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Abstract
Patients living with a chronic disease often require regular appointments and treatments. Due to the constraints on the
availability of office appointments and the capacity of physicians, access to chronic care can be limited; consequently,
patients may fail to receive the recommended care suggested by clinical guidelines. Virtual appointments can provide a cost-
effective alternative to traditional office appointments for managing chronic conditions. Advances in information technology
infrastructure, communication, and connected medical devices are enabling providers to evaluate, diagnose, and treat patients
remotely. In this study, we build a capacity allocation model to study the use of virtual appointments in a chronic care
setting. We consider a cohort of patients receiving chronic care and model the flow of the patients between office and
virtual appointments using an open migration network. We formulate the planning of capacity needed for office and virtual
appointments with a newsvendor model to maximize long-run average earnings. We consider differences in treatment and
diagnosis effectiveness for office and virtual appointments. We derive optimal capacity allocation policies and implement
numerical experiments. With the model developed, capacity decisions for office and virtual appointments can be made more
systematically with the consideration of patient disease progressions.

Keywords Virtual appointments · Capacity planning · Chronic care · Newsvendor model · Operations research ·
Operations management

Highlights

• We consider an operational problem that deals with the
effective allocation of capacity among different types of
appointments.

• We integrate the operational decisions (i.e., capacity
allocation) with the clinical operations (i.e., treatment
and diagnosis of patients, disease progression).

• We show how the expected number of patients at different
appointments changes with respect to some of the model
parameters.

• We find that although virtual appointments are not as
effective as office appointments, they can have equal
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importance to office appointments due to their lower
costs.

• We propose efficient and practical solutions that would
help clinics in their capacity allocation decisions.

1 Introduction

Chronic care involves the treatment and monitoring of pre-
existing and long-term diseases such as diabetes, high blood
pressure, asthma, Alzheimer’s disease, and cardiovascular
disease [10]. In the U.S., 45% of the population has at
least one chronic disease, and the cost of chronic care con-
stitutes over 75% of the entire health care spending in
the U.S. [25, 48]. Given that the population is increas-
ing and aging, the need for chronic care in the future will
increase faster. Current care processes are insufficient to
address this coming mismatch in supply and demand [24].
To improve patient access to chronic care and to reduce their
burden, health care providers increasingly rely on virtual
appointments as a new alternative way to provide effec-
tive and consistent long-term care. Virtual appointments,
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consisting of e-mail, phone, and online consultations, can
improve patient access and ensure continuity of care and,
consequently, better outcomes [12, 42].

Virtual appointments can be used as a substitute for, or
be complementary to office appointments, and they can take
many different forms. For example, virtual appointments
can be used for diagnosis only, for treatment only, and for
both treatment and diagnosis, similar to office appointments
[7]. More specifically, through virtual appointments that
provide diagnosis only, chronic-care patients can be moni-
tored remotely in real time and updates regarding the patients’
status can be obtained [3, 37]. Through virtual appointments
that provide treatment only, educational support and reliable
resources can be provided to patients without diagnosing
their status [22]. Finally, virtual appointments can also be
used to provide both diagnosis and treatment, in which
both the patients’ health status are diagnosed and proper
treatments are provided [7]. Since virtual appointments
are provided remotely, they can enhance the delivery of
health care to geographically-disadvantaged and medically-
underserved populations [1]. In addition, patients who are
unable or unwilling to leave their homes to seek medical
treatments or are in poor physical condition can also benefit
from virtual appointments [4, 8]. Virtual appointments have
the potential to enhance primary care delivery by enabling
cost reductions for both health delivery and travel and larger
panel sizes without sacrifices in the quality of health care
[5, 44]. Parallel to its benefits, more patients are willing
to receive care through this convenient method. Thus, the
demand for virtual appointments is increasing quickly. The
total number of virtual consultations is growing by around
10% a year, with growth projected to reach around 25
million in 2020 [49].

Despite the increased usage of virtual appointments and
their observed benefits in chronic care, the integration of
virtual appointments with office appointments can be oper-
ationally challenging for the clinics. One of the reasons for
this challenge is that office and virtual appointments can
have differences in their treatment/diagnosis effectiveness
and in their costs. More specifically, although virtual appoint-
ments can provide cost-effective treatments, they can result
in similar [16] or worse patient-related outcomes [33, 38]
compared to office appointments, which makes it harder
to decide how to allocate the available capacity among
appointments with different effectiveness. Moreover, with
the integration of virtual appointments, the patient flow
dynamics become complex and it gets difficult to identify
the expected number of patients that can be scheduled for
office and virtual appointments. Indeed, faced with rising
costs and patient populations, managers of health facilities
like clinics strive to determine an appropriate capacity to
meet the needs of the patients and avoid the opportunity
cost and over-utilization cost as much as possible. Thus, it

is important to develop strategies to determine the expected
number of patients and allocate available capacity effi-
ciently by considering the patient flow dynamics. To address
the need for capacity allocation policies, we study in this
paper a chronic care setting in which patients are scheduled
for virtual or office appointments. We consider that, sim-
ilar to office appointments, virtual appointments can also
provide both treatment and diagnosis, and parallel to previ-
ous studies [7, 33, 38] we assume that virtual appointments
can be less effective than office appointments. We develop
a modeling framework to determine the optimal allocation
of the capacity for both office and virtual appointments and
aim to answer the following operational questions:

1. What is the expected number of patients scheduled for
office and virtual appointments for the given follow-up,
service, arrival, and departure rates?

2. How should the available capacity be allocated among
office and virtual appointments to maximize the long-
run average earnings of a health clinic?

To address these questions, we develop a migration net-
work model to analyze patient flow and disease progres-
sions. Using the migration network model, we first ana-
lytically investigate the number of patients in the steady
state who are scheduled for office and virtual appointments.
Second, we analyze how the expected number of patients
at each node of the migration network would change with
respect to some model parameters. Third, we develop a
newsvendor-type model to maximize the long-run average
earnings of a health clinic. We further propose heuristics
to find the capacity allocations among office and vir-
tual appointments. Fourth, we analytically investigate how
limited capacity impacts the proposed heuristics and the
optimal capacity allocation decisions. Finally, through our
numerical studies, we analyze the effect of model parame-
ters on the allocation of the capacity of the office and virtual
appointments by analyzing different scenarios.

The remainder of this paper is organized as follows:
In Section 2, we review the related literature. Section 3
presents the migration network model and characterizes the
number of patients in steady-state conditions. In Section 4,
we develop capacity allocation models for different set-
tings and propose heuristics to identify capacity allocations
among office and virtual appointments. In Section 5, we
perform numerical experiments and sensitivity analysis to
illustrate the application of our models. Finally, our conclu-
sions are outlined in Section 6.

2 Relevant literature and contributions

In this section, we discuss separately the relevant literature
and the contribution of our study.

743Managing capacity for virtual and office...



2.1 Relevant literature

Our study builds on the literature of decision models in
community-based chronic care delivery. Related to this
area, [31] present and analyze three representative exam-
ples of prevailing quantitative decision models for managing
community-based chronic care (i.e., [18, 30]). For each
example, they analyze the background of the problem,
present the methodology, and show their findings and impli-
cations. Among these examples, [30] propose a Markov
decision process to model multiple care-provider visit pat-
terns for stroke patients, while [18] combine a Markovian
disease progression model with a capacity allocation model
to determine revisit intervals for childhood asthma care. A
major difference of our paper from the listed literature is that
we consider different types of appointments (i.e., office and
virtual appointments) and investigate the capacity allocation
decisions among the different types of appointments.

Related to the virtual appointment setting, studies that
investigate the management of office and virtual appoint-
ments are limited. In a relevant study, [36] build an opti-
mization model to design effective checkup plans (i.e.,
phone calls, office visits) for monitoring individual patients
after hospital discharge. Their study considers only the
diagnosis impacts of the virtual appointments, whereas we
include both the treatment and the diagnosis impact of the
virtual appointments. Among the studies considering the
impact of virtual appointments on both treatment and diag-
nosis, [6] develop a Markovian model to determine the
patient revisit intervals in primary care by incorporating
virtual appointments into an office appointment setting. In
another study, [7] develop a stochastic dynamic program-
ming model to determine the follow-up rates for office and
virtual appointments, and they investigate the value of vir-
tual appointments in patients’ health outcomes. In these
papers, the capacity of the appointments is assumed to be
given. In contrast to these studies, we investigate the capac-
ity allocation of office and virtual appointments for different
settings.

Another stream of literature that is relevant to our study
is on the capacity planning problem in health care, which
addresses the issue of allocating limited resources to satisfy
the demand of the patients. There are several studies in this
area, and [26] provide a comprehensive review of resource
allocation and capacity planning in health care. Among
this literature, the following papers are more relevant to
our methodology. [11] develop an optimization/queuing
network model for optimal planning of resource allocations
(e.g., beds and nurses) and apply it to a blood bank and
a health maintenance organization. [32] develop a multi-
class migration network model as an optimization model
to determine the optimal capacity that maximizes the
overall profit of a dialysis clinic. [34] present a long-term

care network model to determine the optimal capacity for
nursing homes and community-based services. Distinct
from the above literature, we consider both patient flows and
patients’ disease progression to determine optimal capacity
allocations. Our differences in the modeling structure are
detailed in the following section.

2.2 Contributions

In this paper, we consider an operational problem that deals
with the effective allocation of capacity among different
types of appointments (i.e., office and virtual appointments)
to maximize the long-run average earnings of the clinics.
The paper contributes to the capacity allocation literature on
the basis of the model structure, since we consider two types
of appointments with different effectiveness and patient
interactions in the chronic care setting. More specifically,
different from the above literature, we consider (i) the inte-
gration of operational decisions (i.e., how to allocate capac-
ity among different appointments) with the clinical opera-
tions (i.e., treatment and diagnosis of patients), (ii) two types
of appointments having different diagnosis and treatment
effectiveness, (iii) disease progression due to the chronic
nature of the condition, and (iv) patient dynamics and dif-
ferent patient groups rather than homogenous patients,
as we categorize patients as controlled vs. uncontrolled
and returning vs. new. The differences in the modeling
approaches lead us to reach different and unique conclu-
sions. For example, we derive the expected number of
patients scheduled for office and virtual appointments and
the expected number of patients in the controlled and uncon-
trolled health states by considering patients’ disease pro-
gressions. Through our results, we present how office and
virtual follow-up rates impact the optimal office and virtual
appointment capacity allocations and present how limited
total capacity and time impact the allocated capacity and
average clinic earnings. We further propose efficient and
practical solutions that would help clinics in their capacity
allocation decisions and bring them higher average earn-
ings. We find that although virtual appointments are not
as effective as office appointments, they can have equal
importance to office appointments due to their lower costs.
Different from the cited literature, we also show how the
expected number of patients at different nodes in the migra-
tion network model changes with respect to some of the
model parameters.

3Migration networkmodel for office
and virtual appointments

In this section, we consider a cohort of patients receiving
chronic care via both office and virtual appointments. In
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this network, two types of patients are served (i.e., new
patients and returning patients), and physicians provide
both office and virtual appointments. We use a continuous-
time open migration network [27, p.48-p.57] to simulate
the population dynamics (i.e., patient flows and disease
progression) in which patients’ arrivals are considered as
Poisson process and the time intervals between patient
transitions are independently and exponentially distributed.
We further consider an infinite population so that the node
capacities of the migration network are unlimited.

