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Abstract

The aspiration of imaging tissue microstructure with MRI is to uncover micrometer-scale tissue 

features within millimeter-scale imaging voxels, in vivo. This kind of super-resolution has fueled a 

paradigm shift within the biomedical imaging community. However, what feels like an ongoing 

revolution in MRI, has been conceptually experienced in physics decades ago; from this point of 

view, our current developments can be seen as Thomas Kuhn’s “normal science” stage of progress. 

While the concept of model-based quantification below the nominal imaging resolution is not new, 

its possibilities in neuroscience and neuroradiology are only beginning to be widely appreciated. 

This disconnect calls for communicating the progress of tissue microstructure MR imaging to its 

potential users. Here, a number of recent research developments are outlined in terms of the 

overarching concept of coarse-graining the tissue structure over an increasing diffusion length. A 

variety of diffusion models and phenomena are summarized on the phase diagram of diffusion 

MRI, with the unresolved problems and future directions corresponding to its unexplored domains.
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1. Tissue microstructure imaging with MRI

Water diffusion is a ubiquitous physical phenomenon that gives rise to the sensitivity of 

NMR / MRI signal to the structure at the micrometer scale, i.e., to tissue microstructure. 

Such sensitivity is remarkable: it decouples the physiologically relevant cellular scale of ~1–

10 μm from the size of a macroscopic sample or an imaging voxel, and is practically about 

2–3 orders of magnitude finer than human MRI voxels.

To put the microstructure scale into a broader context, let us recognize that MRI itself is a 

super-resolution imaging technique, as its voxel size does not depend on radiofrequency 

wavelength (λ ≈ 20 cm at B0 = 3 T), breaking the Abbe ~ λ/2 diffraction limit (Abbe, 1873) 

by about two orders of magnitude. This “first” super-resolution is based on encoding the 

positions of nuclear spins via their precession phases, avoiding the limitation nominally 

imposed by the wavelength in, e.g., optical microscopy. As usual with super-resolution 
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techniques (Betzig, 2015), the MRI resolution is fundamentally limited by the signal-to-

noise ratio (SNR) (Roemer et al., 1990; Wiesinger et al., 2004). As we know, SNR is not 

limitless, and the best we can achieve in humans at B0 of a few tesla is about ~1 mm voxels, 

with the modern MRI hardware reaching ≈90% of the Ultimate Intrinsic SNR (Ocali and 

Atalar, 1998), as verified in simulations (Lattanzi and Sodickson, 2012) and observed 

experimentally (Fan et al., 2016).

To reach an even finer resolution, we rely on the “second” super-resolution principle — now 

based on the proportionality relation

〈x2(t)〉 = 2dD ⋅ t (1)

between the mean-square displacement ⟨x2⟩ of water molecules and the diffusion time t in d 
spatial dimensions, with D being the diffusion coefficient. Note that there is no mention of 

spins, NMR, MRI, SNR or wavelength in Eq. (1), which nonetheless determines a spatial 

scale from a temporal scale.

Basic principles of measuring the diffusion coefficient with NMR were laid out in the 

1950s–1960s by Hahn (1950), Torrey (1956) and Stejskal and Tanner (1965), who measured 

diffusion in simple liquids. The value D = 3 μm2/ms for water at 37 °C, as well as the NMR 

time range t ~ 1–1000 ms (broad due to fairly long water T1), together comprise a gift from 

nature, yielding the diffusion length 〈x2(t)〉 ∼ 1 − 100 μm, over which the water molecules 

can realistically spread, depending on the imaging protocol and the tissue. The scale L(t) 
fortuitously matches that of cell morphology, which means that there is hope to capture 

physiological and pathological changes of tissues at the cellular level in development, aging 

and disease. Hence, we can say that tissue microstructure imaging with diffusion MRI 

(dMRI) is a (super)2-resolution technique, based on the two distinct physical principles, 

allowing us to overcome naive hardware limitations, and to see the invisible, in vivo.

How can one practically realize the sensitivity and specificity to the microstructure? Recall 

that in simple liquids, the unit “packet” of molecules placed at the origin at t = 0 spreads as a 

Gaussian distribution Gt, x
(0) ∼ e−x2 ∕ 2σ2

, with variance σ2 = L2(t)/d = 2Dt along each 

dimension linearly growing with time, Eq. (1). The cellular structure makes the evolution 

Gt; xt, x0 of the packet non-Gaussian with respect to the displacement x = xt − x0 as well as 

dependent on the initial point x0 within a voxel; one such Brownian path, from x0 to xt, is 

highlighted in the top-left panel of Fig. 1. The local propagator Gt; xt, x0 (a probability 

density of landing at xt when starting at x0 over time t) in principle “knows” a lot about the 

cellular structure within distance ~L(t) around x0, as it is formally an inverse of the local 

diffusion operator with all the specified positions and boundary conditions for cell 

membranes, their permeability values, local diffusivity profiles D(x) in different tissue 

regions, and so on.

Unfortunately, we do not access Gt; xt, x0 directly (and neither can we model it exactly since 

we do not know tissue properties with such precision anyway). Instead, an ideal narrow-

pulse diffusion NMR/MRI measurement accesses the Fourier transform
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Gt, q = ∫ dx e−iqxGt, x, Gt, x ≡ 〈Gt; x0 + x, x0〉x0 (2)

of the propagator Gt,x that is an ensemble-average of the local Gt; xt, x0 over all positions x0 

within an NMR sample / MRI voxel, as illustrated in Fig. 1, and discussed in detail by 

Callaghan (1991), Grebenkov (2007), Kiselev (2017), and Novikov et al. (2019). The 3-

dimensional wave vector q = gδ is created by a Larmor frequency gradient g applied over a 

short duration δ.

The key observation here is that at this averaging step, G G, most of the valuable local 

information about different cellular environments within a voxel gets washed out. The good 

news is that the voxel-averaged propagator Gt,x remains non-Gaussian, and thus potentially 

informative. Roughly speaking, the functional form of Gt,x tells just how non-uniform and 

restrictive an average local environment of size ~L(t) is in a given voxel. Hence, intuitively, 

one can “probe” tissue microstructure by studying how distinct the object Gt,q is from a 

simple Gaussian Gt, q
(0) = e−Dq2t for t > 0.1 Of course, the devil is in the details of how one 

defines a very loaded term “to probe”, as discussed in what follows.

The above few paragraphs describe in a nutshell the basis of tissue microstructure imaging 

with dMRI. Two things are remarkable about this field: Its foundational paradigm is over 40 

years old, formulated in groundbreaking works of Tanner (1979) and Callaghan et al. 

(1979); yet I believe its major fundamental achievements are happening right now or about 

to happen in the (hopefully) near future. That is not to say that nothing significant occurred 

between 1970s and today in dMRI, — it is just that, strictly speaking, most developments 

had less to do with quantifying actual μm-level tissue structure, and more with solving 

important engineering and experimental challenges, developing image-processing tools, and 

observing empirical changes in diffusion tensor eigenvalues in different pathological and 

physiological settings (Jones, 2010). That it took so long to get to the forefront of tissue 

microstructure per se, tells just how many moving parts one has to control in an in vivo 
dMRI experiment, and how much sustained focus the community has demonstrated to reach 

today’s technical level, which finally enables us to begin performing rigorous model-based 

quantification of tissue microstructure. Let me give a brief outline of the past 40 years, to 

provide context for the future developments.

2. From Tanner and Callaghan to today

Tanner (1979) was first to formulate the paradigm of model-based quantification of 

micrometer-level tissue properties with a macroscopic NMR measurement. In a single paper, 

he applied three different diffusion-weighed sequences (oscillating gradient, pulse-gradient, 

1The propagator Gt,q depends on t and q separately, whereas the Gaussian propagator depends on the product b = q2t. While the “b-
value” can only characterize a dMRI measurement in a Gaussian world, it has historically remained a standard parameter ever since 
the basic diffusion NMR sequence (Stejskal and Tanner, 1965) got combined with imaging (Le Bihan et al., 1986). Today, one 
typically uses b as a measure of q at fixed t, such that one specifies either the pair (q, t) or (b, t) to characterize the experiment. For 
non-Gaussian diffusion, specifying the whole pulse shape becomes crucial (Stoller et al., 1991; Callaghan, 1991; Mitra and Halperin, 
1995; Grebenkov, 2007; Shemesh et al., 2016; Novikov et al., 2019); see also Section 6.
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and stimulated-echo diffusion), to measure the time-dependent D(t) = ⟨x2(t)⟩/2d (cf. Eq. (1)) 

transverse to a frog muscle over 4 orders of magnitude in diffusion time, t = 0.3–2400 ms. 

He then estimated the muscle fiber diameter and membrane permeability by comparing the 

measured D(t) to his solution for the diffusion propagator in a 1-dimensional array of 

periodically spaced permeable barriers (Tanner, 1978). While I hope that the neuroscience 

readers forgive the historical anomaly of the pioneering development happening away from 

the neuronal tissue, they will surely appreciate just how ahead of its time this work turned 

out to be: It had all the ingredients of a modern-day tissue microstructure imaging study — 

theory, a theory-informed experiment on an actual tissue sample with carefully chosen 

sequences and timings, parameter estimation and interpretation — albeit in a single NMR 

“voxel” (test tube).

