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Abstract

Metabolic flux analysis (MFA) aims at revealing the metabolic reaction rates in a complex 

biochemical network. To do so, MFA uses the input of stable isotope labeling patterns of the 

intracellular metabolites. Elementary metabolic unit (EMU) is the computational framework to 

simulate the metabolite labeling patterns in a network, which was originally designed for 

simulating mass isotopomer distributions (MIDs) at the MS1 level. Recently, the EMU framework 

is expanded to simulate tandem mass spectrometry data. Tandem mass spectrometry has emerged 

as a new experimental approach to provide information on the positional isotope labeling of 

metabolites and therefore greatly improves the precision of MFA. In this review, we will discuss 

the new EMU framework that can accommodate the tandem mass isotopomer distributions 

(TMIDs) data. We will also analyze the improvement on the MFA precision by using TMID. Our 

analysis shows that combining the MIDs of the parent and daughter ions and the TMID for the 

MFA is more powerful than using TMID alone.

Introduction

The function of a cellular metabolic network is to convert nutrient molecules into 

biochemical energy and biomass. Metabolomics which focuses on measuring the 

concentrations of metabolite can offer a panoramic snapshot of the metabolic network [1]. 

However, such a still-image characterization offers no information on how metabolites 

interconvert [2]. A common analogy is the car traffic. High density of cars can either be a 

smooth traffic having large flux, or a complete stop and no traffic flux. Simply counting cars 

on the road from a picture cannot tell us about the traffic. Therefore, it is important to 

investigate the metabolic fluxes which are rates at which metabolites are converted to their 

enzymatic products. For cultured cells, simple metabolic fluxes such as glucose uptake rate 

or lactate production rate can be calculated by measuring the decrease of glucose 

concentration or increase of lactate concentration in the medium over time. The intracellular 
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fluxes, however, are impossible to measure by this method because the intracellular 

metabolite concentrations are constant at steady state [3]. To observe and infer the 

intracellular metabolic fluxes, we can use stable isotope labeled tracers. In such an 

experiment, a 13C-labeled nutrient tracer is fed to the biological system. The labeled carbon 

atoms are then distributed over the metabolic network [4, 5]. When the isotope labeling 

steady state is reached, the labeling patterns of intracellular metabolites are uniquely 

determined by only two factors: the metabolic fluxes in the network and the labeling pattern 

of the isotope tracer [6, 7]. The metabolite labeling patterns are measurable on the mass 

spectrometers, and can be used to infer the metabolic fluxes in a procedure referred to as the 

metabolic flux analysis (MFA).

MFA has been widely applied in the fields of metabolic engineering and mammalian 

physiology to study metabolic networks [8–10]. MFA aims at solving metabolic fluxes when 

given the metabolite isotope labeling patterns. The forward problem, which is to calculate 

the labeling patterns when given fluxes, is a deterministic problem and can be solved very 

efficiently using the elementary metabolic unit (EMU) framework [11, 12]. MFA is the 

reverse to this problem and it usually has no analytical solution. We are looking for a set of 

fluxes that can generate the metabolite labeling patterns that fit the measurements the best. 

Therefore, the fluxes are determined by an optimization process. The residual that measures 

the differences between simulated and measured labeling patterns should be minimized.

For mass spectrometry based labeling measurements, the conventional MFA uses metabolite 

mass isotopomer distributions (MIDs) as the input information. Moreover, multiple parallel 

experiments using different tracers can be combined to achieve better flux determination. In 

such parallel labeling experiments, each tracer alone may not be sufficient to determine all 

the fluxes in the network. However, the combined MID information can provide a 

comprehensive profiling of the fluxes. Crown and Antoniewicz have shown that the use of 

parallel labeling can dramatically improve the precision of MFA [13, 14]. It is noteworthy 

that the MID does not account for the positional isotope labeling. For example, 1,2-13C-

lactate and 2,3-13C-lactate are both described as lactate M + 2 (or M2). Tandem mass 

spectrometry, which breaks specific C–C bonds in the metabolite molecules, can generate 

information on positional isotope labeling. Recently, new computational approaches were 

developed to accommodate tandem mass spectrometry data to improve the performance of 