We illustrate our migration network model in Fig. 1,
and we describe the nodes and flows of the network in
this section. We use i ∈ I ={o, v}, where “o” corresponds
to office appointments and “v” corresponds to virtual appoint-
ments, to denote the set of appointment types. New patients
with office and virtual appointments arrive with Poisson
arrival rate λi, ∀i ∈ I. We define the “service” as the diag-
nosis and treatment of a patient, and we consider that office
and virtual appointments provide both diagnosis and treat-
ment during the appointment. More specifically, service
time corresponds to the duration of an appointment, and ser-
vice times of patients are exponentially and independently
distributed. We use μi, ∀i ∈ I to denote the service rate
of office and virtual appointments, respectively. We define
follow-up time (i.e., revisit interval) as the time between
the current visit and the next time the patient initiates an
appointment. We consider that after each appointment, the
physician recommends to the patient the type and the time
of the next visit. Hence, patients are scheduled for appoint-
ments based on the physician’s recommendation. Patient

follow-up times are assumed to be independently and expo-
nentially distributed, with a rate of σi, ∀i ∈ I. Some patients
may depart from the physicians’ panel before scheduling
another appointment (i.e., change the physician or clinic).
Patients’ departure times are independently and exponen-
tially distributed with a rate of δ.

We use the “control” measure to characterize the patient
health status. The “control” measure helps with understand-
ing how well chronic-care related symptoms are currently
controlled in a patient. Depending on the types of chronic
diseases, these categorizations may differ. For example, for
asthma, four categories can be used as follows: (i) con-
trolled, (ii) improved, (iii) unchanged, and (iv) worsened,
and the last three are classified as an uncontrolled health
state [18]. For the sake of simplification, in our model,
we consider two health states as controlled and uncon-
trolled to characterize the patients’ health states. Then, let
j∈ J ={c, u} represent the set of health states, where “c”
corresponds to the controlled health state and “u” corre-
sponds to the uncontrolled health state.

We assume that patients in the network may not be sched-
uled for an appointment (i.e., may not receive any care) and
they may be in the controlled and in the uncontrolled health
states. Hence, we define wc as patients who are in the con-
trolled health state and not scheduled for an appointment,
while we use wu to denote patients who are in the uncon-
trolled health state and not scheduled for an appointment.
We assume that there is no transition from the uncontrolled
state to the controlled state without treatment. However, due
to disease progression, some of the patients in the controlled

Fig. 1 Migration network model

Managing capacity for virtual and office... 745



health state and not receiving care (i.e., wc) may transi-
tion into the uncontrolled health state (i.e., wu) within the
unit time. The time for a controlled patient to progress into
the uncontrolled state is assumed to follow an exponential
distribution with a rate of γ .

We also consider that patients in the network may be
scheduled for office and virtual appointments and receive
care. At each type of appointment, the health state of
the patient is diagnosed and the patient is treated. We
assume that office appointments can be more effective than
virtual appointments [7, 33, 38], and the treatment and
the diagnosis in the office appointments are perfect, while
those of the virtual appointments are imperfect. Perfect
treatment means that a patient’s health state recovers to
the best health state after treatment, while perfect diagnosis
means that a patient’s health state is revealed accurately
during the diagnosis. On the other hand, imperfect treatment
means that a patient’s health state can transit into a
different health state with some probability, while imperfect
diagnosis means that a patient’s health state may be
revealed inaccurately during the diagnosis. The perfect
diagnosis/treatment assumption is similar to the ones in the
machine maintenance and repair literature as well [9, 43].
Moreover, in the healthcare literature, the perfect diagnosis
and treatment assumption is also used by [6, 7, 18]. More
specifically, patients in each health state are assumed to
be always diagnosed accurately if they are scheduled for
an office appointment, and they will be in the controlled
health state after the office appointment regardless of
their initial health state before the appointment. On the
other hand, patients scheduled for a virtual appointment
may be diagnosed inaccurately, since virtual appointments
are expected to be less precise than office appointments
[7, 33, 38].

Thus, we first define so to represent patients who are
scheduled for office appointments and receiving care (i.e.,
diagnosis and treatment). Next, to capture the imperfect
diagnosis of virtual appointments, we define sv,j to denote
patients who are scheduled for virtual appointments and
diagnosed in health state j∈ J at the virtual appointment.
We use conditional probability to define the imperfect

diagnosis probability for the virtual appointments. Let
pj |j ′, ∀j, j ′ ∈ J denote the probability that the patient in
health state j ′ is diagnosed in health state j at the virtual
appointment, where pc|j ′ + pu|j ′ = 1, ∀j ′ ∈ J . We also
capture the imperfect treatment in virtual appointments.
More specifically, a patient diagnosed in the uncontrolled
health state at the virtual appointment may remain in the
uncontrolled health state with probability (1 − pu) or may
transition into the controlled health state with probability
pu. Similarly, a patient diagnosed in the controlled health
state at the virtual appointment may remain in the controlled
health state with probability pc after the virtual appointment
or may be in the uncontrolled health state with probability
(1 − pc) after the virtual appointment (since not all
patients in the controlled health state may be diagnosed
accurately). Hence, the outcomes of nodes sv,c and sv,u are
the patients who are being diagnosed and treated during the
appointment, and the patients’ health statuses may remain
the same, may improve, or may get worse after the virtual
appointment (i.e., after being diagnosed and treated). We
further assume that the new patients scheduled for virtual
appointments will be diagnosed in the controlled health state
with probability ph.

Overall, we consider five nodes in the network, and we
use k ∈ K ={wc; wu; so; sv,c; sv,u} to represent the set of
nodes in the migration network. In Fig. 1, we illustrate the
described flow of patients between each node through arcs.
The arcs between nodes represent the process of a patient
that flows from one node to another. For example, the arc
from node “so” to “wc” represents the flow of patients
from an office appointment to their homes after they have
their appointment. We also show the inflow and outflow
for each node next to each arc. For example, there are
two outflows from node “sv,u” where uncontrolled patients
can improve to the controlled health state or can remain
in the uncontrolled health state after receiving a virtual
appointment (i.e., being diagnosed and treated).

We define αk to denote the expected number of patients
at node k ∈ K in the steady-state condition. The number of
patients at node k satisfy the following balance equations,
which are derived from Fig. 1 [27, p.49]:

μvαsv,c − σvpc|cαwc − σvpc|uαwu = phλv (1)

μvαsv,u − σv(1 − pc|c)αwc − σv(1 − pc|u)αwu = (1 − ph)λv (2)

−μvpcαsv,c − μvpuαsv,u + (σv + σo + δ + γ )αwc − μoαso = 0 (3)

−μv(1 − pc)αsv,c − μv(1 − pu)αsv,u − γαwc + (σv + σo + δ)αwu = 0 (4)

−σoαwc − σoαwu + μoαso = λo (5)

These equations represent that the total inflow to node
k ∈ K must be equal to the total outflow from that node.

Equations 1–5 are the balance equations with five unknowns
(i.e., αsv,c ; αso ; αsv,u ; αwc ; αwu), and we solve these balance
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equations to obtain the average number of patients in each
node at steady state. The result for each αk , ∀k ∈ K is
included in the Appendix B. By using these equations, we
characterize some of the structural properties to show the
relationship between the model parameters and the number
of patients at each node through Theorem 1.1

Theorem 1 In the migration network model, the number
of patients at each specific node presents the following
structural properties:

(a) Expected number of patients at virtual appointments
(i.e., αsv,c + αsv,u) is a linearly increasing function of
virtual follow-up rate (σv), while it is not dependent on
the office follow-up rate (σo), and expected number of
patients at office appointments (i.e., αo) is a linearly
increasing function of office follow-up rate (σo), while
it is not dependent on the virtual follow-up rate (σv).

(b) Expected number of patients who are not scheduled
for an appointment and in the controlled health state
(i.e., αwc ) is an increasing concave function of office
follow-up rate (σo), and expected number of patients
who are not scheduled for an appointment and in the
uncontrolled health state (i.e., αwu ) is a decreasing
convex function of office follow-up rate (σo) if pu >pc.

(c) Expected number of patients who are not scheduled for
an appointment and in the controlled health state (i.e.,
αwc ) is an increasing convex function of pc, while it
is an increasing concave function of pu. On the other
hand, the expected number of patients who are not
scheduled for an appointment and in the uncontrolled
health state (i.e., αwu) is a decreasing concave function
of pc, while it is a decreasing convex function of pu.

(d) Expected number of patients who are not scheduled for
an appointment and in the controlled health state (i.e.,
αwc ) is a decreasing convex function of pc|c, while it is
a decreasing concave function of pc|u if pu > pc.

(e) Expected numbers of patients who are not scheduled
for an appointment and in both controlled and
uncontrolled health states (i.e., αwc , and αwu ) are not
dependent on the service rate of office and virtual
appointments (μo and μv).

Theorem 1 (a) shows that as the virtual follow-up rate
σv (resp. office follow-up rate σo) increases (i.e., as patients
have virtual visits (resp. office visits) more frequently),
the expected number of patients scheduled for virtual
appointments (resp. office appointments) increases linearly.
On the other hand, office follow-up rate σo (resp. virtual
follow-up rate σv) does not impact the expected number

1All proofs are included in the Appendix B.

of patients scheduled for virtual appointments (resp. office
appointments). We further investigate how the office follow-
up rate impacts the expected number of non-scheduled
patients in the controlled and uncontrolled health states.
Theorem 1 (b) states that if the condition of pu > pc is
satisfied, as the office follow-up rate σo increases, patients’
health statuses are more controlled and the expected number
of non-scheduled patients in the controlled health state
increases with a concave structure, while the expected
number of patients in the uncontrolled health state decreases
with a convex structure. Moreover, we investigate the
treatment impact of virtual appointments on the expected
number of non-scheduled patients in different health states.
More specifically, as described in Theorem 1 (c), if
the treatment effectiveness of virtual appointments in the
controlled and uncontrolled health states (i.e., pc and pu)
increase, the expected number of non-scheduled patients in
the controlled health state (i.e., αwc ) will increase with a
convex and a concave structure, respectively. Note that both
pc and pu can be at most 1, and hence the expected number
of non-scheduled patients in the controlled health state will
take its highest value when pc = pu = 1. On the other
hand, the increase in the treatment effectiveness of virtual
appointments in the controlled and uncontrolled health
states (i.e., pc and pu) results in a decrease in the expected
number of non-scheduled patients in the uncontrolled health
state (i.e., αwu) with a concave and a convex structure,
respectively. We also investigate the impact of the diagnosis
effectiveness of virtual appointments on non-scheduled
patients. In Theorem 1 (d), it is described that as pc|c
and pc|u increase, the expected number of non-scheduled
patients in the controlled health state (i.e., αwc ) decreases
with a convex and a concave structure, respectively. Finally,
through Theorem 1 (e) we find that office and virtual
service rates (i.e., μv and μo) do not impact the expected
number of non-scheduled patients in both controlled and
uncontrolled health states. Overall, through Theorem 1, we
show how patient dynamics and flows change at each node
with respect to the model parameters.

Next, we use our results from the migration network
model to define the capacity allocation model. Hence, we
use αk , ∀k ∈ K to define the steady-state distribution πk ,
∀k ∈ K. Hence, let xk denote the number of patients
at node k ∈ K. Kelly ([27], p.53) shows that in steady
state, the nodes states are independent, and the steady-state
distribution for each node is a Poisson distribution with
parameter αk and given by Eq. 6 as follows:

πk(xk = x) = αx
k

x!