In the same issue of the Biophysical Journal, Callaghan et al. (1979) quantified the 

microstructure of endosperm tissue of wheat grains, showing that the signal attenuation as 

function of the “k-value” (identical to modern-day b-value) was most consistent with 

diffusion along randomly-oriented one-dimensional channels, or narrow tubes (with 

negligible transverse dimensions ~0.1 μm as compared with the diffusion length L(t) in the 

experiment). Remarkably, decades later this work inspired the 21st century in vivo findings 

of similar narrow one-dimensional channels for water and metabolite diffusion in the brain, 

attributed in this case to axons, as well as possibly dendrites and glial cell processes 

(Behrens et al., 2003; Kroenke et al., 2004; Jespersen et al., 2007; McKinnon et al., 2016; 

Veraart et al., 2019, 2020), which will be discussed below.

The development of all the necessary tools to go from NMR test tube to human in vivo 
quantitative dMRI took decades: implementing basic dMRI in the 1980s by Le Bihan et al. 

(1986) and observing first diffusion-weighted brain images in health and disease at then-

available b ~ 0.1–0.2 ms/μm2; separating the diffusion and IVIM (perfusion) effects 

(Henkelman, 1990; Le Bihan, 1990; Le Bihan and Turner, 1992); the two seminal 1990 

discoveries — of the diffusion coefficient drop in acute stroke by almost 50% (Moseley et 

al., 1990) and of the diffusion anisotropy in white matter tracts (Moseley et al., 1990a); 

parameter estimation framework for the diffusion tensor, widely known today as diffusion 

tensor imaging (DTI) (Basser et al., 1994); and the anisotropy-based fiber tractography 

(Conturo et al., 1999; Mori et al., 1999; Basser et al., 2000). Diffusion-weighted 

spectroscopy enabled studying separately intra- and extra-cellular metabolites (Ackerman 

and Neil, 2010), whereas MRI microscopy (Callaghan, 1991), that originated within the 

porous media community, allowed to image individual neuronal cells and their activity (Flint 

et al., 2009, 2012).

The first microstructure model of diffusion in a white matter tract, suggested by Stanisz et al. 

(1997), was soon followed by representing intra-axonal space by impermeable cylinders for 

the purpose of their diameter quantification (Assaf et al., 2004, 2008). Quite naturally, these 

early dMRI modeling developments occurred in parallel to early microstructure models of 

the transverse NMR relaxation (Yablonskiy and Haacke, 1994; Kiselev and Posse, 1998, 

1999), aimed at providing the quantitative foundations (Weisskoff et al., 1994; Kennan et al., 

1994) of BOLD fMRI, perfusion measurements (Østergaard et al., 1996b; Østergaard et al., 

1996a; Kiselev, 2001; Turner, 2002), and vessel size imaging (Dennie et al., 1998; Troprès et 
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al., 2001; Kiselev et al., 2005). Not surprisingly, the relevant physics for quantifying the 

length scale of “magnetic microstructure” (Kiselev and Posse, 1998; Jensen and Chandra, 

2000a,b; Kiselev and Novikov, 2002; Sukstanskii and Yablonskiy, 2003, 2004; Jensen et al., 

2006; Novikov and Kiselev, 2008) is given by the same Eq. (1), as reviewed recently by 

Kiselev and Novikov (2018).

Progress in computer vision at the turn of the 21st century spurred representing the dMRI 

signal Gt,q sampled in the 3-dimensional q-space in a variety of reasonably chosen bases: 

spherical harmonics (Frank, 2002; Tournier et al., 2004; Anderson, 2005); Q-ball imaging 

(Tuch, 2004); via successive terms of the cumulant expansion (Kiselev and Il’yasov, 2007; 

Kiselev, 2010), such as the diffusion kurtosis imaging (Jensen et al., 2005); multiexponential 

(Laplace transform) (Yablonskiy et al., 2003); the harmonic oscillator eigenbasis (Özarslan 

et al., 2013), and so on. These “signal representations” can be useful for compression or 

storage of our multi-dimensional experimental data, and for empirical comparisons of the 

basis coefficients with physiological or pathological changes.

Often times, however, such convenient mathematical expressions have been conflated with 

modeling, which has resulted in a certain intellectual relativism (each group could seemingly 

have their own favorite “model” of the same thing, since there are infinitely many complete 

basis sets in the space of functions). A common ground is reached by defining a model as a 

simplified picture of a physical process, and drawing a distinction between many equivalent 

mathematical signal representations, and the unique biophysical model of diffusion in a 

given tissue type, characterized by its specific assumptions about the microstructure that 

must be validated (Novikov et al., 2018a, 2019) — i.e., by going back to our scientific roots, 

when the notion of a physical model was undisputed (Tanner, 1979; Callaghan et al., 1979).

Following the necessary detours to build in vivo dMRI capabilities and an ecosystem of 

measurement and processing tools, as well as having reaffirmed the notion of biophysical 

modeling, in the “modern era” (the past decade or so) rigorous modeling and validation 

methods adapted from the physical sciences have been employed in dMRI in a consistent 

and highly productive way. This progress has been recently reviewed by a number of authors 

actively pushing the boundaries of modeling and validation (Kiselev, 2017; Jelescu and 

Budde, 2017; Reynaud, 2017; Jespersen, 2018; Jones et al., 2018; Valette et al., 2018; 

Novikov et al., 2018a, 2019; Alexander et al., 2019), including in the present Special Issue 

(Afzali et al., 2020; Jelescu et al., 2020; Kiselev, 2020; Neto-Henriques et al., 2020).

3. A scientific revolution or normal science?

Following Kuhn (1962), it became customary to formulate progress in any field in terms of 

paradigm shifts — watershed events that radically change our thinking, followed by the 

periods of normal science until a new crisis demands changing the paradigm yet again. After 

a revolution, scientists, in the field that has been changed, “… work in a different world.”

A default clinical and neuroscience protocol, DTI, provides a representation of a signal, but 

it is not enough for modeling tissue microstructure (Novikov et al., 2018a). Hence, relative 

to DTI, any genuine microstructure metric can revolutionize our understanding of 
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physiology or pathology. Risking abusing a cliché, an applications-oriented researcher is 

probably justified in touting noninvasive tissue microstructure imaging as a paradigm shift 

for neuroscience research or clinical practice.

But is the nascent microstructure MRI really a paradigm shift for the likes of Tanner or 

Callaghan? Physicists have routinely faced a setup where they study macroscopic 

phenomena (e.g., conductivity, heat capacity) and aim to deduce the relevant microscopic 

degrees of freedom (e.g., atomic or molecular interactions, electron dynamics) governing the 

observed behavior. Both classical and quantum transport phenomena (Altshuler and Aronov, 

1985; Bouchaud and Georges, 1990; Kamenev, 2011) are used for model-based 

quantification of “micro”--structure (which, depending on the system, can happen at a 

nanometer or a micrometer or at any other scale sufficiently below macroscopic sample 

size). In the post-war period, physicists uncovered the remarkable universality governing the 

way microscopic interactions give rise to collective, or hydrodynamic modes describing their 

normal macroscopic behavior and critical dynamics around phase transitions (Anderson, 

1972; Hohenberg and Halperin, 1977; Wilson, 1983; Cardy, 1996). Another line of progress 

was to realize how the effect of structural disorder at the micro-scale can radically change 

macroscopic transport (Anderson, 1958; Altshuler and Aronov, 1985; Kamenev, 2011). 

From this standpoint, all we are doing in dMRI modeling, is developing models of classical 

diffusive transport in structurally heterogeneous media.

For a physicist, therefore, modern-day modeling and validation of tissue microstructure 

looks like Kuhn’s normal science, which means “research firmly based upon one or more 

past scientific achievements, achievements that some particular scientific community 

acknowledges for a time as supplying the foundation for its further practice” (Kuhn, 1962, 

Chap. II).

It seems that the difference between 1962 — when the scientific community was still 

relatively small and nimble — and today, that Kuhn could not appreciate, is the chasm 

between the ways of thinking in different scientific disciplines due to an increased 

specialization. Perhaps today, communicating an already understood fundamental concept to 

an impactful applied field feels nontrivial and “paradigmatic” by itself. Indeed, it is often 

surprising how long it takes to formulate an applications-relevant context for a concept 

brought from a more basic field. In my experience, learning the language of colleagues on 

the frontlines of radiology and neuroscience, to formulate relevant questions and to translate 

from physics the theoretical concepts needed to answer them, has itself taken years of work.

However, the fact that applying a known paradigm is nontrivial, does not make this 

paradigm any more novel. What if we were to accept that the overarching paradigm for 

quantifying microstructure has long been established? This is surely not the end of science, 

much like nonrelativistic quantum mechanics did not end with the Schrödinger’s equation — 

in fact, its major impacts occurred long after 1926. A clear acceptance of a paradigm can 

have a refreshing effect: We become liberated from the need to claim each new model or 

acquisition as revolutionary. The realization of our place in the historical context, together 

with the recently increased level of rigor, encourage us to proceed along the path of normal 

science collectively chartered by the founders of diffusion NMR and of transport in 
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disordered media. This is good news, as the absolute majority of scientific activity is of this, 

most productive kind: “… during the period when the paradigm is successful, the profession 

will have solved problems that its members could scarcely have imagined and would never 

have undertaken without commitment to the paradigm. And at least part of that achievement 

always proves to be permanent” (Kuhn, 1962, Chap. III).

The period of “normalcy” requires establishing common values and approaches. In what 

follows, I outline the modern-physics language for systematizing and uncovering 

microstructure models (Sections 4 and 5); the tool we use to chart our progress (Section 6); 

and discuss future directions (Section 7).

4. Language: coarse-graining and effective theory

Coarse-graining is a process of homogenizing, or averaging, the system’s dynamics and 

related properties over a given scale, to deduce an effective dynamics on a coarser scale. 