MFA. Tandem MS MFA may show unique advantages when compared to the parallel 

labeling strategy, especially in animal studies. Parallel labeling would require more animals 

in the study, and unlike culture cells, the animals may not be perfectly parallel in their 

metabolism. The best strategy is probably to combine the use of parallel labeling and tandem 

MS for MFA. In this review paper, we will focus on discussing what tandem mass 

spectrometry data can be used for MFA. We will also analyze the flux constraints provided 

by the tandem mass spectrometry data. Our results show that combining the MIDs of the 

parent and daughter ion and the tandem MID for the MFA is more powerful than using 

tandem MID alone.
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Tandem mass spectrometry

In tandem mass spectrometry, a parent ion is first selected on a quadrupole mass filter. The 

parent ion is then fragmented to give daughter ions which are detected on the mass analyzer. 

In the example shown in Fig. 1a, a mixture of metabolite A consists of equal amount of four 

isotopomers. The parent MID is 25% M0, 25% M1, 25% M2, and 25% M3. This molecule 

of four carbon atoms can be fragmented to a daughter ion composed of the last two carbon 

atoms (denoted A1234
34 ). Based on the fragmentation pattern, the M1 parent will only generate 

m1 daughter ions. The M2 parent will only generate m0 daughter ions and the M3 parent 

will only generate m2 daughter ions. The M0 parent will always generate m0 daughter ions. 

Such information of the tandem mass isotopomer distribution (TMID) can be expressed in a 

matrix form (Fig. 1b) [15, 16]. TMID is more informative than the parent and daughter 

MIDs combined because the parent–daughter relationship is also revealed. From the TMID 

matrix, we can easily calculate the MIDs for the parent and daughter ions which are the 

column-wise and row-wise sums respectively (Fig. 1b). Experimentally, the measurement of 

TMID depends on the type of instrument. On the triple quadrupole (QQQ) instruments, each 

scan event covers a parent–daughter pair and provides a single number in the TMID matrix 

(e.g., M2-m0). On hybrid mass spectrometers such as Q-TOF or Q-Orbitrap instruments, all 

the daughter ions from a parent can be measured simultaneously. Therefore, each scan event 

on the hybrid instruments provides a whole column in the TMID matrix [17]. Note that the 

lower-left corner of the TMID matrix (Fig. 1b) is blank because the number of labeled atoms 

in the daughter ion cannot exceed the number of labeled atoms in the parent ion. Similarly, 

the upper-right corner of the TMID matrix is blank because the number of unlabeled atoms 

in the daughter ion cannot exceed the number of unlabeled atoms in the parent ion. Choi and 

Antoniewicz [18] proposed to use the compact tandem MS matrix in which each row is 

shifted to the left to remove the blank corners. Alternatively, the tandem MS data can be 

expressed in a vector form which is generated by concatenate the rows of the compact 

tandem MS matrix (Fig. 1b). The vector form is more convenient when simulating the EMU 

labeling patterns [19].

The main motivation for introducing tandem MS data to MFA is to improve the precision of 

flux determination. Figure 1c shows an example using the metabolic network from by 

Anotoniewicz et al. [11]. When using only the MID of the metabolite F in the network, the 

flux f2 can take any value above 100. However, if we use the tandem MS data which 

measures the labeling of F at C-3 position, the f2 is confined in the interval of (138, 164). A 

well-designed MFA study should have tight confident intervals on all the important fluxes. 

This can be achieved by utilizing measurements from tandem MS, and/or using parallel 

labeling technique.

A TMID is used to describe the conditional MIDs of the daughter ions generated from the 

same fragmentation reaction. However, a metabolite ion may fragment by breaking different 

bonds and generate multiple daughter fragments at the same time [20]. Kappelmann et al. 

[21] reported a comprehensive investigation of fragmentation patterns of central metabolism 

intermediates. Key information from this paper is that some daughter ions may have mixed 

identities. Malate, for example, may lose a water molecule and become fumarate (Fig. 2). 

