a 

transcription factor to control intestinal vitamin A production from dietary provitamin A 

[167]. Accordingly, genetic variation in the ISX gene has been associated with inflammatory 

responses and proliferation of cells [279, 280]. Moreover, ISX gene has been associated with 

inflammatory bowel disease in genome wide studies [281]. At the state of the present 

knowledge it can be assumed that the supplementation with preformed vitamin A has a 

different impact on gastrointestinal immunity than the supplementation with provitamin A 

which is absorbed and converted to retinoids in a controlled fashion. More research is 

needed to better understand this crosstalk between diet and immunity in the intestine.

Genome wide association studies and candidate gene studies identified single base pair 

polymorphisms (SNPs) that affect carotenoid blood and tissue levels [26]. Significant SNPs 

were found in the genes encoding BCO1, SR-B1, and the transcription factor ISX [198, 209, 

282, 283]. Interestingly, SNPs in BCO1 are associated with macula pigment density [284]. 

This finding is surprising at the first glance since xanthophyll is not a substrate for the 

vitamin A forming enzymes. The vitamin A-dependent regulation of SR-B1 expression in 

the intestine explains the interaction between xanthophyll accumulation and β-carotene 

metabolism. Interestingly, it was previously observed that dietary vitamin A reduces 

xanthophyll absorption in chickens [211]. Genetic makeup influences the conversion rate of 

provitamin A carotenoids and may constitute the basis for the low and high responder 

phenotypes described in the general European male population [285]. Additionally, several 

SNPs in proteins that affect lipid and lipoprotein metabolism have been associated with 

carotenoid blood levels [26]. The latter association indicates significant interactions between 

carotenoid and lipid metabolism. Such interactions have been recently demonstrated in 

mouse models [114]. Most of the genetic data in humans stem from the analyses of β-

carotene, lycopene, and lutein fasting blood levels, but it is assumed that these genetic 

variations also modulate the bioavailability of the other carotenoids found in human blood 

and tissue [26].

Additionally, carotenoid absorption and bioconversion can be affected by several chronic 

disease state of the gut. Atrophic gastritis, a common condition of aging, results in 

insufficient gastric acid secretion and decreased carotenoid uptake, by disturbing the 

formation and absorption of mixed micelles [30]. Parasitic infections, prevalent in vitamin A 

deficient populations, can also have a dramatic negative effect on carotenoid absorption 

[286]. Pancreatic insufficiency in cystic fibrosis also impacts the absorption of carotenoids 

and their apocarotenoid metabolites [287]. Additionally, Crohn’s disease and celiac disease 

have been reported to affect carotenoid levels in blood and tissues of affected individuals 

[288]. Thus, specific dietary recommendation for carotenoid intake are required in disease 

states of the gastrointestinal tract.

In conclusion, an increasing body of evidence indicates critical roles of carotenoids in 

mammalian biology as antioxidants, blue light filters, and vitamin A precursor. Therefore, 

many nutritionists and clinicians advocate for recommendations for carotenoid intake. The 

establishment of such recommendations is based on the relationships between carotenoid 

intake, blood, and tissue concentrations. This relation is not linear and is influenced by many 

host and environmental factors. As reviewed here, studies in experimental animals provided 
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a molecular framework for how diet and genetics affect the bioavailability and bioconversion 

of carotenoids. This framework provides a controlled production of vitamin A and prevents 

excessive accumulation of carotenoids and retinoids. An important aspect in the coming 

years will be to refine our knowledge about this framework and to determine its specifics in 

human physiology. Such knowledge will eventually lead to science-based recommendations 

for the intake of these essential lipids.
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ADH alcohol dehydrogenase

BCO1 β-Carotene-15,15’-Dioxygenase

BCO2 β-Carotene-9,10’-Dioxygenase

CCD Carotenoid Cleavage Dioxygenases

CD36 Cluster of Differentiation 36

Cyp26a1 Cytochrome P450, Family 26 A1

Intestine Specific Homeobox: Transcription factor

NinaD neither inactivation nor afterpotential mutant D

LRAT lecithin: retinol acyl transferase

RPE65 Retinal Pigment Epithelium-Specific Protein 65kDa

RBP4 Retinol Binding Protein 4

SR-B1 Scavenger Receptor Class B, Member 1

STRA6 Stimulated by Retinoic Acid 6

RALDH1 Retinal Dehydrogenase 1 Family

RAR retinoic acid receptor

RDH retinol dehydrogenase

RXR retinoid X receptor

SDR short chain dehydrogenase/reductase
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Figure 1. 
Chemical structures and names of the six major carotenoids in human blood. Their 

classification into carotenes, xanthophyll, and provitamin A carotenoids is indicated. The 

chemical characteristics of different end-groups is provided at the bottom of the panel.
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Figure 2. 
Schematic of carotenoid absorption in an enterocyte. Carotenoid absorption from mixed 

micelles is facilitated by scavenger receptor class B type 1 (SR-B1) and cluster of 

differentiation 36 (CD36). Absorbed carotenoids can undergo three metabolic fates. (1) 

Carotenoids such as β-carotene (BC) can be converted to retinal (RAL). The conversion of 

BC is catalyzed by β-carotene-15,15’-dioxygenase (BCO1). RAL is reduced to retinol 