Iterated across scales from the shortest to the longest, coarse-graining gives rise to the 

renormalization group transformation, a central concept of statistical physics of the past 

half-century (Wilson, 1983; Cardy, 1996) aimed at describing how the complex interactions 

on a finer scale give rise to emergent phenomena on a coarser scale. An example of this 

concept is how the complex dynamics of myriads of atoms or molecules gives rise to 

hydrodynamics, where we describe a macroscopic flow, not resolving individual molecules 

anymore. After such gradual averaging over microscopic degrees of freedom, the effective 
theory on the large scale may look quite different (Anderson, 1972) from the microscopic 

one (the Navier–Stokes equation of hydrodynamics does not look anything like the 

Schrödinger’s equation), and depends on only a few effective parameters — the remnants of 

all the microscopic complexity that we averaged over. Thus a theoretical description of any 

physical system at a given scale involves deriving the effective theory describing its relevant 

degrees of freedom and identifying its effective parameters, while discarding myriads of 

other, so-called irrelevant degrees of freedom.

In this way, coarse-graining over molecular interactions in liquids gives rise to effective 

theories represented by the Navier–Stokes and diffusion equations, governed by just a 

couple effective parameters: viscosity and diffusion coefficient. These effective theories, 

describing the relaxation of momentum and density, correspondingly, become valid at the 

scale of a few nm. In a homogeneous liquid, that’s the end of the story.

Tissue microstructure adds a new layer of structural complexity at the scale of cells, ~1–10 

μm. The goal of modeling is to adequately average the diffusive dynamics of spin-carrying 

(e.g., water) molecules over this layer of complexity, and derive the effective theory of the 

dMRI signal acquired over a macroscopic voxel, as schematically shown in Fig. 2. Such 

theory will tell which microstructure-sensitive parameters are contained in the macroscopic 

signal and hence can be mapped.

Technically, averaging over the microstructure-level complexity involves performing a 

double average:
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i. The average over the Brownian paths initiated from each point x0, yielding the 

local propagator Gt; xt, x0 introduced in Section 1. This is the coarse-graining 

step. It qualitatively makes each local environment homogenized over a domain 

of the size of the diffusion length L(t), with the envelope Gt; xt, x0 playing a role 

of a low-pass filter over the microstructure, Fig. 3.

ii. The ensemble average over all initial positions x0 in a voxel, as in Eq. (2). This 

step selects typical local contributions to the overall signal for a given voxel, and 

swipes rare atypical ones under the experimental noise floor.

The path-averaging step (i) is naturally performed by the diffusing water molecules (or by 

Monte Carlo simulated paths) in a given structural arrangement, as the “packet” of 

molecules spreads from the initial point x0 according to its envelope Gt; xt, x0.2 This envelope 

is determined by the particular arrangement of cells around x0; following Eq. (1), its 

variance defines the local time-dependent diffusion coefficient

D(t; x0) ≡ 〈(xt − x0)2〉
2d ⋅ t , 〈(xt − x0)2〉 = ∫ dxt(xt − x0)2Gt; xt, x0 (3)

at the point x0. If we were to start anywhere else within the range of the diffusion length L(t) 
from x0, the diffusing molecules would “see” roughly the same structure, and have a 

similarly behaving mean-squared displacement in Eq. (3). Thus we realize that the local 

diffusion coefficient D(t; x), with x in the domain of size ~L(t) around x0, is roughly uniform 

in space. This is why the diffusion length L(t) can be seen as a smoothing filter window over 

the structure, Fig. 3. Of course, the vicinity of another point x0′  far away from x0 would have 

its own structure, and its own D(t; x0′ ), possibly quite different from D(t; x0). By the same 

token, the whole local propagator Gt; xt, x0 does not strongly depend on x0 if we move x0 by 

less than L(t), and can notably change if we explore a different local environment, moving 

x0 x0′  such that ∣ x0′ − x0 ∣ ≫ L(t).

The ensemble-averaging step (ii) makes the resulting propagator (2) translation-invariant, 
i.e., dependent on the displacement x = xt − x0 rather than on the points xt and x0 separately.

The coarse-graining way of thinking tells us that, depending on the diffusion time, the tissue 

as effectively “seen” by the diffusing spins looks qualitatively different, Fig. 3. To classify 

these differences, let us introduce the structural length and time scales

ℓs = {ρ or ℓc}, and ts = ℓs
2

D , (4)

2We imply that the diffusion is not fully restricted — e.g., in the extra-cellular space, Fig. 3, or inside axons that are much longer than 
any attainable L(t), Fig. 5. For the fully restricted diffusion, coarse graining stops whenever the diffusion length L(t) grows to match 
the compartment size.
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where ℓs can either be the size ρ of cells (for the restricted diffusion, e.g., axon or soma 

diameter), or the correlation length ℓc of their packing, which is usually of the order of the 

distance between their centers (Burcaw et al., 2015).

Depending on the relation between the diffusion length L(t) (the coarse-graining window) 

and ℓs, one considers the three regimes (Novikov et al., 2019, Sec. 1.5):

i. No coarse-graining, L(t) ≪ ℓs. Diffusion time is short, t ≪ ts, and each spin 

senses its immediate vicinity characterized by its own intrinsic diffusion 

coefficient D(x0) — e.g., cytoplasmic diffusivity, diffusivity inside cell nucleus, 

diffusivity of water in the extra-cellular space. An example is the first panel of 

Fig. 3. Restrictions provide a small ∼ t correction to the overall measured 

diffusion coefficient (Mitra et al., 1993). This regime was recently used to 

determine cancer cell size using oscillating gradients in a glioma model 

(Reynaud et al., 2016b,a).

ii. Coarse-graining over the structure, L(t) ≳ ℓs, when the diffusion time t ≳ ts is 

such that the diffusion length matches the characteristic scale of tissue 

microstructure. Here, the transient (time-dependent) effects lead to the possibility 

to quantify ℓs. The coarse-graining in this regime is schematically shown in the 

remaining panels of Fig. 3. For the hindered diffusion, this regime is 

characterized by the asymptotic power-law decay (Novikov et al., 2014)

Dinst(t) ≡ ∂
∂t

〈x2(t)〉
2d ≃ D∞ + const ⋅ t−ϑ, t ≫ ts (5)

of the instantaneous diffusion coefficient Dinst(t), which yields the corresponding 

power-law tails in the conventional pulse-gradient diffusion coefficient 

D(t) = 1
t ∫0

tdt′Dinst(t′), and in the higher-order cumulants such as kurtosis (Burcaw 

et al., 2015; Dhital et al., 2019; Lee et al., 2020d). From this approach, the 

disorder correlation length ℓc of beads (Novikov et al., 2014; Fieremans et al., 

2016; Jespersen et al., 2018; Lee et al., 2020c) along neurites (axons and 

dendrites), and packing correlation length of axonal fibers in the fiber cross-

section (Burcaw et al., 2015; Fieremans et al., 2016; Lee et al., 2018b) were 

recently estimated to be ℓc ~ 1 μm, in accord with histology (Shepherd et al., 

2002; Lee et al., 2019).

For the restricted diffusion, the coarse-graining eventually stops, and the 

compartment gets effectively shrunk to a point when its size ρ ≪ L(t). The 

corresponding diffusivity scaling

D(t) ∼ ρ2

t (6)

enables mapping the compartment size ρ, e.g., cancer cell size (Jiang et al., 

2017), as well as axonal diameter mapping discussed below.
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iii. Complete coarse-graining, L(t) → ∞: Gaussian compartment(s). At times t ≫ 
ts, spins have sampled large enough domains, such that their statistical properties 

have become similar — in other words, the local diffusivities (3) around different 

x0 are practically the same. Physicists say that the diffusion process becomes 

self-averaging, i.e., each domain well represents the whole macroscopic tissue 

compartment. When t → ∞, the compartment effectively looks completely 

homogeneous, characterized by the long-time (“tortuosity”) limit 

D∞ = D(t) ∣t ∞ of the diffusion coefficient, and the diffusion becomes 

Gaussian. The picture of multiple Gaussian compartments (Fig. 4) — for intra- 

and extra-axonal spaces, and possibly also for the cerebrospinal fluid (CSF) — is 

behind many diffusion models (Jespersen et al., 2007, 2010; Fieremans et al., 

2010, 2011; Zhang et al., 2012; Sotiropoulos et al., 2012; Jelescu et al., 2016; 

Jensen et al., 2016; Reisert et al., 2017; Lampinen et al., 2017; Novikov et al., 

2018c; Veraart et al., 2018), which fall under the overarching umbrella of the 

“Standard Model” for diffusion in white matter (Novikov et al., 2019, Sec. 3).

The role of the diffusion wave vector q is in providing a snapshot of the coarse-graining 

process at the length scale ∣x∣ ≲ 1/q — technically, these x define the main contribution to 

the Fourier integral in Eq. (2), as the exponential e−iqx does not strongly oscillate. Applying 

large q, one can access the structure (size, shape) even at long times t ≫ ts — i.e., from 

“under” the blurring window L(t).3 This is the diffusion-diffraction regime of Callaghan et 

al. (1991), where, for instance, the signal

Gt, q ∣t ≫ ts ∝ Γ(q), Γ(q) = ∣ v(q) ∣2 (7)

from the intra-cellular space is given by the power-spectrum Γ(q) of the closed pore shape 

v(x) for t ≫ ts. Likewise, a power-spectrum Γ(q) of the connected pore space (e.g., extra-

cellular space) can be probed when the diffusion time exceeds the correlation length of the 

packing of the “grains” (e.g., impermeable cells) (Mitra et al., 1992). Employing the 

diffusion gradient makes the phase diagram of the microstructure dMRI multi-dimensional, 

as it will be discussed in Sections 6 and 7 below, with the regimes (i)—(iii) characterizing 

the temporal dimension. Technical details on quantifying the length scales (4) are further 

discussed by Kiselev (2020) in this issue.