Fumarate is a symmetric molecule and can decarboxylate at either C1 or C4 position. Both 
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reactions generate C3H2O2
− (m/z 71.0139). Therefore, this daughter ion represents a mixture 

of Mal1234
234  and Mal1234

134  at 1:1 ratio. Alternatively, malate may decarboxylate at C4 first and 

lost a water to become C3H2O2
− which is exclusively Mal1234

123  (Fig. 2). Because the 

probabilities of these two fragmentation routes are unknown, the C3H2O2
− represents the 

mixture of Mal1234
234  and Mal1234

123  at unknown ratio. Therefore, this daughter ion should not be 

used for MFA. Only the daughter ions having unambiguous identity such as Mal1234
34  and 

Mal1234
12  should be used for MFA. Tables 1, 2 summarize the results from Kappelmann et al. 

[21] and show MS fragments in TCA cycle that can and cannot be used for 13C-MFA.

Simulating TMID using EMU

EMU is currently the most widely used mathematical framework for MFA. EMU is an 

algorithm that simulates metabolite MIDs when given the tracer labeling pattern and all the 

fluxes in the network. The concept of EMU and MID calculation was described by 

Anotoniewicz et al. [11]. We wish to highlight the fact that the tandem MS data are naturally 

simulated when calculating the MID of observable metabolites using the EMU approach. To 

illustrate this idea, we use the example of gluconeogenesis network shown in Choi’s paper 

(Fig. 3) [16]. There are 12 metabolic fluxes in this network. The tracer input to this 

metabolic network is asparate (Asp) that has 25% 4-13C1, 25% 1,2-13C2, 25% 2,3,4-13C3 

labeling, and 25% unlabeled. The only measurable metabolite is oxaloacetate (OAC). To 

calculate the MID of the whole OAC molecule (denoted OAC[1234]), we need to know the 

labeling pattern of Fum[1234] which makes OAC[1234] through f6. Fum[1234] will be 

traced back to other size four EMUs. Additionally, we need to know the labeling patterns of 

AcCoA and Glyox which make OAC through f9. AcCoA is an unlabeled input to the 

metabolic network. Glyox is made from Cit[45] through f8, and Cit[45] is made from 

OAC[34] through f1. Therefore, in order to calculate OAC[1234], we need to know the OAC 

[34] first. OAC[34] is a hypothetical EMU when calculating the MID of OAC. However, 

OAC[34] is also the MID of the C3C4 fragment of OAC, which is measurable using tandem 

MS. Therefore, from the TMID of OAC1234
34 , we can calculate the MIDs of OAC[1234] and 

OAC[34] and use these values as the constraints for flux optimization. This method is 

essentially utilizing the existing EMU framework that was designed for MS1 data 

measurements. To fully utilize the data from tandem MS, we need to expand the EMU to 

simulate TMID.

Tepper and Shlomi proposed the extended EMU framework to simulate TMID, which is 

termed tandemer [18, 19]. The tandemer EMU network decomposition is very similar to the 

normal EMU network decomposition process. For MS1 level measurements, the EMU 

network decomposition starts from OAC[1234]. For the MS2 level measurements, the 

tandemer EMU network decomposition starts from OAC[1234]-[34]. The tandemer EMU 

network decomposition may generate more EMUs than the original method because the 

tandem MS breaks the molecular symmetry. For example, Fum[1234] and Fum[4321] are 

two identical EMUs and are treated as one in the calculation. However, the Fum[1234]-[34] 

and Fum[1234]-[12] are two EMUs that are numerically the same but conceptually different. 
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When the EMU network decomposition is completed, the tandem EMU calculation is the 

same as normal EMU, except the use of TMID vectors instead of the MID vectors.