/ ∞∑
n=0

αn
k

n! = e−αk
αx

k

x! , ∀k ∈ K (6)

The steady-state distribution defines the probability of
having xk number of patients at each node k. We use these

Managing capacity for virtual and office... 747



probabilities to define the probabilistic capacity allocation
model in Section 4.

4 Capacity allocationmodel

In this section, we build newsvendor-type capacity allo-
cation models to find the optimal capacity for office and
virtual appointments to maximize the long-run average
earnings of a clinic. As described in the previous section,
we consider that the node capacities of the migration
network are unlimited, where the number of patients at
each node is unlimited. However, we consider a thresh-
old capacity for office and virtual appointments [34]. The
threshold capacity that we assign describes the number of
patients that can be served under the regular cost, and the
actual number of patients in office and virtual appointments
can exceed this threshold capacity. When the number of
patients in office and virtual appointments exceeds this
threshold capacity, we consider that a penalty cost due to
patient overflow occurs. Hence, we aim to find the opti-
mal threshold capacity for office and virtual appointments
for the clinics under the assumption that node capacities
are unlimited. In the following sections, we first introduce
the capacity allocation model without constraints. Then,
we modify the unconstrained model by adding constraints
on the optimal office and virtual appointment threshold
capacities.

4.1 Unconstrained capacity allocationmodel

We consider a clinic that provides both office and virtual
appointments with a threshold capacity of Mso for office
appointments, a threshold capacity of Msv for virtual appoint-
ments, and the total threshold capacity of M = Mso +
Msv . Since in our migration network we split the virtual
appointments into two parts to reflect the imperfect diagno-
sis and treatment, we define Msv,c and Msv,u , which denote
the threshold capacity for virtual appointments in the con-
trolled and uncontrolled health states, respectively (i.e.,
Msv = Msv,c + Msv,u). Defining different types of capaci-
ties for virtual appointments ensures more flexibility in the
model definition and our findings can impact the follow-
ing two areas in practice: (i) capacity splitting decisions
and (ii) patient scheduling decisions. In practice, although
it is not common to split the capacity of virtual appoint-
ments according to the patients’ health statuses, there
are different implementations of virtual appointments and
especially after COVID-19, they have been used in practice
more often. More specifically, (i) some virtual appointments
can be provided asynchronously for patients in controlled

health states [39], (ii) some of them can be provided syn-
chronously for both controlled and uncontrolled patients
[28], and (iii) some of them can be provided synchronously
for emergency patients (i.e., tele-emergency) [20]. Hence,
clinics can consider splitting their virtual appointment
capacities based on patient needs. On the other hand, clin-
ics do not need to split their virtual appointment capacity,
but they can implement the proposed policies in their patient
scheduling decisions. More specifically, during the appoint-
ments, physicians diagnose patients, provide treatments,
and by considering the patient’s overall health status and
progress, the provider recommends the next appointment
time to the patient. Thus, when physicians are making their
scheduling recommendations for the next appointment they
can take into account the capacity allocation decisions (i.e.,
the ratio of Msv,c/Msv,u).

Let K′ = {so; sv,c; sv,u} be the set of updated migration
network nodes. Then, we first define rk ∀k ∈ K′ as the
marginal profit of office and virtual appointments. We note
that there is one type of virtual appointment and rsv =
rsv,c = rsv,u (i.e., the difference between the revenue and
variable cost2 is the same for all virtual appointments).
Similarly, we define ηk , ∀k ∈ K′ to denote the unit threshold
capacity cost for office and virtual appointments, where
unit threshold capacity cost is the fixed cost of allocating
capacity, which can be employee salaries, building-related
costs, and equipment. We assume that rk > ηk [32]. By
assuming rk > ηk , we ensure that the optimal threshold
capacity Mk is greater than 0. More specifically, if the
unit threshold capacity cost is larger than or equal to the
marginal profit, it will be optimal to provide no service and
Mk = 0. Since there is one type of virtual appointment, we
consider that ηsv = ηsv,c = ηsv,u . We further assume that
the number of patients at the office and virtual appointments
can exceed the allocated threshold capacity, and in this case,
the clinic provides the corresponding appointment but at a
higher total cost. To reflect the cost of patient overflow, we
define fk > 0, ∀k ∈ K′, which represents the unit net
penalty cost of the overflow, where fsv = fsv,c = fsv,u .
The definition is similar to the definition of the overbooking
cost used by [32]. It is the net cost of meeting the overflow
demand, which is the difference between the total variable
cost of meeting the extra demand and the revenue earned
for that appointment. The clinic still earns the marginal
profit rk for the overflow patients, but the extra variable cost
of meeting this excess demand is more than the marginal
profit. Let xk(t) denote the current number of patients at

2Variable costs are the type of costs that can change depending on the
number of patients served, such as hourly labor cost or the cost of
materials and supplies.
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node k, ∀k ∈ K′ at time t . Then, our unconstrained capacity
allocation model can be defined as follows:

max A(M) = lim
T →∞

1

T

{∑
k∈K′

∫ T

0
rkmin [xk(t), Mk] dt

−
∑
k∈K′

∫ T

0
ηkMkdt

−
∑
k∈K′

∫ T

0
fk (xk(t) − Mk)

+ dt

}
(7)

s.t .

Mk ≥ 0 ∀k ∈ K′ (8)

As noted before, the objective function is defined as
the function of threshold capacity and the number of
patients at each node. Since the number of patients at each
node is uncertain, we use the steady-state probabilities πk

defined in Section 3. In objective function (7), the first
term represents the marginal profit generated from office
and virtual appointments, the second term represents the
fixed threshold capacity cost, and the third term represents
the penalty costs associated with a capacity shortage.
Equation 8 defines the non-negativity setting.

Let Eπk
(xk), k ∈ K′ be the expected number of patients

at node k under the steady-state distribution πk, k ∈ K′. Due
to the ergodicity of the open migration network [27, p.49],
we can define the following equations:

lim
T →∞

1

T

∫ T

0
xk(t)dt = Eπk

(xk) = αk (9)

lim
T →∞

1

T

∫ T

0
[Mk − xk(t)]

+ dt = Eπk

[
(Mk − xk)

+]
(10)

lim
T →∞

1

T

∫ T

0
[xk(t) − Mk]

+ dt = Eπk

[
(xk − Mk)

+]
(11)

Then, we reformulate the objective function (7) with the
following equation, and we include the detailed steps of the
reformulation in the Appendix B.

A(M) =
∑
k∈K′

[
(rk − ηk)αk − ηkEπk

[
(Mk − xk)

+]

−(fk + rk − ηk)Eπk

[
(xk − Mk)

+]]
(12)

Similar to Eq. 7, in Eq. 12, the first term is the difference
between the marginal profit and the fixed cost. The second
term is the opportunity cost for unutilized capacity, and the
last term represents the cost due to patient overflow.

We define Ak(Mk) as the individual objective function
for appointment k ∈ K′, and it can be defined as follows:

Ak(Mk) = (rk − ηk)αk − ηkEπk

[
(Mk − xk)

+]
(13)

−(fk + rk−ηk)Eπk

[
(xk−Mk)

+]
, ∀k ∈ K′

To maximize the objective A(M), each sub-objective
Ak(Mk) can be maximized separately. We derive the opti-
mal threshold capacity Mk, ∀k ∈ K′ for this unconstrained
capacity planning model through Proposition 1.

Proposition 1 The optimal solution of the unconstrained
capacity allocation model, denoted byM∗ = (Mmin

so
, Mmin

sv,c
,

Mmin
sv,u

), is given by

Mmin
k = min

{
Mk ≥ 0 : πk(xk ≤ Mk) ≥ fk + rk − ηk

fk + rk

}
∀k ∈ K′ (14)

where πk(xk ≤ Mk) is the cumulative probability that xi is
less than or equal to Mk , ∀k ∈ K′.

According to Eq. 14, the optimal threshold capacity
depends on both Poisson distribution parameter αk and
the ratio of fk+rk−ηk

fk+rk
. For a fixed Poisson parameter αk ,

the cumulative probability function is a non-decreasing
function of Mk . Hence, as the ratio

fk+rk−ηk

fk+rk
increases, the

optimal threshold capacity will also increase.

4.2 Capacity allocationmodel with capacity
constraint

In practice, due to the limited resources of the clinic, the
number of regular office and virtual appointments may
be limited. In this section, we extend the unconstrained
capacity allocation model presented in Section 4.1 and
investigate the impact of adding an upper bound on the
optimal threshold capacity decisions. This change does not
impact the balance equations of the migration network and
patient flows, and the objective function A(M) remains the
same as with the unconstrained model. More specifically,
node capacities in the migration network are unlimited, and
it is still allowed to have more than the Mk number of
patients [34]. Hence, Eqs. 1–6 still hold when the constraint
(16) is added. We use T C to denote the limited total
threshold capacity. Then, the capacity allocation model can
be updated as follows:

max A(M) =
∑
k∈K′

[
(rk − ηk)αk − ηkEπk

[
(Mk − xk)

+]
−(fk + rk − ηk)Eπk

[
(xk − Mk)

+]]
(15)

s.t .
∑
k∈K′

Mk ≤ T C (16)

Mk ≥ 0 ∀k ∈ K′ (17)

In the model, Eq. 16 states that the allocated threshold
capacity should be less than or equal to the total available
threshold capacity T C, and Eq. 17 defines non-negativity
constraints. Let MT C be the allocated threshold capacity
when the total threshold capacity is limited. Recall that
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M∗ = (Mmin
so

, Mmin
sv,c

, Mmin
sv,u

) is the optimal threshold
capacity for the unconstrained capacity allocation model
given in Proposition 1. It is clear that if

∑
k∈K′ Mmin

k ≤ T C,
then MT C = M∗. This means that the clinic has enough
resources, which maximizes its overall average earnings,
and the clinic may be considered not to have excess capacity.
If

∑
k∈K′ Mmin

k ≥ T C, this means that the clinic has scarce
resources, and the optimal solution provided in Proposition
1 may not hold. Hence, we propose Heuristic 1 to determine
the capacity allocation decisions. Let Mt

k, k ∈ K′ be the
threshold capacity of node k at iteration t . Heuristic 1 uses
the partial derivation calculation of the objective function,
so we define the partial derivative of the objective function
for each k ∈ K′ as follows:

A′(Mk) = 	A(M)

	Mk

= A(Mk + 1) − A(Mk) = fk + rk

−ηk − (fk + rk)πk(xk ≤ Mk) ∀k ∈ K′ (18)

Then, Heuristic 1 can be stated as follows:

In Heuristic 1, we calculate the marginal gain of having
one more unit of the threshold capacity for the office and
virtual appointments. At each step, we compare the marginal
gain of having one office and one virtual appointment and
increase the threshold capacity of the appointment with the
highest gain by one. The heuristic stops when the allocated
capacity reaches the available total threshold capacity or
when adding one more unit of threshold capacity for all
appointments yields a negative profit gain.