5. Applying the language: coarse-graining over an axon

To illustrate how coarse-graining helps to think of an effective theory, consider diffusion 

inside a myelinated axon, assuming no exchange with the myelin or extra-cellular 

compartment at the relevant time scales, Fig. 5. Axon has a complicated shape 

(Abdollahzadeh et al., 2019; Lee et al., 2019). If we were to successively blur the structural 

details at an increasing diffusion length scale L(t) in the spirit of Fig. 3, we can distinguish 

(at least) the following structural hierarchy: cross-section of an irregular shape (ρ ~ 1 μm — 

3Using q ≫ 1/L(t) away from the diffusion dispersion relation Dq2t ~ 1 of Eq. (1), has its parallels with probing the atomic structure 
of a liquid with a beam of neutrons with momentum ℏq corresponding to q ~ (0.1 nm)−1, i.e., reaching for the structure “under” the 
scale where its coarse-grained continuous hydrodynamic description becomes valid.
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Section 5.1); undulation (λu ~ 30 μm (Lee et al., 2020b) — Section 5.2); and a featureless 

one-dimensional channel (“stick”), if we were to look at an axon from afar (Section 5.3).

5.1. Axon caliber scale

At the scale L(t) below the axonal caliber ρ ~ 1 μm, intra-axonal diffusion is fully 3-

dimensional. Diffusion (along and transverse) is in principle sensitive to the axon’s cross-

sectional shape, its local caliber (a measure of its cross-sectional size), and caliber variations 

along its length, as we now outline.

Sensitivity to axon caliber (transverse).—The contribution Gt,x from the restricted 

compartment of Fig. 1 is sensitive to the size ρ of the cells (circles). Ideally, to measure axon 

caliber, one should achieve the diffusion-diffraction regime, where the wave vector q = gδ 
matches the inverse axon caliber, q ~ 1/ρ, such that b = q2t and D(t) given by Eq. (6) 

together yield − lnS ~ (qρ)2, to estimate ρ. However, this regime is very difficult to access 

even on animal systems, as it also implies gradient pulses shorter than the diffusion time 

across the axon, δ ≪ ts ≲ 1 ms (for the notion of q to be well-defined). Practically, 

experiments fall into the opposite, diffusion-narrowing regime (Robertson, 1966; Murday 

and Cotts, 1968; Neuman, 1974), where δ ≫ ts, and the signal attenuation

−ln S ∼ g2ρ4δ
D0

∼ (gδ ⋅ ρ)2 ⋅ ts
δ ≪ (qρ)2

(8)

is parametrically weaker than in the diffusion-diffraction regime, by the factor of the small 

parameter ts/δ ≪ 1.4 Here D0 is the intrinsic axoplasmic diffusion coefficient.

The weak diffusion-narrowing attenuation (8) makes calibers ρ ≲ 1 μm of typical axons in 

the human brain invisible even to scanners with Connectome gradients; on clinical systems, 

signal attenuation (8) for such axons is about 10−6 – 10−5 (Burcaw et al., 2015; Nilsson et 

al., 2017)5. Volume-weighting the ρ4 dependence in Eq. (8) means that the technique, when 

applicable (as discussed in Section 5.4 below), measures the effective axonal radius (Burcaw 

et al., 2015)

4In the diffusion-narrowing regime, wave vector q is not well-defined, and the attenuation (8) is best thought of as the transverse NMR 

relaxation, S ∼ exp( − R2
∗ ⋅ 2δ), in the presence of a spatially varying Larmor frequency offset Ω ~ gρ across an axon, with the rate 

R2
∗ ∼ 〈Ω2〉 ⋅ ts. This scaling comes from the following qualitative argument (Kiselev and Novikov, 2018, Sec. 2.4): The signal is an 

average of the spin phase factor, S = ⟨e−iφ⟩ ≃ e−⟨φ2⟩/2, where the precession phase φ ∼ ∑n = 1
N φn is a sum of random contributions 

of the order φn ~ Ω · ts, each coming from traversing an axon. The random phases φn for successive traverses are uncorrelated, hence φ 
is a sum of independent random variables with zero mean and variance 〈φn2〉 ∼ (Ω ⋅ ts)2 ∼ (gρts)2. Hence, the net attenuation is 

given by the phase variance over N ~ δ/ts ≫ 1 “steps”, −ln S ≃ 〈φ2〉 ∕ 2 ∼ 〈φn2〉 ⋅ N (variances add up, per central limit theorem), 

yielding the above estimate. We will also use this intuition in Eq. (10) below. Higher-order in g corrections to Eq. (8) were found by 
Lee et al. (2018b, 2020b).
5This smallness becomes apparent when one converts a run-of-the-mill clinical scanner gradient of 40 mT/m to the Larmor frequency 
gradient g = 0.0107 (μm ms)−1. Numerically, the attenuation (8) is most naturally expressed in terms of the radius ρ; typical axonal 
radius ρ = 0.5 μm, D0 ≈ 2–3 μm2/ms and δ ~ 10 ms, multiplied by the small numerical pre-factor 7/48 for the cylinder which was 
dropped in Eq. (8), together yield this result.
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reff = 〈r6〉 ∕ 〈r2〉 1 ∕ 4
(9)

dominated by the sixth moment of axonal radius distribution, and hence, is heavily skewed 

by its tail (Veraart et al., 2020).

The effective radius (9) can be viewed as a result of the double average (Section 4): (i) 

averaging over the Brownian paths within each axon yields the attenuation (8); (ii) the 

ensemble average over all axons for − ln S ≪ 1 collapses a complicated distribution of 

axonal radii onto the ratio (9) of its moments, which can be thought of as an effective theory 

parameter.

Sensitivity to axon caliber variations (along).—Axon caliber and cross-sectional 

shape vary along its length, giving rise to caliber variations, such as varicosities or beads 

(Shepherd et al., 2002; Budde and Frank, 2010). Lee et al. (2020c) showed that the 

placements of axonal beads has a finite correlation length (short-range disorder). Such 

randomness results in the power-law tail (5) for the along-axon diffusivity and kurtosis with 

the exponent ϑ = 1/2 predicted by Novikov et al. (2014), confirmed in simulations of 

artificial (Palombo et al., 2018) and electron microscopy-derived axonal geometry (Lee et 

al., 2020c), and observed in rat (Does et al., 2003; Novikov et al., 2014), human white 

matter (Fieremans et al., 2016; Arbabi et al., 2020; Lee et al., 2020c), and fixed spinal cord 

(Jespersen et al., 2018).

The ~t−1/2 tail (5) is a result of coarse-graining the 3-dimensional axon down to a 1-

dimensional effective medium, where the transverse-to-axon degrees of freedom map onto 

the along-axon structural disorder (Novikov et al., 2014). The amplitude of the ~t−1/2 tail (5) 

is related to the parameters of the structural disorder, such as the correlation length of the 

bead placements (Fieremans et al., 2016; Lee et al., 2020c). Achieving shorter diffusion 

times, to observe the crossover between the limits (i) and (ii) of the coarse-graining (Section 

4), may in the future lead to a more robust quantification of the caliber variations — e.g., by 

mapping the narrow shafts between beads onto permeable barriers and applying the random 

permeable-barrier model (Novikov et al., 2011) in one dimension (d = 1).

5.2. Undulation scale

When L(t) reaches an order-of-magnitude larger scale λu ~ 30 μm, the caliber can be 

effectively shrunk to a point, such that we can focus on the wavy shape of an axonal 

“skeleton”. This wave is referred to as an undulation (Nilsson et al., 2012), and contributes 

to the time-dependent diffusion along and transverse to the axon (Brabec et al., 2020; Lee et 

al., 2020b).

In particular, undulations can strongly contribute to apparent axonal caliber (even if we were 

to neglect the actual axon thickness ρ). Naively, one would imagine that coarse-graining the 

wavy skeleton of an amplitude w0 and period λu over L(t) ≳ λu should make it look as a 

tube of thickness ~ w0, such that the attenuation − ln S ~ (qw0)2, yielding the effective 

caliber ~ w0. This intuition is correct for narrow pulses, when δ is much shorter than the 

time tu ∼ λu
2 ∕ D0 to diffuse along the undulation. For wide pulses, δ ≫ tu, the transverse-
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relaxation argument leading to Eq. (8) (Footnote4) applies instead, albeit the correlation time 

scale ts, over which the successive random phase contributions become independent, is now 

tu. Signal attenuation corresponds to summing N ~ δ/tu ≫ 1 independent spin phase 

variances,

−ln S ∼ (gw0 ⋅ tu)2 ⋅ N ∼
g2w0

2λu
2δ

D0
≡

g2rund
4 δ

D0
(10)

defining the effective axon radius rund ∼ w0λu due to the undulations (Lee et al., 2020b, Eq. 

(26)).

Since the undulation wavelength greatly exceeds axon caliber, λu ≫ ρ, whereas its 

amplitude w0 ~ 1 μm is of the order of axon caliber (Lee et al., 2019; Abdollahzadeh et al., 

2019), in realistic experimental settings we are more sensitive to undulations than to the 

actual axonal caliber, rund ≫ reff. Hence, undulations strongly bias the estimation of axon 

diameter at moderate diffusion weighting (Lee et al., 2020b). On the other hand, the 

undulation effect on the along-axon diffusion is less significant (Lee et al., 2020b, Appendix 

E).