Evaluating the power of TMID for MFA

When performing MFA, it is important to find the optimal flux solution that fits the 

observations. It is also important to evaluate the uncertainty of the fluxes given the measured 

data. Many papers report the flux uncertainty as the confidence intervals of individual fluxes 

[22]. Such results are often erroneously interpreted as the confidence interval of each flux is 

independent from others. An alternative approach to illustrate the flux uncertainty is to plot 

the feasible region of the fluxes [23]. This approach provides excellent visualization of the 

dependency of flux confidence intervals. However, it is difficult to plot for more than two 

free fluxes. This limitation is obvious for large metabolic networks. As a work around, we 

can show conditional confidence regions by plotting for two free fluxes with greatest 

uncertainty while leaving other fluxes unchanged. Here, we focus on the flux feasible region 

for the gluconeogenesis network that has four free fluxes, f3, f7, f9, and f10. Since the TMID 

is less sensitive to the two exchange fluxes f3 and f7, we will plot the combination of these 

two fluxes and leave the other two free fluxes unchanged. In Fig. 4a, we show the 95% 

confidence region of flux combinations determined from OAC[1234] MID. The optimal 

solution is f3 = 150, f7 = 40, which is the red center. The plot shows that both fluxes have a 

broad feasible region which indicates big uncertainty in the flux estimations. In this case, 

using only the MID of OAC[1234] is clearly not sufficient to determine the f3 and f7 to a 

high degree of precision. When both the MIDs of the parent ion OAC [1234] and the 

daughter ion OAC[34] are used, the feasible region of the fluxes is narrowed (Fig. 4b). 

Furthermore, when the complete TMID of OAC[1234]-[34] (OAC1234
34 , fragment of C3–C4 

generated from OAC[1234]) is used, the flux feasible region becomes even smaller (Fig. 4c). 

The feasible region is very narrow in the f7 dimension, suggesting the TMID provides strong 

constraint on this exchange flux. However, the f3 estimation still has a large uncertainty. In 

fact, the uncertainty of f3 calculated from TMID OAC[1234]-[34] is even larger than the one 

calculated from OAC[1234] and OAC[34]. This result is counterintuitive because the TMID 

has more information than the combination of parent and the daughter ion MIDs, yet the 

constraint provided by the TMID is weaker on f3. This paradoxical result comes from the 

way the residual between simulated and measured MIDs is calculated. When the value of f3 

deviates from the optimal solution of 150 to the less optimal value of 350, the TMID 

OAC[1234]-[34] has increases of 0.27 and 0.24% in M1-m0 and M1-m1 fractions 

respectively. Since the assumed standard deviation of each fraction is 0.2% [16], these two 

fractions contribute 3.2 to the χ2 statistic. Meanwhile, in the MID OAC[1234], these two 

fractions adds up to a deviation of 0.51% in the M1 fraction, which contributes 6.38 to the 

χ2 statistic. This larger increase in the χ2 statistic suggests f3 = 350 makes the MID of 

OAC[1234] deviate more from the measurements than the TMID OAC[1234]-[34] would do. 

Therefore, we can conclude that although TMID provides more information than MIDs, it 

does not necessarily provide stronger constraints on every flux. When both the TMID and 

the MIDs are used, the precision of the flux estimation can be further improved (Fig. 4d). 

Therefore, we recommend using both TMID and the parent and daughter MIDs to constrain 

the fluxes.
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Conclusion

Tandem mass spectrometry can reveal metabolite positional labeling and provide more 

information for improving the performance of MFA. To utilize the tandem mass 

spectrometry for MFA, the identity of the daughter ions must be carefully inspected. 

Daughter ions of mixed origins should not be used. The EMU framework has been extended 

to accommodate the tandem mass spectrometry data. When calculating the fluxes, the TMID 

as well as the MIDs of parent and daughter ions should all be used to constrain the fluxes in 

order to achieve the best performance.

Acknowledgements

This research is supported, in part, by NIH grants P30CA072720-5923 (XS) and R00DK117066 (SH).