4.3 Capacity allocationmodel with time constraint

In this section, we take into account the total time required
for providing each type of appointment. Section 4.2 assumes
that office and virtual appointments both take an equal
amount of time. However, virtual appointments are expected

to be shorter than office appointments. Hence, we update
(16) by considering the total available time and service
times of office and virtual appointments. Let Tw denote
the average total available time for the clinic. As defined
in Section 4.1, μi, ∀i ∈ I represents the service rate of an
office and a virtual appointment, respectively. We assume
that virtual appointments for controlled and uncontrolled
patients have the same service rate, where μsv,c = μsv,u =
μv . Hence, 1

μi
, ∀i ∈ I represents the average service time

of appointment type i. Then the capacity allocation model
with the time constraint can be defined as follows:

max A(M) =
∑
k∈K′

[
(rk − ηk)αk − ηkEπk

[
(Mk − xk)

+]
−(fk + rk − ηk)Eπk

[
(xk − Mk)

+]]
(19)

s.t .
1

μo

Mso +
1

μv

(Msv,c +Msv,u)≤Tw (20)

where the objective function remains the same. Let MTw

be the threshold capacity allocation decision for the model
with limited time. Recall that M∗ = (Mmin

so
, Mmin

sv,c
, Mmin

sv,u
)

is the optimal threshold capacity for the unconstrained
capacity allocation model given in Proposition 1. Similar to
Section 4.2, if 1

μo
Mso

min + 1
μv

(Mmin
sv,c

+ Mmin
sv,u

) ≤ Tw, then
MTw

= M∗. On the other hand, if the resources are scarce,
Proposition 1 does not hold. Hence, we define Heuristic 2 to
determine the capacity allocation decisions when the total
time is limited. Let Mt

k, k ∈ K′ be the threshold capacity
of node k at the t th iteration. We further define Zk(Mk) =
A′(Mk)/

1
μk

= μkA
′ (Mk), which is the marginal profit gain

of node k ∈ K′ when total available time is limited.
Similar to Heuristic 1, Heuristic 2 also compares the

marginal gains of different types of appointments at
each iteration and increases the threshold capacity of the
appointment with the highest positive gain by 1. Neither
Heuristic 1 nor Heuristic 2 guarantees the optimal solution.
Hence, we analyze the relative errors of the solutions of
the heuristics from the optimal solution in the following
proposition:

Proposition 2 The relative errors of the solutions of
Heuristic 1 (i.e., MT C) and Heuristic 2 (i.e., MTw ), which
are the approximations of M∗

T C and M∗
Tw
, respectively,

are no greater than the relative error terms of
maxk A′(Mt

k)

A(MT C)

and
maxk A′(Mt

k)

A(MTw )
, respectively. We state the corresponding

equations as follows:

A(M∗
T C)−A(MT C)

A(M∗
T C)

≤ A(M∗
T C)−A(MT C)

A(MT C)
<

maxk A′(Mt
k)

A(MT C)
(21)

A(M∗
Tw

)−A(MTw )

A(M∗
Tw

)
≤ A(M∗

Tw
)−A(MTw )

A(MTw )
<

maxk A′(Mt
k)

A(MTw )
(22)
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where Mt
k represents the threshold capacity in the final

iteration of the heuristics. Also, A′(Mt
k) is the marginal

gain of appointment type k ∈ K′ in the final iteration.
Proposition 2 ensures that the percent profit gap between
the optimal solution and the proposed heuristic solutions is
not greater than the percent marginal profit gain in the final
iteration.

5 Numerical studies

In this section, we perform numerical experiments to ana-
lyze how the optimal capacity allocation decision varies
under different scenarios. To this end, we first describe the
model parameter estimation process. Then, we investigate
the change in the optimal threshold capacity with respect to
the follow-up rate and capacity constraint. Finally, we com-
pare the proposed solutions with some common policies in
practice.

5.1 Parameters estimation

In this section, we describe how the model parameters are
obtained. We note that our data are based on the literature,
and we use several sources to find the parameter values. The
parameter values we obtain represent different characteris-
tics. Due to the variation in the parameters’ characteristics,
fluctuation in the results can be expected. The parame-
ters that we present in this section is our initial setting,
and the results that are obtained based on a single setting
may not be generalized. To overcome these issues, in Sec-
tions 5.2 and 5.3, we define several scenarios and investigate
the changes in the proposed office and virtual appointment
capacities by considering possible fluctuations in the param-
eter values. We present minimum, average, and maximum
values of the proposed threshold capacity values to provide
a range for the decision-makers.

Flow parameters Based on a survey of American physi-
cians [45], doctors see 20.2 patients per day on average, and
physicians work on average 51.40 hours per week (includ-
ing all clinical and non-clinical duties). Of these, physicians
work on average 11.37 hours per week on non-clinical
(paperwork) duties only. Hence, we calculate the average
service time for each patient as (51.4−11.37)/(5×20.2) =
0.396 hours and the service rate of the office appointment
as μo = 1/0.396 = 2.525/hour. In addition, the average
appointment time of the virtual appointments is less than
that of the office appointments, and it is reported as around
12 minutes [47]. Thus, the virtual service rate is estimated
as μv = μsv,c = μsv,u = 60/12 = 5/hour. To calcu-
late the new patient arrival rate, we consider the state of
Michigan. The population of Michigan was 9.976 million
in 2017, and 47.9% of them suffered from chronic diseases
[41], while in 2018, the Michigan population increased to
9.996 million, and 48.1% of them suffered from chronic
diseases [46]. Thus, the number of new chronic patients in
Michigan can be calculated as (9.996 × 48.1% − 9.976 ×
47.9%) × 106 = 29, 572. There are 278 clinics in the state
of Michigan [15], from which number the total monthly new
arrival rate may be estimated as λo + λv = 29572/(278 ×
12) = 8.865 patients/month. Also, around 10.4% percent
of the visits occur through virtual appointments [45]. Thus,
λo = 8.865 × (1 − 10.4%) = 7.943 patients/month,
λv = 8.865 − 7.943 = 0.922 patients/month. Accord-
ing to the regulations on chronic care management (CCM)
[19], a patient should receive at least 20 minutes of clinical
care by a physician or other qualified health care profes-
sional per calendar month. Considering the service rates of
office and virtual appointments, the follow-up rate can be
estimated as σo = 20minutes/month

0.396hour
= 0.842/month, and

σv = 20minutes/month
12minutes

= 1.667/month. Based on a CDC
report [14], generally incurable and ongoing chronic dis-
eases affected approximately 133 million Americans in
2009, representing more than 40% of the total population in
this country. In 2009, 7 out of 10 deaths in the U.S. were
due to chronic diseases, and the death rate due to chronic
diseases was around 1.706 million [29]. Thus, the monthly
departure (i.e., death) rate can be calculated as δ =
1.706/(133 × 12) = 0.00107/month. In addition, the dis-
ease progression (i.e., transferring from a controlled health
state to an uncontrolled health state) is estimated as γ =
0.5/week [13]. To estimate the new patients’ health sta-
tus, we consider a study that considers diabetes patients.
[17] present that 43% of new patients among their analytic
sample had indications of uncontrolled diabetes. Hence, we
assume ph = 1 − 43% = 57%, which is the probabil-
ity that the newly arrived patient in a virtual appointment
is in the controlled health state. We note that for the
remaining parameters (pc, pu, pc|c, and pc|u) we perform

Managing capacity for virtual and office... 751



sensitivity analysis to investigate their effects on the capac-
ity allocation.

Revenue and cost We assume that the workday for a clinic
is 20 days per month. For the revenue and cost parameters of
the office appointment, we refer to the study of [32]. Then,
the marginal profit of an office appointment is estimated as
rso = $131 /day ×20 days/month= $2620/month, the fixed
threshold capacity cost of an office appointment is estimated
as ηso = $84.6/day×20days/month = $1692/month, and
the penalty cost of an office appointment is estimated as
fso = $50/day ×20 days/month = $1000/month [32].
For the virtual appointments, there is no direct historical
data, but the total cost of virtual appointments is estimated
as 32% less than that of traditional office appointments
[2]. Hence, the fixed threshold capacity cost for virtual
appointments is estimated as ηsv,c = ηsv,u = $1692/month
×(1−32%) = $1150.56/month. For the marginal profit and
the penalty cost of the virtual appointments, we use the same
parameter values as with the office appointments (i.e, rsv,c =
rsv,u = rso , and fsv,c = fsv,u = fso ). Table 1 summarizes
the value of the patient-flow and profit-related parameters
together with the sources from which they are estimated.
We note that the parameter values listed in Table 1 are used
in one of the scenarios. Then, we analyze several scenarios
by considering the possible fluctuations in the parameter
values. Hence, through our scenarios we also consider the
cases where rsv,c = rsv,u > rso or rsv,c = rsv,u < rso (resp.
where fsv,c = fsv,u > fso or fsv,c = fsv,u < fso ).

5.2 Impact of themodel parameters
on the threshold capacity

In this section, we investigate the changes in the optimal
threshold capacity and average earnings as some of the
key parameters in the model change. The parameters we
use in the model are obtained from the literature and
are not specific to any healthcare organization. For that
reason, we perform sensitivity analysis to investigate the
optimal threshold capacity for varying parameter values
to ensure that the changes in the parameter values due to
the different clinics’ characteristics can be addressed. We
show how the optimal threshold capacity can change with
respect to a change in other parameter values. Through
our results, we show not only how the optimal threshold
capacity changes but also the range of the change in optimal
threshold capacity and average earnings. Our sensitivity
analysis would also help us to generalize our results for a
varying set of parameters and data sets.

Follow-up rate We first study the impact of follow-up
rate (i.e., σo, σv) on the optimal threshold capacity. It has
important relevance since reducing or increasing the follow-
up rate implies a lower or greater frequency of patients’
visits. We vary the follow-up rate in a range between 0.5σ
and 1.5σ and present the corresponding optimal capacities
in Fig. 2. The results show that as we increase the follow-up
rate of office appointments, the optimal threshold capacity
of office appointments increases monotonically, while the

Table 1 List of model parameters

Parameters Values Sources

Office service rate (μo) 2.525/hour [45]

Virtual service rate (μv) 5/hour [47]

Office arrival rate (λo) 7.943 patients/month [41, 46],

Virtual arrival rate (λv) 0.922 patients/month [45]

Office follow-up rate (σo) 0.842/month [19]

Virtual follow-up rate (σv) 1.667/month

Departure/death rate (δ) 0.00107/month [14, 29]

Disease progression rate(γ ) 0.5/week [13]

Probability that the new arriving patient is in the controlled health state (ph) 0.57 [17]

Probability that patients diagnosed in the controlled health state remain in the controlled health state (pc) 0.9

Probability that patients diagnosed in the uncontrolled health state improve to a controlled health state (pu) 0.7

Probability controlled patient is diagnosed as controlled (pc|c) 0.9

Probability uncontrolled patient is diagnosed as controlled (pc|u) 0.2

Office marginal profit (rso ) $2620/month

[32]

Virtual marginal profit (rsv,c , rsv,u ) $2620/month

Office overflow penalty cost (fso ) $1000/month

Virtual overflow penalty cost (fsv,c , fsv,u ) $1000/month

Office fixed threshold capacity cost (ηso ) $1692/month

Virtual fixed threshold capacity cost (ηsv,c , ηsv,u ) $1150.56/month [2]
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Fig. 2 The impact of follow-up rate on the optimal threshold capacity

total optimal threshold capacity for virtual appointments
does not change. This is reasonable, because the increase
in the office follow-up rate would result in an increase in
the expected number of patients in the office appointments
at the steady state but not in the expected number of
patients in the virtual appointments. It is also observed that
the expected number of patients in virtual appointments
is not a function of the office follow-up rate as stated in
Eq. 39 in the Appendix B. There occurs a slight increase
in the optimal threshold capacity of controlled patients,
the reason for which is that the increasing follow-up rate
of office appointments transfers more patients from the
uncontrolled health state into the controlled health state.
Similarly, as the follow-up rate of virtual appointments
increases, it is observed that the optimal threshold capacity
for controlled health state increases more than the optimal
threshold capacity for uncontrolled health state. Although
in practice there may be no distinction between capacity for
uncontrolled and controlled conditions, this an indication
that the increasing follow-up rate of virtual appointments
relatively reduces the number of patients in the uncontrolled
health state. Thus, increasing the follow-up rate of either
office or virtual appointments can improve the health
condition of the patients, but it simultaneously increases
the demand for office and virtual appointments, which is a
challenge for the clinic. This result is consistent with the
practice that as the average follow-up rate of the patients
increases, the panel size of one physician would decrease.
Thus, to serve the same number of patients, more physicians
are needed for the clinic.