5.3. Axon as a “stick”

Finally, for a longer diffusion length, L(t) ≫ λu, and for diffusion weighting not enough to 

resolve ρ and w0, the caliber- and undulation-effects can be neglected, and an axon can be 

simplified down to a featureless narrow “stick” (zero-radius cylinder, with effective diffusion 

constant Da < D0), Fig. 4. The signal from such sticks was studied by Kroenke et al. (2004) 

for NAA diffusion in rat brain, followed by water diffusion study of Jespersen et al. (2007). 

The dMRI signal from any collection of sticks, averaged over all gradient directions in a b-

shell, becomes equivalent (Jespersen et al., 2013; Kaden et al., 2016b) to the Callaghan et al. 

(1979) model of isotropically distributed sticks (Section 2 above), yielding the universal b
−1/2 scaling

∫
0

π ∕ 2
dθ sin θ e−bDacos2θ ≃ π

4bDa
, bDa ≫ 1 . (11)

Here θ is the angle between the stick and the applied gradient. The nontrivial b−1/2 ~ q−1 

functional form, coming from the intra-stick compartment, was observed only recently in 
vivo (McKinnon et al., 2016; Veraart et al., 2019, 2020), validating the picture of sticks for 

axons (and perhaps, for glia processes) in white matter. Its counterpart for the planar tensor 

encoding is the b−1 ~ q−2 decay (Afzali et al., 2020).

Going back to the way we obtained Eq. (11), all we really needed was to assume that 

diffusion over the diffusion time t was happening along a locally straight one-dimensional 

segment. Hence, the scaling (11) will also apply for short t, such that L(t) ≲ λu, i.e., the 

undulations are longer than the diffusion length, during which a large b-value is accumulated 

by applying strong gradients. In this case, the axon is effectively split into locally straight 

segments of size ~L(t); the contribution from each such segment, averaged over all gradient 
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directions, yields Eq. (11) — albeit with Da corresponding to an effective diffusion 

coefficient coarse-grained at the scale L(t). Therefore, angular averaging over each b-shell 

gives a way to factor out not just the axonal orientation dispersion P(n) (Fig. 4), but also the 

effect of the undulations (Section 5.2), which becomes instrumental in mapping axonal 

caliber, as we will discuss in Section 5.4.

The most remarkable property of the high-b intra-axonal signal (11) is that it decays much 
slower than the extra-axonal signal,6 and hence it was found to persist for very large 6 ≲ b ≤ 

10 ms/μm2 on a clinical scanner (Veraart et al., 2019), as well as for b ≤ 25 ms/μm2 on the 

human Connectom scanner and for b ≤ 100 ms/μm2 on an animal system (Veraart et al., 

2020). In other words, the slow scaling (11) tells that practically all we see at such strong 

diffusion weightings in white matter is the intra-axonal contribution! This is an example of a 

“spectroscopic” property of dMRI signal, where understanding distinct functional forms 
allows us to separate contributions from distinct tissue building blocks (Novikov et al., 

2018a).

5.4. Axon caliber mapping

Armed with the understanding of different physical phenomena, let us reexamine the 

feasibility and meaning of the (inner) axon caliber mapping. This concept was first put forth 

by representing axons as ideal straight impermeable cylinders (Assaf et al., 2008; Barazany 

et al., 2009) with a certain diameter distribution, or using a single diameter (Alexander et al., 

2010). However, these simplified models yield axon calibers about 5–10 times greater than 

the typical axons in human brain known from histology (Alexander et al., 2010; Horowitz et 

al., 2015; Innocenti et al., 2015). What are we then really measuring, and under which 

conditions?

Undulations (Section 5.2) are the obvious confounding factor (Brabec et al., 2020; Lee et al., 

2020b). The inner caliber is then biased by the square root of the undulation wavelength.

Another confounding factor is the non-Gaussian, time-dependent diffusion in the extra-

axonal space. Burcaw et al. (2015) predicted, and Fieremans et al. (2016), Lee et al. (2018b), 

Tétreault et al. (2020) demonstrated the dependence of the extra-axonal diffusion coefficient 

De
⊥(t) on diffusion time, due to the incomplete coarse-graining [regime (ii) of Section 4]. 

This leads to the dependence of the extra-axonal signal on the sequence timings, that turns 

out to be stronger than the weak intra-axonal attenuation (8). In this case, the dMRI signal 

transverse to axons measures the packing correlation length ℓc of fibers in a bundle — a 

parameter of the extra-axonal space geometry, typically of the order of the outer axonal 

diameter (Burcaw et al., 2015; Ginsburger et al., 2018; Tétreault et al., 2020).

Both undulations and extra-axonal time-dependent diffusion are relevant at low to moderate 

b, typical of clinical systems. Together, they can rationalize the discrepancy between dMRI 

and histology at moderate b. Such measurements then have little to do with inner diameters 

6The bulk of the extra-axonal signal decays exponentially. However, signal next to cell walls contributes as a power law (13) for the 
narrow pulses, or as a stretched exponential (15) in the localization regime, as discussed in Section 6. Either of these functional forms 
decays faster than Eq. (11); neither has been experimentally identified in neuronal tissue so far.
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of brain axons. (In spinal cord, where axons are 5–10 times thicker than in the brain, the 

conditions for inner axon caliber mapping are much more favorable (Drobnjak et al., 2010; 

Shemesh et al., 2013; Duval et al., 2015; Benjamini et al., 2016).)

The way to eliminate the above confounds is to employ such strong b-values that the extra-

axonal signal is suppressed, and the effects of undulations are factored out due to subsequent 

angular averaging. The sensitivity to the inner diameters can be revealed via the deviation of 

the angular-averaged signal from the zero-radius stick scaling (11). Such sensitivity was 

observed recently by Veraart et al. (2020). There, the effective radius (9) in rat corpus 

callosum was found to agree fairly well with that calculated from histology in the same 

animals; moreover, the effective radius in humans on a Connecome scanner had the right 

range based on the known human axon radius distributions (Aboitiz et al., 1992; Caminiti et 

al., 2009). The effect of undulations was assumed to be completely factored out by the 

angular averaging at relatively short t.

Note that, since the effective radius (9) is weighted by the tail of the distribution, there is an 

inherent discrepancy between dMRI and histology even when the above confounding factors 

are eliminated. Histology most reliably quantifies typical axons (of radius ρ ~ 0.5 μm) 

sampled within a relatively small field of view, whereas dMRI is sensitive only to the 

thickest ones, with radius ρ ≳ 1.5–3 μm (Veraart et al., 2020). By increasing the diffusion 

weighting from moderate to high, the effective radius (9) can be eventually uncovered on a 

Connecome scanner (Huang et al., 2015; Veraart et al., 2020). It may be a biomarker for 

pathologies where the thickest axons get altered first.

The residual effect of undulations, and of the spatially varying coarse-grained Da along the 

axon, on apparent axon caliber, is an object of further investigation (Lee et al., 2020b). The 

deviations from the scaling (11) can also originate due to cell bodies (soma) (Palombo et al., 

2020).

5.5. Axons: what have we learned thus far?

While the idea of becoming sensitive to axonal caliber is decades-old, the structural 

complexity of real axons has opened a plethora of effects at different scales, accessible under 

different experimental conditions. It is quite remarkable, that such a relatively “simple” and 

well-defined tissue compartment as intra-axonal space, keeps giving us unending puzzles. 

Only within the past few years, the effects of realistic shape (deviations from an ideal 

cylinder) have been studied, and elucidating the dMRI sensitivity to axonal geometry 

remains a very active area of research.

More generally, the coarse-graining way of thinking shows that the microstructure may look 

quite different to the diffusing spins, depending on the allowable spatio-temporal scales, set 

by our experimental design by varying gradient strength and timing, g(t). Parsimonious 

thinking about the microstructural complexity should always match the level of coarse-

graining. It is pointless to ask, what is relevant about axonal (or any other) microgeometry, 

without specifying the scale at which we will perform our experiments, set by g(t).
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Naturally, at this point one wishes to know, what are the qualitatively distinct regimes, or 

behaviors, of the dMRI signal, depending on available g(t) — and this is where we go now.

6. Charting our progress: phase diagram

In physics, multiple possible behaviors of a complex system are depicted on the phase 
diagram, which is a sketch of different phases (kinds of behavior) as a function of 

experimental parameters. These phases can be separated by sharp boundaries (phase 

transitions, such as water freezing into ice at a given temperature and pressure), or fuzzy 

boundaries (cross-overs between different regimes).

For dMRI, the natural parameters are the gradient strength g of the Larmor precession 

frequency, and the diffusion sequence timings; in the most often used Stejskal and Tanner 

(1965) pulse-gradient sequence, those are the pulse duration δ and the “diffusion time” Δ 

(interval between the front ends of the gradient pulses). The corresponding phase diagram 

sketch is shown in Figs. 6 and 7. In dMRI, the phase boundaries are fuzzy (the ridges 

between them are outlined as order-of-magnitude relations between parameters) — 

intuitively, the nature of diffusion and the form of the signal does not suddenly jump when 

we vary time or a diffusion gradient smoothly.7

In the narrow-pulse limit, the diffusion wave vector q = gδ is well defined; q and t ≃ Δ can 

be made dimensionless using the characteristic structural (restriction) size ℓs and the 

corresponding time ts, Eq. (4), and introducing the reduced variables q = qℓs and t̄ = t ∕ ts, cf. 

the left panel of Fig. 7.