(ROL) by retinal dehydrogenases (RDH) in a process that involves cellular retinol binding 

protein (CRBP2). ROL is converted to retinyl esters (RE) by lecithin: retinol acyl transferase 

(LRAT) and packed in chylomicrons for body distribution. (2) Unprocessed carotenoids can 

be packaged into chylomicrons for body distribution. (3) Carotenoids can be converted by 
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mitochondrial BCO2 (β-carotene-9’,10’-dioxygenase) into apocarotenoids different than 

retinoids.
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Figure 3. 
Overview of vitamin A metabolism. The different functional groups of retinoids are 

indicated by a color code (red, aldehyde; blue, alcohol; green, ester; purple, acid). The 11-

cis-retinoid diastereoisomer is indicated by yellow color. Major retinoid metabolizing 

enzyme classes (see main text) catalyzing the chemical transformations of retinoids are 

highlighted.
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Figure 4. 
Recombinant BCO2 converts a large panoply of different carotenoids with various ionone 

ring structures by oxidative cleavage at position 9,10 and 9’,10’ of the carbon skeleton. 

Confirmed provitamin A and non-provitamin A substrates of recombinant mouse BCO2 are 

displayed in the panel.
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Figure 5. 
Structures of zeaxanthin and its oxidation products in tissues of mice.
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Figure 6. 
Conversion of asymmetric provitamin A carotenoids into all-trans-retinal. (A) β-

cryptoxanthin is converted by a two-step mechanism with a β-10’-apocarotenal intermediate 

in a pathway that involves BCO1 and BCO2 enzymes. (B) 9-cis-β-carotene is converted by 

BCO1 into all-trans-, 13-cis, and 9-cis-retinal. Notably, the all-trans-diastereoisomer exist in 

significantly higher amount than the 9-cis-retinal diastereomer. Trace amounts of 13-cis-

retinal are also present. The distribution of the different retinal-diastereomers indicates that 

BCO1 possesses an intrinsic isomerase activity.
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Figure 7. 
A diet-responsive regulatory network controls intestinal vitamin A production and 

carotenoid absorption. β-Carotene (BC) absorption is facilitated by scavenger receptor class 

B type 1 (SR-B1). The conversion of BC by β-carotene-15,15’-dioxygenase (BCO1) is an 

important branching point in retinoid metabolism. The primary product retinaldehyde (RAL) 

is reduced to retinol (ROL) by retinal dehydrogenases (RDH) in a process that involves 

cellular retinol binding protein (CRBP2). ROL is the converted to retinyl esters (RE) by 

lecithin: retinol acyl transferase (LRAT) and packed in chylomicrons for body distribution. 

Some RAL is also converted to retinoic acid (RA) by retinal dehydrogenase (RALDH). RA 

binds to retinoic acid receptors (RARs) that in conjunction with retinoid X receptors (RXR) 
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regulate the expression of intestine specific homeobox (ISX) transcription factor. ISX is a 

transcriptional repressor of the genes encoding SCRAB1 and BCO1.
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Figure 8. 
ISX controls vitamin A homeostasis in the intestine. Retinol (ROL) and retinyl ester (RE) 

levels in different parts of the intestine of Isx−/− and WT mice fed with a β-carotene-rich (25 

mg/kg) diet. The values represent five individual animals per genotype. The p values 

(<0.001) in student T test are indicated by three asterisks.
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Figure 9. 
Intestinal vitamin A metabolism and immunity. Brush border cells acquire dietary vitamin A 

precursors from the intestinal lumen and convert them to retinyl esters. Retinyl esters are 

packaged into chylomicrons for body distribution. Brush border cells and dendritic cells in 

the lymphatic system can convert dietary vitamin A also into retinoic acid (RA). RA can 

promote gut homing, differentiation, and functions of B and T lymphocytes.
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Figure 10. 
Transport of vitamin A throughout the body. Carotenoids such as β-carotene are absorbed in 

brush border cells in the intestine, where they are converted into retinyl esters (RE), 

packaged into chylomicrons, and released into the circulation. The RE in chylomicrons can 

either be delivered to peripheral cells and taken up in a liproprotein lipase-mediated process 

or be transported for receptor-mediated endocytosis and storage to the liver. In the liver, 

stored RE are converted back to retinol which binds to RBP. The retinol-RBP complex is 

released into the circulation. Vitamin A is taken up from holo-RBP in a STRA6-mediated 

transport process.
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Figure 11. 
Transport of carotenoids throughout the body. Carotenoids are absorbed in brush border cells 

in the intestine, where they are packaged into chylomicrons, and released into the 

circulation. The carotenoids in chylomicrons can be delivered to peripheral cells and taken 

up in a lipoprotein lipase-mediated process. This uptake may also involve the scavenger 

receptor CD36. Carotenoids in chylomicron remnants are transported to the liver. In the 

liver, carotenoids are packaged into Very Low Density Lipoproteins (VLDL). VLDL might 

be converted to Low Density Lipoproteins (LDL) in the circulation. Carotenoids from LDL 

are taken up by LDL receptor mediated endocytosis into peripheral cells. Additionally, 

carotenoids in HDL are taken up by SR-B1 facilitated interactions between HDL and 

peripheral cells.
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