Limited capacity Next, we analyze the impact of limited
total threshold capacity (T C) on the optimal threshold
capacity and the average earnings of the clinic. To this
end, we first determine M∗, which is the optimal threshold
capacity allocation vector for the unconstrained model. For
the given model parameters in the unconstrained model,

the optimal threshold capacity for office appointments, for
controlled virtual appointments, and for uncontrolled virtual
appointments is 17, 12, and 8, respectively, and the optimal
total threshold capacity of the clinic is 37. Hence, we change
the range of limited total threshold capacity (T C) from 25
to 40. As shown in Fig. 3, as the limited total threshold
capacity increases, the office and virtual capacities increase
until they reach the optimal. We can see that when the
limited total threshold capacity (T C) is greater than 37
(i.e.,

∑
k∈K′ Mmin

k ≤ T C), the threshold capacity allocation
vector for the model with the equal-weighted capacity
constraint (i.e., MT C) is equal to the optimal result of the
unconstrained model (i.e.,M∗), which is consistent with the
analysis in Section 4.2.

In addition, as we increase the limited total threshold
capacity, the average long-run earnings of office and
virtual appointments increase and the marginal profit gain
decreases, which is consistent with Eq. 87, that the second-
order derivation of the long-run average earnings is a
monotonic decreasing function.

Limited time We also study the impact of limited working
time (Tw) on the threshold capacity and the average earn-
ings of the clinic. Recall that the optimal threshold capacity
for the unconstrained model is M∗ = {Mso

min = 17,
Mmin

sv,c
= 12, Mmin

sv,u
= 8}. By considering the service rates

(i.e., μo = 2.525/hour and μv = 5/hour), the optimal
threshold capacity for the unconstrained model is around
11 hours. Hence, we vary the range of the limited work-
ing time from 8 to 12 hours. Then, we use Heuristic 2 to
obtain the allocation decision for this problem. As shown
in Fig. 4, when Tw = 8 hours, the allocated capacities for
office and virtual appointments for controlled and uncon-
trolled patients are 11, 11, and 7, and when Tw = 10 hours,
the allocated capacities for office and virtual appoint-
ments for controlled and uncontrolled patients are 16, 11,
and 7.
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Fig. 3 The impact of limited threshold capacity (T C) on the optimal threshold capacity and average earnings

We observe that the change in the limited time affects
the threshold capacity for office appointments more than
the threshold capacity for virtual appointments. This is
because the average service time of office appointments
is nearly twice that of virtual appointments. If the limited
time decreases, it becomes more profitable to reduce the
threshold capacity for office appointments by one unit
rather than reducing the threshold capacity for virtual
appointments by two units. As shown, if the limited time
is greater than 11 hours, the actual working time remains
constant, which is consistent with the analysis in Section 4.2.
Since 1

μo
Mso

min + 1
μv

(Mmin
sv,c

+ Mmin
sv,u

) ≤ Tw, MTw = M∗.

5.3 Comparison of policies

In this section, we compare the total profits of some com-
mon benchmark policies with those of our proposed policies
(i.e., optimal policy, Heuristics 1 and 2). As benchmark poli-
cies, we consider three varying ratios of office appointment
threshold capacity to virtual appointment threshold capacity
(i.e., Mso/Msv ): (i) Policy-1: Mso/Msv = 2, (ii) Policy-2:
Mso/Msv = 1, and (iii) Policy-3: Mso/Msv = 1/2. Ini-
tially, we consider that the virtual appointment capacities
allocated for controlled and uncontrolled patients are equal
to each other. For comparison, we analyze several scenarios

by varying the parameter values. As the number of varying
parameters increases, the number of scenarios and the com-
plexity of the analyses increase. Hence, considering that the
impact of the δ and γ variables on the capacity allocation
decisions can be small and that preserving the relationship
of μo≤ μv is important, we keep these variables constant.
For all 16 remaining parameters, we use two possible values
(i.e., low, high). We use the following formulas to calculate
the low and high levels for each parameter:

Low Value of a Parameter = (1 − Fluctuation Rate)

×Original Parameter Value (23)

High Value of a Parameter = (1 + Fluctuation Rate)

×Original Parameter Value (24)

By considering all possible combinations, we evaluate
215 = 32, 768 scenarios for the unconstrained model,
and for the model with the capacity and time constraint,
we analyze 216 = 65, 536 scenarios as we also change
the parameter T C and Tw. In Tables 2 and 3, we present
the solutions obtained from the proposed heuristics (i.e.,
the ratio of Mso/Msv , Msv,c/Msv,u , and A(M)) and the
comparison results of the policies (i.e., Policy-1, Policy-2,
and Policy-3) with respect to the proposed heuristics for the
unconstrained model, the capacity-constrained model, and

Fig. 4 The impact of limited working time (Tw) on capacity allocation and average earnings
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Table 2 Comparison of Policy-1, Policy-2, and Policy-3 with benchmark policies when the fluctuation rate is 5%

Optimal % Profit Gap

Unconstrained Model Mso Msv
Mso

Msv
Msv,c Msv,u

Msv,c

Msv,u
Policy-1 Policy-2 Policy-3

Average 17.45 19.75 0.89 11.59 8.16 1.43 47.61% 5.12% 28.60%

Max 20.00 23.00 1.11 14.00 10.00 1.86 83.31% 18.31% 53.08%

Min 15.00 17.00 0.71 9.00 6.00 1.11 25.40% 0.00% 12.81%

Heuristic-1 % Profit Gap

Model with Capacity Constraint Mso Msv
Mso

Msv
Msv,c Msv,u

Msv,c

Msv,u
Policy-1 Policy-2 Policy-3

Average 15.28 16.71 0.92 9.94 6.76 1.49 43.25% 6.20% 27.94%

Max 18.00 20.00 1.14 12.00 9.00 2.20 82.79% 24.33% 53.14%

Min 13.00 14.00 0.70 8.00 5.00 1.11 16.31% 0.00% 7.93%

Heuristic-2 % Profit Gap

Model with Time Constraint Mso Msv
Mso

Msv
Msv,c Msv,u

Msv,c

Msv,u
Policy-1 Policy-2 Policy-3

Average 16.50 19.25 0.86 11.30 7.95 1.43 47.58% 9.97% 28.57%

Max 20.00 23.00 1.11 14.00 10.00 2.00 86.77% 31.28% 58.69%

Min 14.00 16.00 0.64 9.00 6.00 1.11 25.20% 0.95% 10.88%

the time-constrained model. Table 2 shows the results for
a fluctuation rate of 5%, while Table 3 shows the results
for a fluctuation rate of 10%. To calculate the percent
gap between the profit function of the policies and of the
proposed heuristics, we use the following formula:

Percent Profit Gap

= Profit of Proposed Heuristic - Profit of Corresponding Policy

Profit of Proposed Heuristic
×100% (25)

In Tables 2 and 3, we present the average, maximum, and
minimum values obtained over all scenarios, and we observe
that the allocated capacities according to the optimal policy
and heuristics for office and virtual appointments fluctuate
as parameters change. When the three common policies
are compared, we can see that Policy-2 (i.e., Mso/Msv =
1) is the best, even though the results become worse as
fluctuation increases. For the unconstrained model, the
optimal threshold capacity allocation ratio (i.e., Mso/Msv )
varies between 0.71 and 1.11 when the fluctuation rate

Table 3 Comparison of Policy-1, Policy-2, and Policy-3 with benchmark policies when the fluctuation rate is 10%

Optimal % Profit Gap

Unconstrained Model Mso Msv
Mso

Msv
Msv,c Msv,u

Msv,c

Msv,u
Policy-1 Policy-2 Policy-3

Average 17.41 19.74 0.89 11.61 8.12 1.47 50.69% 7.88% 31.41%

Max 22.00 25.00 1.27 17.00 12.00 2.43 106.90% 50.33% 81.14%

Min 13.00 15.00 0.62 7.00 5.00 0.88 12.34% 0.00% 3.56%

Heuristic-1 % Profit Gap

Model with Capacity Constraint Mso Msv
Mso

Msv
Msv,c Msv,u

Msv,c

Msv,u
Policy-1 Policy-2 Policy-3

Average 15.10 16.61 0.92 9.90 6.71 1.54 47.83% 9.71% 31.07%

Max 20.00 21.00 1.50 14.00 10.00 3.33 105.82% 65.40% 81.58%

Min 10.00 12.00 0.50 6.00 3.00 0.88 3.43% 0.00% 0.00%

Heuristic-2 % Profit Gap

Model with Time Constraint Mso Msv
Mso

Msv
Msv,c Msv,u

Msv,c

Msv,u
Policy-1 Policy-2 Policy-3

Average 16.15 19.05 0.86 11.24 7.80 1.49 52.66% 15.00% 33.45%

Max 21.00 25.00 1.29 17.00 12.00 2.60 110.39% 71.08% 96.46%

Min 13.00 14.00 0.54 7.00 5.00 0.88 11.44% 0.00% 3.08%
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is 5%, while it varies between 0.62 and 1.27 when the
fluctuation rate is 10%. As expected, when the uncertainty
in the parameter values increases, the optimal threshold
capacity allocation ratio varies more. It also shows that even
if the fluctuation rate is high, it is not reasonable to use a
threshold capacity allocation ratio of less than 0.62 or more
than 1.27. Similar to the unconstrained model, in the model
with the capacity and time constraints, Policy-2 performs
the closest to the proposed solutions, but the variation is
more compared to the unconstrained model where the model
with time constraint has the highest variability. In the model
with capacity constraint, the suggested Mso/Msv ratio varies
between 0.7 and 1.14 when the fluctuation rate is 5%, and
it varies between 0.5 and 1.5 when the fluctuation rate is
10%. Finally, in the time-constrained model, the proposed
Mso/Msv ratio changes between 0.64 and 1.11 when the
fluctuation rate is 5%, while it changes between 0.54 and
1.29 when the fluctuation rate is 10%. According to the
results of the proposed policies (i.e., optimal, Heuristics 1
and 2), the average threshold capacity allocation ratio
Mso/Msv should be 0.89 for the unconstrained model, 0.92
for the capacity-constrained model, and 0.86 for the time-
constrained model.

We also compare the change in the total threshold capac-
ity split for virtual appointments and for all models in
Tables 2 and 3. For the unconstrained model, the optimal
Msv,c/Msv,u ratio varies from 1.11 to 1.86 when the fluc-
tuation is 5%, and it varies between 0.88 and 2.43 when
the fluctuation is 10%. For the model with capacity con-
straint, the suggested Msv,c/Msv,u ratio ranges between 1.11
and 2.2 when the fluctuation rate is 5%, while this ratio
ranges between 0.88 and 3.33 when the fluctuation rate is
10%. Finally, for the time-constrained model, the suggested
Msv,c/Msv,u ratio changes between 1.1 and 2 for the fluctu-
ation rate of 5%, while this change is between 0.88 and 2.6
for the fluctuation rate of 10%. For all models, we observe
that the average suggested Msv,c/Msv,u ratio is greater than
1, which means that the threshold capacity allocated for
patients diagnosed in the controlled health state at virtual
appointments is greater than the threshold capacity allo-
cated for patients who are diagnosed in the uncontrolled
health state at the virtual appointments. In practice, physi-
cians can take into account this ratio while making their
recommendation to the patient for the next appointment.