References

1. Fiehn O The link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71. [PubMed: 
11860207] 

2. Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing. Cell. 2018;173:822–37. 
[PubMed: 29727671] 

3. O’Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. 
Cell. 2015;161:971–87. [PubMed: 26000478] 

4. Sauer U Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol. 2006;2:62. 
[PubMed: 17102807] 

5. Zamboni N, Fendt S-M, Rühl M, Sauer U. 13C-based metabolic flux analysis. Nat Protoc. 
2009;4:878–92. [PubMed: 19478804] 

6. Wiechert W 13C metabolic flux analysis. Metab Eng. 2001;3:195–206. [PubMed: 11461141] 

7. Wiechert W, de Graaf AA. Bidirectional reaction steps in metabolic networks: I. Modeling and 
simulation of carbon isotope labeling experiments. Biotechnol Bioeng. 1997;55:101–17. [PubMed: 
18636449] 

8. Antoniewicz MR. Using multiple tracers for 13C metabolic flux analysis. Methods Mol Biol. 
2013;985:353–65. [PubMed: 23417812] 

9. Long CP, Antoniewicz MR. High-resolution 13C metabolic flux analysis. Nat Protoc. 
2019;14:2856–77. [PubMed: 31471597] 

10. Alves TC, Pongratz RL, Zhao X, Yarborough O, Sereda S, Shirihai O, et al. Integrated, step-wise, 
mass-isotopomeric flux analysis of the TCA cycle. Cell Metab. 2015;22:936–47. [PubMed: 
26411341] 

11. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Elementary metabolite units (EMU): a novel 
framework for modeling isotopic distributions. Metab Eng. 2007;9:68–86. [PubMed: 17088092] 

12. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G. An elementary metabolite 
unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng. 
2008;99:686–99. [PubMed: 17787013] 

13. Crown SB, Antoniewicz MR. Selection of tracers for 13C-metabolic flux analysis using 
elementary metabolite units (EMU) basis vector methodology. Metab Eng. 2012;14:150–61. 
[PubMed: 22209989] 

14. Crown SB, Antoniewicz MR. Parallel labeling experiments and metabolic flux analysis: past, 
present and future methodologies. Metab Eng. 2013;16:21–32. [PubMed: 23246523] 

15. Kiefer P, Nicolas C, Letisse F, Portais JC. Determination of carbon labeling distribution of 
intracellular metabolites from single fragment ions by ion chromatography tandem mass 
spectrometry. Anal Biochem. 2007;360:182–8. [PubMed: 17134674] 

16. Choi J, Antoniewicz MR. Tandem mass spectrometry: a novel approach for metabolic flux 
analysis. Metab Eng. 2011;13:225–33. [PubMed: 21134484] 

Wang et al. Page 6

Lab Invest. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Rühl M, Rupp B, Nöh K, Wiechert W, Sauer U, Zamboni N, et al. Collisional fragmentation of 
central carbon metabolites in LC-MS/MS increases precision of 13C metabolic flux analysis. 
Biotechnol Bioeng. 2012;109:763–71. [PubMed: 22012626] 

18. Choi J, Antoniewicz MR. Tandem mass spectrometry for 13C metabolic flux analysis: Methods 
and algorithms based on EMU framework. Front Microbiol. 2019;10:31. [PubMed: 30733712] 

19. Tepper N, Shlomi T. Efficient modeling of MS/MS data for metabolic flux analysis. PLoS ONE. 
2015;10:e0130213. [PubMed: 26230524] 

20. Choi J, Grossbach MT, Antoniewicz MR. Measuring complete isotopomer distribution of aspartate 
using gas chromatography/tandem mass spectrometry. Anal Chem. 2012;84:12.

21. Kappelmann J, Klein B, Geilenkirchen P, Noack S. Comprehensive and accurate tracking of carbon 
origin of LC-tandem mass spectrometry collisional fragments for 13C-MFA. Anal Bioanal Chem. 
2017;409:2309–26. [PubMed: 28116490] 

22. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Determination of confidence intervals of 
metabolic fluxes estimated from stable isotope measurements. Metab Eng. 2006;8:324–37. 
[PubMed: 16631402] 

23. Wiechert W, Siefke C, de Graaf AA, Marx A. Bidirectional reaction steps in metabolic networks: 
II. Flux estimation and statistical analysis. Biotechnol Bioeng. 1997;55:118–35. [PubMed: 
18636450] 

Wang et al. Page 7

Lab Invest. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Tandem mass spectrometry data.
a Metabolite A is 13C-labeled (green circles). There are 25% unlabeled A, 25% 4-13C1-A, 