In the wide-pulse limit, the phase factor e−iqx e−i∫0
tdτ g(τ)x(τ) in Eq. (2) becomes a 

functional of the gradient waveform g(t). Hence, here one studies the dependence on the 

applied Larmor frequency gradient g and the pulse width δ separately, cf. the right panel of 

Fig. 7. The scale ℓs, together with the free diffusion coefficient D0, define the dimensionless 

Larmor frequency gradient g = g ∕ gs, where

gs = D0

ℓs
3 (12)

provides a natural scale for the applied gradient (Stoller et al., 1991; Hürlimann et al., 1995; 

Grebenkov, 2014).

We can now map different behaviors (some already described above) onto domains in the 

phase diagram.

The open regions bD ≲ 1 are routinely explored in clinical studies at fixed t. This is where 

the cumulant expansion (Kiselev, 2010) approximates the signal well. Varying the diffusion 

7Employing the most general q-space trajectories (Cory et al., 1990; Mitra, 1995; Cheng and Cory, 1999; Lasic et al., 2014; Westin et 
al., 2016; Topgaard, 2017) (corresponding to arbitrary variation of the gradient g(t) = dq/dt in time and 3-dimensional space) makes 
the phase diagram, strictly speaking, infinitely-dimensional (the space of all functions q(t)), with the MR signal S = S [q(t)] being the 
functional of q(t) (or of g(t)). However, the qualitative dependence on the diffusion time t ≃ Δ, typical pulse duration δ, and a typical 
strength of the applied gradient are the three basic ingredients of any diffusion encoding, making Figs. 6 and 7 qualitatively general.
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time at low b enables probing the structural disorder correlation length of axonal packing in 

a fiber, and the correlation length of structural heterogeneities (e.g., beads) along axons and 

dendrites, as discussed in Section 5.1, as well as possibly the parameters of axonal 

undulations, Section 5.2.

The green-shaded regions are explored in advanced research scans for, e.g., validating the 

picture of sticks for the axons (generally, neurites) at long t and high b, Section 5.3, and for 

estimating the parameters of the Standard Model corresponding to anisotropic Gaussian 

compartments (complete coarse-graining regime (iii) of Section 4). The deviations from the 

axon-as-a-stick picture provides the sensitivity needed for axonal diameter mapping (Section 

5.4) practically based on signal attenuation in the diffusion-narrowing regime, Eq. (8).

For even stronger gradients g ≳ gs, different microstructure features — sharp boundaries 

(e.g., cell membranes), closed/open pores (e.g., cells / extra-cellular space), and regions of 

smooth spatial diffusivity variations D(x) — give rise to specific and discernible functional 

forms of the signal. These regimes have largely not been investigated for the neuronal tissue 

yet, since the typical scales ℓs ~ 1 μm are so small, that the Larmor frequency gradient gs ~ 1 

(μm ·ms)−1 corresponds to the field gradient of a few T/m. For the cell bodies, however, ℓs ~ 

10 μm, and the interesting range of gradients becomes feasible.

Consider first the slowly varying D(x) in space, with a correlation length ℓs. In the high-
resolution limit (Novikov and Kiselev, 2010), q ℓs ≫ 1 and t/ts ≪ 1, each spin packet is 

“frozen” to a region of a nearly constant local diffusivity D(x) ≈ const, justifying the 

statistical model of Yablonskiy et al. (2003), where the signal S = ∫ dD P(D)e−bD is given 

by the Laplace transform of the histogram P(D) of the local diffusivity values. It is not yet 

clear if this picture applies for the neuronal tissue, but it may apply to tissues in the body in 

some limiting cases, or to other heterogeneous media.

Next, we focus on the effect of confinement or restriction by the cell walls. The signal in the 

narrow-pulse limit from a vicinity of a wall exhibits the Debye–Porod scaling

S ∼ q−(1 + d) ∼ b−(1 + d) ∕ 2 (13)

in d spatial dimensions (Sen et al., 1995; Frøhlich et al., 2006). This residual non-

exponential signal decay may be relevant for the extra-cellular space (cf. Section 5.3).

The diffusion-diffraction regime of Callaghan et al. (1991), Eq. (7) in Section 4, occurs 

within closed pores (e.g., cells), for times longer than the characteristic ts = ρ2/D0. For open 

pores (extra-cellular space), and times t ≫ ts longer than the time to travel across the packing 

correlation length ℓc of the “grains” (cells), the signal

S ∼ ℓc
L(t)

d
Γ(q), L(t) ≫ ℓc (14)

effectively measures the density correlation function (power spectrum) Γ(q) of the pore 

space (Mitra et al., 1992). The attenuation factor [ℓc/L(t)]d ≪1 arises due to the unbounded 

spreading of the diffusing molecules.
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By applying wide gradient pulses, δ ≃ Δ and strong gradients g ≫ gs, one can sense the 

presence of cell walls. This happens because for such large diffusion weightings, the signal 

in the bulk fluid gets completely attenuated, and only the magnetization near cell walls 

(partially restricted by their presence, within the localization length ℓg = (D0/g)1/3 from the 

wall), gives an appreciable contribution

ln S ∼ − (bD0)1 ∕ 3 (15)

to the overall signal. This is the localization regime of Stoller et al. (1991), so far only 

observed in simulations (de Swiet and Sen, 1994; Moutal et al., 2019) and in porous media 

(Hürlimann et al., 1995; Moutal et al., 2019). Its signature is the non-analytic in b signal 

attenuation, that is slower than e−bD.

For a more technical overview of probing microstructure-level scales and a discussion of the 

phase diagram, see the paper by Kiselev (2020) in this issue.

7. Unresolved questions and future directions

The phase diagram, Figs. 6 and 7, much like a geographical map with regions of terra 

incognita, fosters the discussion about the future. Reflecting the interdisciplinary nature of 

our field, this discussion splits into the modeling challenges, and biology-driven questions.

While building models sharpens our thinking, their practical value lies in mapping their 

parameters and relating them to physiology and pathology. Attempting to define the vague 

and often over-used term “modeling”, Novikov et al. (2018a, 2019) formulated that

modeling = theory + parameter estimation . (16)

Theoretical and parameter-estimation challenges will be considered respectively in Sections 

7.1 and 7.2, followed by the neuroscience-driven questions (Section 7.3), and a discussion 

about how to bring together physics and biology (Section 7.4).

7.1. Theory

7.1.1. Modeling water exchange—Water exchange between compartments is not 

explicitly present on the phase diagram. Partly, this is because we do not understand it 

sufficiently well to plot it adequately.

So far, the accepted paradigm to model water exchange between cells and extra-cellular 

space is based on simple n-site exchange models (Zimmerman and Brittin, 1957; Kärger, 

1985; Fieremans et al., 2010). They imply the “barrier-limited” (slow) nature of the 

exchange: each compartment gets fully coarse-grained much faster than the time τex to 

exchange between compartments (Fieremans et al., 2010).

When exchange is not barrier-limited (e.g., for the possibly leaky walls of astrocytes, 

dendrites or unmyelinated axons), and for a general structurally-disordered placement of 

membranes, one has to explicitly perform the double average of Section 4: Solve for the 
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propagator Gt; xt, x0 for a given disorder realization of permeable membranes, and average 

the solution over the ensemble of disorder realizations, yielding Gt,x, Eq. (2). This program 

has so far been fulfilled only for the randomly placed and oriented flat permeable barriers in 

any dimension, by treating permeation across a membrane as a scattering problem, and using 

real-space renormalization group (a set of iterative infinitesimal coarse-graining procedures) 

to sum over scattering events off multiple membranes (Novikov et al., 2011). The model has 

found its applications in quantifying myofiber diameter and membrane permeability 

(Fieremans et al., 2017), an improvement over the periodic one-dimensional solution by 

Tanner (1978) mentioned in Section 2. However, this model geometry is too simplistic 

(especially for the brain), as it has no effect of curved boundaries, and does not make a 

distinction between intra- and extra-cellular spaces. A technical challenge remains to extend 

the scattering formalism onto more realistic permeable cellular geometries.

7.1.2. The effect of cell walls at strong gradients—In Section 6, we briefly 

touched upon the localization regime, which so far has been considered for impermeable flat 

walls (Stoller et al., 1991; de Swiet and Sen, 1994), permeable flat walls (Grebenkov, 2014), 

as well as recently for an impermeable sphere or a circle (Moutal et al., 2019). However, a 

general theory of the localization regime around curved boundaries, in random geometries, 

and also for finite permeability, is lacking.

Technically, the localization regime is challenging because the corresponding Bloch-Torrey 

operator is non-Hermitian, its spectrum is complex-valued, and its eigenfunctions may not in 

general form a complete basis in the Hilbert space. Investigating the statistics of 

eigenfunctions of such a random operator may benefit from drawing parallels with statistics 

of eigenfunctions for the Anderson localization (Anderson, 1958).

7.1.3. What information is contained in S[q(t)] for all q(t)?—The phase diagram 

above is reasonably well understood in the two planes of Fig. 7, but neither we know the 

exact system’s behavior in the bulk of the 3-dimensional Fig. 6, nor we understand its true 

dimensionality and information content for arbitrary q(t). Deriving the general relation 

S[q(t)] given a distribution of local diffusivity D(x) is a challenging problem; an ultimate 

prize is to invert this relationship to get to as much information about D(x) as possible from 

the functional S[q(t)]. The first step towards this goal, namely getting S(q) term-by-term, as 

a functional of the successive correlation functions Γn(x1, …, xn) = ⟨δD(x1) … δD(xn)⟩ of 

the local diffusivity variation δD(x) = D(x) − ⟨D(x)⟩ order-by-order, was done recently by 

Jespersen et al. (2019). Inverting this relationship is a much more difficult problem, and it so 

far remains unsolved.