We next analyze the impact of the fluctuation rate on
the optimal policy for the unconstrained model. We vary
the fluctuation rate between 2.5% and 20%. In Fig. 5,
we present the impact of the fluctuation rate on the
average, maximum, minimum, and standard deviation of
the optimal Mso/Msv ratio for the unconstrained model. As
the fluctuation rate increases, the average increases slightly,
but the range of the ratio of office appointment threshold
capacity to virtual appointment threshold capacity and the

Fig. 5 The impact of fluctuation rate on the optimal threshold capacity
allocation ratio, Mso/Msv for the unconstrained model

fluctuation of this ratio become larger. This indicates that
the increasing uncertainty in parameter values makes the
allocation decision harder for the policymakers.

6 Conclusion

Virtual appointments, consisting of e-mail, phone, and online
consultations, are increasingly changing our point of view of
traditional office appointments, which makes the integration
of virtual appointments and office appointments critical
for healthcare providers. Nowadays, many health clinics
and hospitals are transitioning in virtual health services,
which brings several operational challenges. Hence, the
capacity planning for these two kinds of appointments has
become an important but complex problem in the field of
healthcare.

In this study, we use a migration network to model the
flow of chronic patients. Our model further reflects the
varying effectiveness of office and virtual appointments in
treatment and diagnosis. We build a newsvendor optimiza-
tion model to determine how to allocate the capacity of the
office and virtual appointments to maximize the network’s
long-run average earnings. We present an unconstrained
model and two extended models with capacity and time
constraints to demonstrate the potential use of this model
in the clinic network under different scenarios. Through
numerical studies, we present one clinic network with
parameters estimated from the state of Michigan. We study
the use of our optimization models under different scenar-
ios and perform sensitivity analysis for the comparison of
different allocation policies. Our theoretical and numerical
studies bring us several insights into the clinic system and
the application of virtual appointments. We propose efficient
and practical solutions that bring higher average earnings
compared to the common policies in practice. Our results
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also suggest that virtual appointments should be used more
for following up with controlled patients than for treating
uncontrolled patients. Also, although virtual appointments
are not as effective as office appointments, they have equal
importance to office appointments due to their lower costs.

There are several limitations that can be extended in
several directions. First, our study focuses on capacity allo-
cation decisions for given arrival and follow-up rates. As
an extension, the optimal follow-up rates and arrival rates
can be investigated for a given capacity of office and virtual
appointments. Considering the arrival rate as a decision

Appendix A: Summary of the notations

Migration Network Model
Notation Definition

μi, ∀i ∈ I The service rate at node i.
λi, ∀i ∈ I The arrival rate of new patients at node i.
σi, ∀i ∈ I Follow-up rate of patients at node i.
δ The departure rate of patients in the system.
γ Disease progression rate.
pc The probability that the patients diagnosed in the controlled health state remain in the controlled

health state after a virtual appointment.
pu The probability that the patients diagnosed in a uncontrolled health state improve to controlled health

state after a virtual appointment.
pj |j ′ , j, j ′∈ J The probability that patient in health state j ′ is diagnosed in health state j during the virtual

appointment.
ph The probability that the new arrived patient in virtual appointment is in the controlled health state.
wc System state for patients who are in the controlled health state and not scheduled for an appointment
wu System state for patients who are in the uncontrolled health state and not scheduled for an appointment.
so System state that represents patients scheduled for office appointment.
sv,c System state that represents patients scheduled for virtual appointment and in the controlled health state.
sv,u System state that represents patients scheduled for virtual appointment and in the uncontrolled

health state.
αi, i ∈ K′ The expected number of patients at node i at the steady-state condition.

Capacity Allocation Model
Notation Definition

rk, k ∈ K′ The marginal profit of appointment type k.
ηk, k ∈ K′ The fixed cost of appointment type k.
fk, k ∈ K′ The penalty cost for overflow patients at appointment type k.
xk, k ∈ K′ The current number of patients at appointment k.
Mso The threshold capacity of office appointments.
Msv,c The threshold capacity of virtual appointments for controlled patients.
Msv,u The threshold capacity of virtual appointments for uncontrolled patients.
M Total threshold capacity for office and virtual appointments.
A(M) The total long-run average earnings of the clinic.
Ak(Mk), k ∈ K′ The long-run average earnings from the node i.
T C The limited threshold capacity.

variable refers to the physician’s panel size decision, where
the physician can decide on the rate of new patients to accept
into her/his panel [23, 35, 40]. Second, our data are based on
the literature, which limits the generalization of the model.
In the future, the model can be verified by using a specific
clinic’s or hospital’s data. Finally, we assume in our study
that all patients show up for their appointments. However,
no-shows are common in practice, and no-shows in office
and virtual appointments can be different. In a future study,
the impact of no-shows on capacity allocation decisions can
be investigated.
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Appendix B: Proofs

1-Proof of average number of patients at each node

Recall that the model with imperfect diagnosis and treat-
ment meets the definition of an open migration network
[27, p.48], number of patients at each node satisfy the
following balance equations:

μμvαsv,c − σvpc|cαwc − σvpc|uαwu

= phλv (26)

μvαsv,u − σv(1 − pc|c)αwc − σv(1 − pc|u)αwu

= (1 − ph)λv (27)

−μvpcαsv,c − μvpuαsv,u + (σv + σo + δ + γ )αwc

−μoαso = 0 (28)

−μv(1 − pc)αsv,c − μv(1 − pu)αsv,u − γαwc

+(σv + σo + δ)αwu = 0 (29)

−σoαwc − σoαwu + μoαso = λo (30)

These equations represent that the inflow to node i must
be equal to outflow from node i. Equations 26–30 are five
equations with five unknowns (i.e., αsv,c ; αso ; αsv,u ; αwc ;
αwu), then we can solve the balance equations and obtain
the average number of patients in each nodes at steady state
and get:

αsv,c = V Vc · λv + [(pc|u + pc|cpu − pc|upu)σ
2
v + pc|cδσv + pc|cσoσv + pc|uγ σv]λo

(δμv(δ + γ + σo + σv − pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv))
(31)

αsv,u = V Vu · λv + [(1 − pc|u + pc(pc|u − pc|c))σ 2
v + (1 − pc|c)δσv + (1 − pc|c)σoσv + (1 − pc|u)γ σv]λo

(δμv(δ + γ + σo + σv − pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv))
(32)

αwc = [σo + (pu + pc|u(pc − pu))σv + (pu + ph(pc − pu))δ]λv + [σo + (pu + pc|u(pc − pu))σv + δ]λo

(δ(δ + γ + σo + σv − pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv))
(33)

αwu = [γ + (1 − pu − pc|c(pc − pu))σv + (1 − pu − ph(pc − pu))δ]λv + [γ + (1 − pu − pc|c(pc − pu))σv]λo

(δ(δ + γ + σo + σv − pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv))
(34)

αso = σoλv + (δ + σo)λo

δμo

(35)

where

V Vc = (pc|u + pc|cpu − pc|upu)σ
2
v

+(pc|u + ph + pc|cpu − pc|upu)δσv + pc|cσoσv

+pc|uγ σv + phδ
2 + phδγ + phδσo (36)

V Vu = (1 − pc|u − pcpc|c + pcpc|u)σ 2
v

+(2 − pc|u − ph − pcpc|c + pcpc|u)δσv

+(1 − pc|c)σoσv + (1 − pc|u)γ σv

+(1 − ph)δ
2 + (1 − ph)δγ + (1 − ph)δσo (37)

From the above, we can find that,

αwc + αwu = λo + λv

δ
(38)

αsv,c + αsv,u = σvλo + (δ + σv)λv

δμv

(39)

2-Proof of Theorem 1 item a

In the migration network model, the number of patients
at virtual appointments (i.e., αsv,c + αsv,u) is a linearly
increasing function of the virtual follow-up rate (σv), while
it is not dependent on the office follow-up rate (σo).

To show the above statement we take the derivative of αsv

with respect to σv and σo.

∂αsv

∂σv

= (λv + λo)

δμv

(40)

∂αsv

∂σo

= 0 (41)

As shown in Eq. 40, the first-order derivative of αsv with
respect to σv is a positive value which states that αsv is an
increasing function of σv . On the other hand, the first-order
derivative of αsv with respect to σo is equal to zero which
states that αsv does not depend on σo.

In the migration network model, the number of patients
at office appointments(i.e., αso ) is an increasing function of
office follow-up rate (σo), while it is not dependent on the
virtual follow-up rate (σv).

To show the above statement we take the derivative of αso

with respect to σo and σv .

∂αso

∂σo

= (λv + λo)

δμo

(42)

∂αso

∂σv

= 0 (43)

As shown in Eq. 42, the first-order derivative of αso with
respect to σo is a positive value which states that αso is an
increasing function of σo. On the other hand, the first-order
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derivative of αso with respect to σv is equal to zero which
states that αso does not depend on σv .

3-Proof of Theorem 1 item b

In the migration network model, the number of patients who
are not scheduled for an appointment and in the controlled

health state (i.e., αwc ) is an increasing concave function of
office follow-up rate (σo) if pu > pc.

To show the above statement we first take the derivative
of αwc with respect to σo.

∂αwc

∂σo

=
(
(1 − pu)(δλv + λoσv + λvσv) + γ λo + γ λv + (pu − pc)(δλvph + λopc|cσv + λvpc|cσv)

)
(δ(δ + γ + σo + σv − pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv)2)

(44)

As shown with Eq. 44, the first-order derivative of αwc

with respect to σo is a positive if value pu > pc which
means that αwc is an increasing function of σo. Because both

numerator and denominator yield positive values. To show
that αwc is concave with respect to σo we take its second
derivative as follows:

∂2αwc

∂2σo

= −
(
2(1 − pu)(δλv + λoσv + λvσv) + γ λo + γ λv + (pu − pc)(δλvph + λopc|cσv + λvpc|cσv)

)
(δ(δ + γ + σo + σv − pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv)3)

(45)

= −
(
2(1 − pu)(δλv + λoσv + λvσv) + γ λo + γ λv + (pu − pc)(δλvph + λopc|cσv + λvpc|cσv)

)
(δ(δ + γ + σo + σv + (pu − pc)pc|cσv − (pu − pc)pc|uσv)3)

(46)

As shown with Eq. 46, knowing that pc|c > pc|u, if
pu > pc, the second-order derivative of αwc with respect
to σo is a negative value which states that αwc is a concave
function with respect to σo.

In the migration network model, the number of patients
who are not scheduled for an appointment and in the

uncontrolled health state (i.e., αwu) is a decreasing convex
function of office follow-up rate (σo) if pu > pc.

To show the above statement we first take the derivative
of αwc with respect to σo.