25% 1,2-13C2-A, and 25% 2,3,4-13C3-A. The MS/MS of A generate a fragment of C3–C4. b 

The TMID of A1234
34  in matrix form, compact matrix form, and vector form. c The flux 

confidence intervals with and without the use of tandem MS data. The model is from 

Anotoniewicz et al. [11] and the true flux combination is f2 = 150, f4 = 30. The MID of F 

was used for flux determination. The labeling of F on C-3 was used as the tandem MS data.
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Fig. 2. Fragmentation pathways of malate.
Malate can generate 2 different daughter ions with the same m/z but in unknown ratio. 

Consequently, these daughter ions should be used for 13C-MFA.
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Fig. 3. Gluconeogenesis network model including TCA cycle and glyoxylate shunt.
The abbreviations of the metabolites are the following: Asp aspartate, OAC oxaloacetate, 

AcCoA acetyl coenzyme A, Cit citrate, AKG alpha-ketoglutarate, Fum fumarate, Suc 

succinate, and Glyox glyoxylate. The network uses the assumed fluxes (arbitrary units): f1 = 

100, f2 = 220, f3 = 150, f4 = 70, f5 = 100, f6 = 140, f7 = 40, f8 = 30, f9 = 30, f10 = 60, f11 = 

90, and f12 = 140. A hypothetical flux f13 = 1e7 is added to Suc[1234]->Suc[4321] and 

Fum[1234]->Fum[4321] to account for the molecular symmetry.
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Fig. 4. Comparison of flux uncertainty.
The plots evaluate the uncertainty of f3 and f7 which are two free fluxes. Other fluxes were 

left unchanged. The colored regions are showing the 95% confidence regions of the flux 

combinations.
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Table 1

Summary of unambiguous fragment ions for TCA cycle metabolites.

Parent EMU Unambiguous fragment ions Fragment formula m/z

Pyruvate[123] Pyruvate[23] C2H3O2
− 59.0139

Pyruvate[23] C2H2O2
·− 58.006

Pyruvate[2] CO3
·− 59.9853

Malate[1234] Malate[123] C3H5O3
− 89.0244

Malate[234] C3H3O3
− 87.0088

Malate[12] C2HO3
− 72.9931

Malate[34] C2H3O2
− 59.0139

Aspartate[1234] Aspartate[123] C3H4NO− 70.0298

Aspartate[12] C2H2NO2
− 72.0091

Aspartate[34] C2H3O2
− 59.0139

Aspartate[4] CH2NO2
− 60.0091

α-ketoglutarate (α-KG)[12345] α-KG[2345] C4H3O2
− 83.0139

α-KG[234] C3H5O− 57.0346

Oxaloacetate[1234] Oxaloacetate[123] C3H3O3
− 87.0088

Oxaloacetate[34] C2H3O2
− 59.0139

cis-aconitate [123456] cis-aconitate[12346] C5H3O3
− 111.0088

cis-aconitate[1234] C4H3O− 67.0189

trans-aconitate [123456] trans-aconitate[2346] C4H5O2
− 85.0295

Citrate[123456] 50% citrate[12346] + 50% citrate[23456] C5H7O5
− 147.0299

50% citrate[12346] + 50% citrate[23456] C5H5O4
− 129.0193

50% citrate[12346] + 50% citrate[23456] C5H3O3
− 111.0088

50% citrate[1236] + 50% citrate[3456] C4H3O5
− 130.9986

Citrate[2346] C4H7O3
− 103.0401

50% citrate[1234] + 50% citrate[2345] C4H5O3
− 101.0244

50% citrate[1234] + 50% citrate[2345] C4H3O− 67.0189

50% citrate[236] + 50% citrate[346] C3H3O3
− 87.0088

Citrate[234] C3H5O− 57.0346

50% citrate[12] + 50% citrate[45] C2H3O2
− 59.0139

We are only showing fragment ions with m/z > 50, due to the consideration of instrument limitations. All m/z values are calculated based on the 
unlabeled form.
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