7.1.4. Effect of micro-scale susceptibility and relaxivity variations on 
apparent diffusion metrics—Looking at the fundamental Eq. (2), one realizes that 

dMRI does not measure diffusion per se. Rather, dMRI measures the relaxation of the 

transverse spin magnetization in the presence of an externally applied pulsed Larmor 

frequency gradient. In the absence of magnetic structure, and for the short gradient pulses, 

this signal relaxation happens to coincide with the Fourier transform Gt,q of the ensemble-

averaged diffusion propagator. In general, the spin precession phase e−iqx → e−iφ(t), where
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φ(t) = ∫
0

t
dτ g(τ) ⋅ xτ + ∫

0

t
dτ Ω(xτ), (17)

gets altered by the locally varying Larmor frequency offset Ω(x) accumulated on the 

Brownian path xτ = x(τ). This latter “internal” phase contribution is usually induced by the 

susceptibility χ(x) spatially varying on the microscopic scale, e.g., due to blood or myelin. 

The internal and external contributions interfere, and can produce the deviations of the 

apparent diffusion coefficient (and other parameters of the dMRI signal) from Eq. (2) 

(Zhong et al., 1991; Does et al., 1999; Kiselev, 2004; Cho et al., 2009; Álvarez et al., 2017; 

Novikov et al., 2018b). This effect was shown to be sequence-dependent (Pampel et al., 

2010; Novikov et al., 2018b), as well as diffusion-time dependent, with the susceptibility-

induced correction to the apparent diffusion coefficient increasing as a power-law function 

of time, and with the sign of the correction depending on the sequence (Novikov et al., 

2018b).

The analytical effective-medium theory of this effect was only outlined for an ideal narrow-

pulse sequence without refocussing. The theory for realistic sequences, in the presence of 

susceptibility-induced Ω(x), as well as the locally varying rate R2(x), still needs to be 

developed.

7.2. Parameter estimation

Parameter estimation, the second component of modeling (16), has become a field in itself, 

recently propelled by “big data” and modern machine learning approaches. Yet the 

fundamental challenge of parameter estimation — the degeneracy limiting the information 

content — is century-old. It cannot be cured simply with better computers or more data; one 

often needs very specific kinds of data.

7.2.1. Understanding fit degeneracies—Fit degeneracy is the existence of multiple 

equivalent solutions to parameter estimation problem. It reflects the lack of sensitivity of the 

measurement to the model parameters.

The first empirical investigation of dMRI model degeneracies, based on a regular cumulant 

expansion in the powers of b around b = 0 within the model convergence radius, was 

performed by Kiselev and Il’yasov (2007). Recently, the degeneracies were analyzed in the 

context of the widely-studied Standard Model, Fig. 4. In particular, the “fit landscape” (the 

profile of the objective function to be minimized during fitting), its discrete and continuous 

degeneracies (i.e., distinct minima and flat directions), and the associated issues of accuracy 

and precision were pointed out numerically by Jelescu et al. (2016). The topology of this 

landscape was then derived analytically via the low-b expansion by Novikov et al. (2018c). 

The widely-adopted constraints (Zhang et al., 2012; Kaden et al., 2016a), that help stabilize 

the fit, were shown to fail (Lampinen et al., 2017; Novikov et al., 2018c); this has further 

provoked a discussion about what we can and cannot claim (Novikov et al., 2018a; 

Lampinen et al., 2019).
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In the view of this recent experience of reassessing already published trends, statements such 

as “Give me a model, I will build a library and estimate all your parameters” come across as 

dangerously naive every time. The library (or its interpolation by any set of functions) is just 

a way of performing a fit, and if the model is unphysical or the fit landscape is degenerate, 

neither a powerful computer nor a library search/interpolation procedure will recover the 

nonexisting information. Numerical noise propagation with SNR mimicking that of the 

measurement should be a requirement for each new candidate model or measurement 

protocol.

7.2.2. Resolving degeneracies via complementary measurements—Fit 

degeneracies can be cured by acquiring sufficiently “orthogonal” (complementary) 

information, that helps increase the curvature of the fit landscape along the most 

uninformative (flat) directions.

With pure diffusion acquisitions, the freedom of choosing the gradient wave form g(t) in 3 

dimensions, and hence, the shape of q(t) and of the corresponding b-tensor (generalizing the 

b-value) (Westin et al., 2016; Topgaard, 2017), significantly helps in resolving fit 

degeneracies. For the Standard Model, Fig. 4, Skinner et al. (2017) used double diffusion 

encoding to suppress extra-axonal compartment and then measure the diffusivity inside 

axons in rat spinal cord; Jensen and Helpern (2018) and Dhital et al. (2019) combined planar 

and linear encodings into different flavors of triple diffusion encoding, which together with 

orientational averaging enabled accessing the intra-axonal diffusivity. Coelho et al. (2019b) 

empirically found that the Standard Model fit landscape becomes notably less degenerate by 

including the planar tensor encoding, whereas Reisert et al. (2019) proved this statement 

analytically using an expansion at low b, and Fieremans et al. (2018) showed that employing 

the spherical tensor encoding has in practice a similar effect, making use of the earlier 

observation (Szczepankiewicz et al., 2015) that spherical tensor encoding provides a 

sufficiently complementary contrast. For this problem, Coelho et al. (2019a) and Lampinen 

et al. (2020) optimized the experiment design based on the Cramér-Rao bound, by 

optimizing b-tensor shapes for all diffusion and covariance tensor parameters, and by 

optimizing the q(t) wave forms for the Standard Model parameters, correspondingly. Finally, 

Jespersen et al. (2018) and Lee et al. (2018a) used the diffusion time dependence to break 

the compartment degeneracy of a time-dependent extension of the Standard Model, 

corresponding to the incomplete coarse-graining regime (ii) of Section 4.

Employing multiple NMR contrasts, beyond diffusion, helps achieve even greater 

complementarity. Multimodal examples in the brain include varying the inversion time (De 

Santis et al., 2016) to resolve fiber crossings; varying the echo time (Veraart et al., 2018; 

Lampinen et al., 2019) to alleviate fit degeneracies for the Standard Model, based on the 

distinct T2 values in the intra- and extra-cellular spaces (Dortch et al., 2013); altering 

compartment relaxation properties by intracerebroventricular injection of contrast agent 

(Silva et al., 2002; Kunz et al., 2018) to measure compartment diffusivities independently, 

and thereby establish prior knowledge for breaking the Standard Model degeneracy; and 

employing the T2
∗ contrast together with strong diffusion weighting enabling the separation 

between intra- and extra-axonal compartments (Kleban et al., 2020).
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7.2.3. Beyond dMRI: multi-modal microstructure MRI (μMRI)—While the dMRI 

community has been a major driving force behind quantifying tissue microstructure with 

MRI, it certainly does not hold a monopoly power on the concept. In fact, the earliest 

microstructure works in MRI were related to magnetic microstructure origins of the BOLD 

R2
∗ effect, as discussed in Section 2. The same cellular-level microstructure often gives rise 

to distinct MRI contrasts; e.g., myelin provides restrictions to diffusion, but it is also a major 

contribution to T1 and T2 relaxation (Laule et al., 2006; Dortch et al., 2013; Does, 2018), to 

magnetization transfer (Schmierer et al., 2007), as well as to the phase contrast (Duyn, 2018; 

Yablonskiy and Sukstanskii, 2018), the basis of the quantitative susceptibility mapping.

Without invoking any new paradigms, it is quite evident that one has to employ as many 

complementary contrasts as possible to resolve fit degeneracies, as discussed in Section 7.2. 

What is less trivial is to ensure that our models correct for the interference between different 

microstructure-related contrasts, as discussed in Section 7.1.4. Developing the 

corresponding effective medium theory of diffusion, relaxation and their cross-terms, would 

serve as a foundation for a truly multi-modal tissue μMRI, encompassing diffusion, 

relaxometry, magnetization transfer and quantitative susceptibility mapping.

7.3. Neuronal tissue structure and function

7.3.1. Free water elimination—This is a conceptually simple yet still practically 

unresolved problem: How to separate the partial volume contribution of the CSF or edema 

from the tissue signal? Attempts to eliminate free water are often based on the two-

compartment model (Pierpaoli and Jones, 2014; Pasternak et al., 2009; Metzler-Baddeley et 

al., 2012)

S = S0 f0e−bDfw + (1 − f0)e−b∑ijgiDijgj , (18)

with free water fraction f0 and fixed isotropic diffusivity Dfw = 3 μm2/ms, where the tissue 

signal is approximated by the diffusion tensor Dij, and g are the unit gradient directions.