∂αwu

∂σo

= (−((pc|c − 1)pu − pc|cpc + 1)(λo + λv)σv − δλv(ph − 1)pu + δλvphpc + (−δ − γ )λv − γ λo)

δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2
(47)

= − (pu − pc)
(
δλvph + λopc|cσv + λvpc|cσv

) + (1 − pu)(δλv + λoσv + λvσv) + γ (λo + λv)

δ
(
(pc|c − pc|u)σv(pu − pc)σv + δ + γ + σo + σv

)2 (48)

As shown with Eq. 48, the first-order derivative of αwu

with respect to σo is a negative value (both numerator and
denominator are positive) if pu ≥ pc which states that

αwu is a decreasing function of σo. To show that αwu is
convex with respect to σo we take its second derivative as
follows:

∂2αwu

∂2σo

= 2(pu − pc)
(
δλvph + λopc|cσv + λvpc|cσv

) + (1 − pu)(δλv + λoσv + λvσv) + γ (λo + λv)

δ
(
(pc|c − pc|u)σv(pu − pc)σv + δ + γ + σo + σv

)2 (49)

As shown with Eq. 49, the second-order derivative of αwu

with respect to σo is a positive value (both numerator and
denominator are positive) which states that αwu is a convex
function with respect to σo.

4-Proof of Theorem 1 item c

In the migration network model, the number of patients who
are not scheduled for an appointment and in the controlled
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health state (i.e., αwc ) is an increasing convex function of
pc, while it is an increasing concave function of pu.

To show the above statement we first take the derivative
of αwc with respect to pc.

∂αwc

∂pc

=
(
(pc|c − pc|u)

(
δλvpuσv + λopuσ

2
v + λvpuσ

2
v

) + δ2λvph + δγ λvph + δλopc|cσv + δλvpc|uσv + δλvphσo

δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2

+
δλvphσv + γ λopc|uσv + γ λvpc|uσv + λopc|cσoσv + λopc|uσ 2

v + λvpc|cσoσv + λvpc|uσ 2
v

)
δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2

(50)

As shown with Eq. 50, knowing that pc|c > pc|u the first-
order derivative of αwc with respect to pc is positive which
means that αwc is an increasing function of pc. To show

that αwc is convex with respect to pc we take its second
derivative as follows:

∂2αwc

∂2pc

=
2σv(pc|c − pc|u)

(
(pc|c − pc|u)

(
δλvpuσv + λopuσ

2
v + λvpuσ

2
v

) + δ2λvph + δγ λvph + δλopc|cσv + δλvpc|uσv

δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3

+δλvphσo + δλvphσv + γ λopc|uσv + γ λvpc|uσv + λopc|cσoσv + λopc|uσ 2
v + λvpc|cσoσv + λvpc|uσ 2

v

δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3
(51)

As shown with Eq. 51, knowing that pc|c > pc|u the
second-order derivative of αwc with respect to pc is a

positive value which states that αwc is a convex function
with respect to pc.

Next, we take the derivative of αwc with respect to pu.

∂αwc

∂pu

= − ((pc|c − pc|u)
(
δλvpcσv + λopcσ

2
v + λvpcσ

2
v

) + (ph − 1)
(
δ2λv + δγ λv + δλvσv + δλvσo

)
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2)

+ (pc|c − 1)
(
δλoσv + λoσoσv + λvσoσv

) + (pc|u − 1)
(
δλvσv + γ λoσv + γ λvσv + λoσ

2
v + λvσ

2
v

)
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2)

(52)

As shown with Eq. 52, the first-order derivative of αwc

with respect to pu is positive (since
(
δλvσv + γ λoσv +

γ λvσv + λoσ
2
v + λvσ

2
v

) ≥ (pc|c
(
δλvpcσv + λopcσ

2
v +

λvpcσ
2
v

)
) which means that αwc is an increasing function of

pu. To show that αwc is concave with respect to pu we take
its second derivative as follows:

∂2αwc

∂2pu

=
2σv(pc|c − pc|u)

(
(pc|c − pc|u)

(
δλvpcσv + λopcσ

2
v + λvpcσ

2
v

) + (ph − 1)
(
δ2λv + δγ λv + δλvσv + δλvσo

)
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3)

+
(pc|c − 1)

(
δλoσv + λoσoσv + λvσoσv

) + (pc|u − 1)
(
δλvσv + γ λoσv + γ λvσv + λoσ

2
v + λvσ

2
v

))
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3)

(53)

As shown with Eq. 53, knowing that pc|c > pc|u,
the second-order derivative of αwc with respect to pc is a
negative value which states that αwc is a concave function
with respect to pu.

In themigration networkmodel, the number of patients who
are not scheduled for an appointment and in the uncontrolled
health state (i.e., αwu) is a decreasing concave function of
pc, while it is a decreasing convex function of pu.
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To show the above statement we first take the derivative
of αwu with respect to pc.

∂αwu

∂pc

= −
(
(pc|c − pc|u)

(
δλvpuσv + λopuσ

2
v + λvpuσ

2
v

) + δ2λvph + δγ λvph + δλopc|cσv + δλvpc|uσv + δλvphσo

δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2

+
δλvphσv + γ λopc|uσv + γ λvpc|uσv + λopc|cσoσv + λopc|uσ 2

v + λvpc|cσoσv + λvpc|uσ 2
v

)
δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2

(54)

As shown with Eq. 54, knowing that pc|c > pc|u the first-
order derivative of αwu with respect to pc is negative which
means that αwu is a decreasing function of pc. To show

that αwu is concave with respect to pc we take its second
derivative as follows:

∂2αwu

∂2pc

= −
2σv(pc|c − pc|u)

(
(pc|c − pc|u)

(
δλvpuσv + λopuσ

2
v + λvpuσ

2
v

) + δ2λvph + δγ λvph + δλopc|cσv

δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3

+δλvpc|uσv + δλvph(σo + σv) + γpc|uσv(λo + λv) + λopc|cσoσv + λopc|uσ 2
v + λvpc|cσoσv + λvpc|uσ 2

v

δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3
(55)

As shown with Eq. 55, knowing that pc|c > pc|u the
second-order derivative of αwu with respect to pc is a

negative value which states that αwu is a concave function
with respect to pc.

Next, we take the derivative of αwu with respect to pu.

∂αwu

∂pu

= ((pc|c − pc|u)
(
δλvpcσv + λopcσ

2
v + λvpcσ

2
v

) + (ph − 1)
(
δ2λv + δγ λv + δλvσv + δλvσo

)
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2)

+ (pc|c − 1)
(
δλoσv + λoσoσv + λvσoσv

) + (pc|u − 1)
(
δλvσv + γ λoσv + γ λvσv + λoσ

2
v + λvσ

2
v

)
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2)

(56)

As shown with Eq. 56, the first-order derivative of αwu

with respect to pu is negative (since
(
δλvσv + γ λoσv +

γ λvσv + λoσ
2
v + λvσ

2
v

) ≥ (pc|c
(
δλvpcσv + λopcσ

2
v +

λvpcσ
2
v

)
) which means that αwu is a decreasing function of

pu. To show that αwu is convex with respect to pu we take
its second derivative as follows:

∂2αwu

∂2pu

= −
2σv(pc|c − pc|u)

(
(pc|c − pc|u)

(
δλvpcσv + λopcσ

2
v + λvpcσ

2
v

) + (ph − 1)
(
δ2λv + δγ λv + δλvσv + δλvσo

)
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3)

+
(pc|c − 1)

(
δλoσv + λoσoσv + λvσoσv

) + (pc|u − 1)
(
δλvσv + γ λoσv + γ λvσv + λoσ

2
v + λvσ

2
v

))
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3)

(57)

As shown with Eq. 57, knowing that pc|c > pc|u, the
second-order derivative of αwu with respect to pu is a
positive value which states that αwu is a convex function
with respect to pu.

5-Proof of Theorem 1 item d

In the migration network model, the number of patients who
are not scheduled for an appointment and in the controlled
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health state (i.e., αwc ) is a decreasing convex function of
pc|c, while it is a decreasing concave function of pc|u if
pu > pc.

To show the above statement we first take the derivative
of αwc with respect to pc|c.

∂αwc

∂pc|c
=

σv(pc − pu)
(
(1 − ph)δλvpu + (1 − pc|u)λopuσv + (1 − pc|u)λvpuσv + δλvpcph + λopcpc|uσv

(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2)

+
λvpcpc|uσv + δλo + λoσo + λvσo

)
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2)

(58)

As shown with Eq. 58, knowing that pc|c > pc|u, if
pu > pc the first-order derivative of αwc with respect to pc|c
is negative which means that αwc is a decreasing function

of pc|c. To show that αwc is convex with respect to pc|c we
take its second derivative as follows:

∂2αwc

∂2pc|c
=

2σ 2
v (pc − pu)

2
(
(1 − ph)δλvpu + (1 − pc|u)λopuσv + (1 − pc|u)λvpuσv + δλvpcph + λopcpc|uσv

(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3)

+
λvpcpc|uσv + δλo + λoσo + λvσo

)
(δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3)

(59)

As shown with Eq. 59, knowing that pc|c > pc|u the
second-order derivative of αwc with respect to pc|c is a

positive value which states that αwc is a convex function
with respect to pc|c.

Next, we take the derivative of αwc with respect to pc|u.

∂αwc

∂pc|u
= −

(pc|c(λo + λv)σv + δλvph)(pc − pu)
2σv + (pc − pu)σv

(
((pu − 1)σv

δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2

+
puδ − δ − γ )λv + ((pu − 1)σv − γ )λo

)
δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)2

(60)

As shown with Eq. 60, the first-order derivative of αwc

with respect to pc|u is negative if pu > pc which means
that αwc is a decreasing function of pc|u. To show that αwc

is concave with respect to pc|u we take its second derivative
as follows:

∂2αwc

∂2pc|u
=

2(pcσv − puσv)
(
(pc|c(λo + λv)σv + δλvph)(pc − pu)

2σv + (pc − pu)σv

(
((pu − 1)σv

δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3

+
puδ − δ − γ )λv + ((pu − 1)σv − γ )λo

))
δ(−pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv + δ + γ + σo + σv)3

(61)
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As shown with Eq. 61, knowing that pc|c > pc|u, if
pu > pc the second-order derivative of αwc with respect
to pc is a negative value which states that αwc is a concave
function with respect to pc|u.

In the migration network model, the number of patients
who are not scheduled for an appointment and in the

uncontrolled health state (i.e., αwu ) is an increasing convex
function of pc|u if pu > pc.

To show the above statement we first take the derivative
of αwu with respect to pc|u.

∂αwu

∂pc|u
=

σv(pc − pu)
(
((−pc|c + 1)pu + pcpc|c − 1)(λo + λv)σv + (−δ(ph − 1)pu + δpcph − δ − γ )λv − γ λo

)
((((−pc|c + pc|u)pu + pcpc|c − pcpc|u − 1)σv − δ − γ − σo)2δ)

(62)

As shown with Eq. 62, if pu > pc the first-order
derivative of αwc with respect to pc|c is positive since both
the numerator and denominator is positive. This means that

αwu is an increasing function of pc|u. To show that αwu is
convex with respect to pc|u we take its second derivative as
follows:

∂2αwu

∂2pc|u
=

2σ 2
v (pc − pu)

2
(
(((−pc|c + 1)pu + pcpc|c − 1)(λo + λv)σv + (−δ(ph − 1)pu + δpcph − δ − γ )λv − γ λo

)
((((−pc|c + pc|u)pu + pcpc|c − pcpc|u − 1)σv − δ − γ − σo)3δ)

(63)

As shown with Eq. 63, knowing that pc|c > pc|u, if pu >

pc, the second-order derivative of αwu with respect to pc|u
is a positive value which states that αwc is a convex function
with respect to pc|c. More specifically, the numerator is
negative and the denominator is also negative hence the
overall calculation is a positive value.

6-Proof of Theorem 1 item e

In the migration network model, the number of patients
who are not scheduled for an appointment and in the both
controlled and uncontrolled health States (i.e., αwc , and αwu)
are not dependent on the service rate of office and virtual
appointments (μo and μv).

To show the above statement, we first take the derivative
of αwc with respect to μo and μv as follows:

αwc = [σo + (pu + pc|u(pc − pu))σv + (pu + ph(pc − pu))δ]λv + [σo + (pu + pc|u(pc − pu))σv + δ]λo

(δ(δ + γ + σo + σv − pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv))
(64)

∂αwc

∂μo

= ∂αwc

∂μv

= 0 (65)

Similarly, the term αwu and its first order derivative with
respect to μo and μv can be defined as follows:

αwu = [γ + (1 − pu − pc|c(pc − pu))σv + (1 − pu − ph(pc − pu))δ]λv + [γ + (1 − pu − pc|c(pc − pu))σv]λo

(δ(δ + γ + σo + σv − pcpc|cσv + pcpc|uσv + pc|cpuσv − pc|upuσv))
(66)

∂αwu

∂μo

= ∂αwu

∂μv

= 0 (67)
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Since the derivatives of both αwc and αwu with respect to
μo and μv are equal to zero, they are not dependent on the
office and virtual service rates.

7-Proof of reformulation of the objective function

The original objective function of the unconstrained capac-
ity allocation model is:

A(M) = lim
T →∞

1

T

{∑
k∈K′

∫ T

0
rkmin [xk(t), Mk] dt (68)

−
∑
k∈K′

∫ T

0
ηkMkdt−

∑
k∈K′

∫ T

0
fk (xk(t)−Mk)

+ dt

}

To simplify the objective function (68), we make some
changes:

min [xk(t), Mk] = xk(t) − [xk(t) − Mk]
+ (69)

Mk = xk(t) − [xk(t) − Mk]
+ + [Mk − xk(t)]

+ (70)

Substitute Eqs. 69 and 70 into objective function (68)
gives:

A(M) =
∑
k∈K′

lim
T →∞

1

T

{∫ T

0
(rk − ηk)xk(t)dt

−
∫ T

0
ηk [Mk − xk(t)]

+ dt

−
∫ T

0
(fk + rk − ηk) [xk(t) − Mk]

+ dt

}
(71)

Due to ergodicity, let Eπk
(xk), k ∈ K′ be the expected

number of patients at node k under the steady-state
distribution πk, k ∈ K′. We have:

lim
T →∞

1

T

∫ T

0
xk(t)dt = Eπk

(xk) = αk (72)

lim
T →∞

1

T

∫ T

0
[Mk − xk(t)]

+ dt = Eπk

[
(Mk − xk)

+]
(73)

lim
T →∞

1

T

∫ T

0
[xk(t) − Mk]

+ dt = Eπk

[
(xk − Mk)

+]
(74)

Take Eqs. 72–74 into objective function (71), we get:

A(M) =
∑
k∈K′

[
(rk − ηk)αk − ηkEπk

[
(Mk − xk)

+]
−(fk + rk − ηk)Eπk

[
(xk − Mk)

+]]
(75)

In the Function (75), the first term is the marginal profit. The
second term is the opportunity cost for unutilized capacity.
The last term represents the cost due to patient overflow.

8-Proof of Proposition 1

Since the office and virtual processes are independent to
each other, to maximize the objective A(M), it suffices to
maximize the sub-objective Ak(Mk) separately.

Ak(Mk) = (rk − ηk)αk − ηkEπk

[
(Mk − xk)

+]
−(fk + rk−ηk)Eπk

[
(xk−Mk)

+]
, ∀k ∈ K′ (76)

We note that (Mk − xk)
+ = max{Mk − xk, 0} so

that the difference yields a positive value. Then, the term
ηkEπk

[
(Mk − xk)

+]
can be defined as follows: ηkEπk[

(Mk −xk)
+] = ηk

∑Mk

xk=0(Mk −xk)
+πk(xk)+ηk

∑∞
xk=Mk

(Mk − xk)
+πk(xk) = ηk

∑Mk

xk=0(Mk − xk)πk(xk) +
ηk

∑∞
xk=Mk

0πk(xk) = ηk

∑Mk

xk=0(Mk − xk)πk(xk) + 0. The

term (fk + rk − ηk)Eπk

[
(xk − Mk)

+]
can be expressed in a

similar way as well.
Hence, the objective function Ak(Mk) can be defined as

follows:

Ak(Mk) = (rk − ηk)αk − ηkEπk

[
(Mk − xk)

+]
−(fk + rk − ηk)Eπk

[
(xk − Mk)

+]
, ∀k ∈ K′(77)

= (rk − ηk)αk − ηk

Mk∑
xk=0

(Mk − xk)πk(xk)

−(fk + rk − ηk)

∞∑
xk=Mk

(xk − Mk)πk(xk),

∀k ∈ K′ (78)

Similarly, Ak(Mk + 1) is defined as follows:

Ak(Mk + 1) = (rk − ηk)αk − ηkEπk
(Mk + 1 − xk)

+

−(fk + rk − ηk)Eπk
(xk − (Mk + 1))+, ∀k ∈ K′ (79)

= (rk − ηk)αk − ηk

Mk+1∑
xk=0

(Mk + 1 − xk)πk(xk)

−(fk + rk − ηk)

∞∑
xk=Mk+1

(xk − (Mk + 1))πk(xk),

∀k ∈ K′ (80)
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Then, the differential and the second-order differential of
function (76) are as follows:

	Ak(Mk)

	(Mk)
= Ak(Mk + 1) − Ak(Mk) (81)

[
(rk − ηk)αk − ηk

Mk∑
xk=0

(Mk − xk)πk(xk)

−(fk + rk − ηk)

∞∑
xk=Mk

(xk − Mk)πk(xk)
]

−
[
(rk − ηk)αk − ηk

Mk+1∑
xk=0

(Mk + 1 − xk)πk(xk)

−(fk + rk − ηk)

∞∑
xk=Mk+1

(xk − (Mk + 1))πk(xk)
]

(82)

=−ηk

⎡
⎣Mk+1∑

xk=0

(Mk+1−xk)πk(xk)−
Mk∑

xk=0

(Mk−xk)πk(xk)

⎤
⎦

−(fk + rk − ηk)

⎡
⎣ ∞∑

xk=Mk+1

(xk − (Mk + 1)) πk(xk)

−
∞∑

xk=Mk

(xk − Mk)πk(xk)

⎤
⎦ (83)

= −ηk

Mk∑
xk=0

πk(xk) + (fk + rk − ηk)

∞∑
xk=Mk+1

πk(xk) (84)

= −ηkπk(xk ≤ Mk) + (fk + rk − ηk)πk(xk > Mk) (85)

= fk + rk − ηk − (fk + rk)πk(xk ≤ Mk) (86)

	2Ak(Mk)

	2(Mk)
= 	Ak(Mk + 1) − 	Ak(Mk)

= −(fk + rk) [πk(xk ≤ Mk + 1)

−πk(xk ≤ Mk)] < 0 (87)

It is clear that the objective function Ak(Mk) is a discrete
concave function. Hence, to maximize Ak(Mk), the optimal
threshold capacity of node k is the smallest positive integer
Mk = Mmin

k that makes 	Ak(Mk) ≤ 0, and we have

∀Mk ∈ [0, Mmin
k ), 	AkMk > 0, then, Ak(Mk)

< Ak(M
min
k ) (88)

∀Mk ∈ [Mmin
k , ∞), 	AkMk ≤ 0, then, Ak(Mk)

≤ Ak(M
min
k ) (89)

In one case that if 	Ak(M
min
k ) = 0, the optimal

threshold capacity can be Mmin
k or (Mmin

k + 1), since
Ak(M

min
k ) = Ak(M

min
k + 1). However, it has a small

probability that 	Ak(M
min
k ) = 0 and even in that case,

Mmin
k is one of the optimal solutions. Hence, we conclude

that Mmin
k is the optimal threshold capacity for node k that

maximize Ak(Mk).

Mmin
k =min

{
Mk ∈N+ : πk(xk ≤Mk)≥ fk + rk−ηk

fk + rk

}
(90)

From Function (90), we obtain M = (Mmin
so

, Mmin
sv,c

,

Mmin
sv,u

), which is the optimal threshold capacity for the
A(M).

9-Proof of Proposition 2

When physicians do not have enough working time, the
solution is obtained through the Heuristic 2. Assume
through t th iteration, we obtain the solution from the heuris-
tic, and the solution is MTw = Mt

Tw
= (Mso

t , Mt
sv,c

, Mt
sv,u

).
Hence, MTw satisfies:

∑
k∈K′

1

μk

Mt
k ≤ Tw (91)

∑
k∈K′

1

μk

Mt
k + 1

μk′
> Tw ∀k′ ∈ K′ (92)

Now, if we relax the time constraint and let the heuristic
runs one more iteration, we have Mt+1

Tw
= MTw + ex , where

ex is the xth unit vector, and x = argmaxk′ μk′A′(Mt
k′).

Refer to [21], we have the following equations for
Heuristic 1:

A(Mt+1
T C ) > A(M∗

T C) ≥ A(MT C) (93)∑
k∈K′

Mt+1
k > T C ≥

∑
k∈K′

M∗
k,T C ≥

∑
k∈K′

Mt
k (94)

and the following equations for Heuristic 2:

A(Mt+1
Tw

) > A(M∗
Tw

) ≥ A(MTw) (95)∑
k∈K′

1

μk

Mt+1
k >Tw ≥

∑
k∈K′

1

μk

M∗
k,Tw

≥
∑
k∈K′

1

μk

Mt
k (96)

Inequality Eqs. 93 and 94 show that the optimal average
long-run earnings and the threshold capacity are between
those under the sub-optimal solution MT C and the solution
Mt+1

T C that we allow to run one more iteration, respectively.
Similarly, Inequality Eqs. 95 and 96 show that the optimal
average long-run earnings and the working time are between
those under the sub-optimal solution MTw and the solution

Managing capacity for virtual and office... 765



Mt+1
Tw

that we allow to run one more iteration. Then By
considering inequality (93), we have the following equation:

A(M∗
T C) − A(MT C) < A(Mt+1

T C ) − A(MT C) = A′(Mt
x)

≤ max A′(Mt
k) (97)

where x = argmaxk′A′(Mt
k′). Similarly, by considering

inequality (95), we have the following equation:

A(M∗
Tw

) − A(MTw) < A(Mt+1
Tw

) − A(MTw) = A′(Mt
x)

≤ max A′(Mt
k) (98)

where x = argmaxk′ μk′A′(Mt
k′).

With inequality Eqs. 93 and 97, we can show that the
relative error by using the solution from Heuristic 1, MT C ,

as an approximation of M∗
T C is no greater than

max A′(Mt
k)

A(MT C)
.

A(M∗
T C) − A(MT C)

A(M∗
T C)

≤ A(M∗
T C) − A(MT C)

A(MT C)

<
maxk A′(Mt

k)

A(MT C)
(99)

Similarly, with inequality Eqs. 95 and 98, we can show
that the relative error by using the solution from Heuristic 2,
MTw , as an approximation of M∗

Tw
is no greater than

max A′(Mt
k)

A(MTw )
.

A(M∗
Tw

) − A(MTw)

A(M∗
Tw

)
≤ A(M∗

Tw
) − A(MTw)

A(MTw)

<
max A′(Mt

k)

A(MTw)
(100)
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