Strictly speaking, representing the signal in the form (18) is inconsistent. At low b, at the 

O(b) level where the DTI representation of the second (tissue) term is justified, the signal 

S ≃ S0e−b∑ijgiDijtotgj is equivalently described by the overall diffusion tensor 

Dij
tot = f0Dfwδij + (1 − f0)Dij. This leads to the one-dimensional, fully-degenerate fit 

manifold corresponding to the overall mean diffusivity Dtot = f0Dfw + (1 − f0)D = const, 
such that different values of f0 and of the tissue mean diffusivity D, corresponding to the 

same Dtot, describe the signal equally well. This is perhaps the simplest example of how a 

continuous fit degeneracy emerges (cf. Section 7.2), illustrating that no matter how much we 

oversample the low-b signal, the physics of diffusion does not allow us to separate between 

the two contributions. In other words, here we cannot just rely on more data; we need a 

different kind of data. (Likewise, the low-b expansion yields a nontrivial degeneracy 

manifold for the Standard Model mentioned earlier in Section 7.2.1.)
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Employing higher b would break the above fit degeneracy — but at this point, the deviation 

of the overall signal (18) from a monoexponential also comes from the higher-order (e.g., 

kurtosis and beyond) terms in the tissue compartment. Hence, we need to represent the 

tissue signal with many more parameters, using multiple shells, — at which point we may 

just as well model it using, e.g., the Standard Model with added CSF compartment, Fig. 4. 

Of course, then we must also cure all the associated fit degeneracies discussed in Section 

7.2. Regularized fits such as that by Pasternak et al. (2009), claiming to eliminate free water 

based on a single-shell DTI, employ priors or regularization terms to break the above 

inherent degeneracy, and hence cannot be considered reliable. Employing complementary 

modalities, e.g. varying inversion time (Kwong et al., 1991) or echo time (Collier et al., 

2017; Veraart et al., 2018), can provide a much more reliable separation between CSF and 

tissue based on the difference in their relaxation properties.

7.3.2. Intra-axonal geometry—While the intra-axonal geometry and the dMRI 

modeling is understood better than any other brain compartment (cf. Section 5), questions 

still remain: What are the best realistic experimental regimes to separate the contributions of 

axonal beading and undulations? How wide is the range of scales for both beading and 

undulations, depending on the brain region? Are there any other significant signal 

contributions from other geometric features (e.g., branchings (Palombo et al., 2016), or the 

nodes of Ranvier, or glial cell bodies)? Is there a qualitative difference between the 

geometric features, such as caliber variations, of myelinated and unmyelinated axons?

7.3.3. Extra-axonal space geometry—Modeling the extra-axonal, and more 

generally, extra-cellular geometry presents greater challenges than the intra-axonal 

compartment. Technically, the difficulty for modeling diffusion is the structural disorder in 

the packing arrangement of axons, enabled by their irregular shapes and a broad diameter 

distribution (LaMantia and Rakic, 1990; Aboitiz et al., 1992; Caminiti et al., 2009; Liewald 

et al., 2014). Modeling diffusion in disordered geometries (Novikov and Kiselev, 2010; 

Novikov and Fieremans, 2012; Novikov et al., 2014) involves an added difficulty of 

performing the double average described in Section 4, usually with no hope of an exact 

solution. This is where the methods of modern physics, such as scattering theory, as well as 

renormalization group family of methods, may become particularly valuable.

The practical unresolved questions can be framed in terms of parsimonioulsy parametrizing 

the extra-cellular space geometry, and relating the compartment parameters, such as extra-

cellular volume fraction and the (generally time-dependent) diffusion tensor eigenvalues, to 

the packing geometry. Initial steps have been performed in (Novikov and Fieremans, 2012; 

Kinney et al., 2013; Burcaw et al., 2015; Fieremans et al., 2016; Ginsburger et al., 2018; 

Tétreault et al., 2020), but the geometry involved in such structural models remains fairly 

idealized.

7.3.4. Gray matter—Gray matter is a real terra incognita of dMRI, both due to 

difficulties in acquisition (especially in the narrow cortical areas), and in modeling. There 

are at least two major extra modeling challenges that the gray matter presents relative to the 

white matter: water exchange (cf. also Section 7.3.5 below), and the soma compartment. 

Water exchange may occur both between the intra-cellular space (neurites and soma) and 
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extra-cellular water, as well as between the neurites and soma (Palombo et al., 2020; Veraart 

et al., 2020; Jelescu and Novikov, 2020). Currently, we are not sure which exchange 

mechanism is dominant.

As for the soma compartment, the quantification of its size and volume fraction presents 

both theory and parameter estimation challenges. Parameter estimation requires the signal 

from the soma compartment to be sufficiently distinct by its functional form from the stick 

compartment (neurites) and the extra-cellular space, — otherwise the fit remains rather 

degenerate (Palombo et al., 2020). This degeneracy can be in principle cured by applying 

stronger gradients, using the recently found O(g4) correction to the Gaussian phase 

approximation (8) for wide pulses (Lee et al., 2020b). Practically, this compartment is likely 

to be in the cross-over regime between the diffusion narrowing and localization regimes, cf. 

Fig. 7, right panel. The theory for such a cross-over does not yet exist; Monte Carlo 

simulations so far remain the prime method of investigation.

7.3.5. Measuring water exchange—A standard dMRI method to measure exchange 

time is based on the compartment-exchange models (Kärger, 1985), as outlined in Section 

7.1.1. Such modeling may be too simplistic (compartments are usually assumed isotropic 

and exchange is supposed to be barrier-limited), as well as prone to fit degeneracies (the two 

compartment model can fit almost any signal even with zero exchange, and is rather 

insensitive to the exchange rate).

The compartment exchange measurements in glia or in neuronal tissue give the exchange 

time of the order of 10ms for isotropic compartments (Pfeuffer et al., 1998), and more 

recently of the same order of magnitude in the anisotropic case (Veraart et al., 2020; Jelescu 

and Novikov, 2020). A model-independent diffusion exchange spectroscopy (DEXSY) 

(Callaghan and Furó, 2004) yields about the same result in neonatal mouse spinal cord 

(Williamson et al., 2019).8 On the other hand, an order of magnitude longer exchange times 

τex ~ 100 ms in astrocyte and neuronal cultures were found by Yang et al. (2018) using 

perfused magnetic resonance spectroscopy, without any diffusion contrast. Overall, this large 

discrepancy between the methods, as well as the overall range of exchange times 

commensurate with MRI-relevant time scales, make estimating exchange rate a pressing 

issue for adequate brain microstructure modeling in gray matter. Note that for the white 

matter, at least in myelinated tracts, filter-exchange dMRI measurements yield exchange 

time ~1 s (Nilsson et al., 2013a,b), which justifies the non-exchanging Standard Model 

compartments. However, the exchange time in unmyelinated axons is not well known, and 

such axons may as well fall into fast exchange regime.

8In a typical brain voxel, where axons are not all aligned, DEXSY has to be augmented. The conventional exponential basis e−bD for 
the diffusion, adopted in multi-dimensional diffusion correlation investigations of porous media (Callaghan and Furó, 2004; Benjamini 
and Basser, 2017;Benjamini et al., 2017), is not a natural basis for neuronal tissue compartments due to the orientation dispersion. (An 
anisotropic Gaussian compartment, combined with different orientations, yields a non-Gaussian diffusion propagator and non-
exponential diffusion in any direction (Szczepankiewicz et al., 2015).) Intra- and extra-axonal diffusion responses can be decomposed 
in the basis of non-exponential rotational invariants (Reisert et al., 2017; Novikov et al., 2018c; Veraart et al., 2018). The applicability 
of the exponential basis can be restored via spherical tensor encoding, sensitive to the trace of diffusion tensor in each compartment, 
and thereby factoring out the effect of fiber orientation dispersion (Martins and Topgaard, 2016).
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Finally, there is a fundamental question about whether some water can be transported across 

cytolemma via the ATP-driven Na+/K+ channels; recently, it was suggested that about half of 

exchange is due to this active mechanism (Bai et al., 2018), complementing passive 

transmission through aquaporins. Hence, potentially, measurement of exchange rate can 

provide vital information about cellular function.

7.3.6. Achieving compartment specificity: dMRI + spectroscopy—Separating 

contributions of water from intra- and extra-cellular spaces has been a permanent 

complication for estimating microstructure parameters, causing fit degeneracies and the 

associated poor precision. While still not part of clinical protocols due to SNR issues, the 

diffusion-weighted spectroscopy is becoming an essential research tool for establishing the 

fundamental modeling building blocks, based on the fact that certain metabolites are present 

inside distinct cellular populations, as recently reviewed by Valette et al. (2018). The past 

few years saw a full-scale integration of dMRI spectroscopy with microstructure modeling 

(Ronen et al., 2014; Palombo et al., 2016; Ligneul and Valette, 2017; Ligneul et al., 2019), 

making it a highly impactful future avenue for model validation.

7.3.7. Diffusion fMRI—The observation (Darquié et al., 2001; Le Bihan et al., 2006) of 

subtle, at about 1% level, dMRI signal changes in neuronal activation, called diffusion fMRI 

(dfMRI), has been a controversial topic for a while. However, as the early concerns (Miller 

et al., 2007) about dfMRI being just an artifact of regular BOLD fMRI got resolved, further 

independent measurements gradually established this effect (Tsurugizawa et al., 2013; Spees 

et al., 2013, 2018; Bai et al., 2015, 2016; Nunes et al., 2019). The excitement about dfMRI 

is quite understandable: this may be the first neuroscience-relevant phenomenon, of the 

morphological neuronal tissue changes due to neuronal activation, that has been discovered 

solely using dMRI tools. The microstructure origins of dfMRI remain obscure, due to small 

contrast-to-noise ratio. However, an interesting scenario in white matter, of sub-myelinic 

vacuoles appearing after sufficiently long activation, was put forward by Spees et al. (2018).

7.3.8. Mapping neuroplasticity—The representation of learning and memory has long 

fascinated neuroscientists. While fMRI can assess active memory representations during 

encoding and retrieval (Kuhl et al., 2011; Brown et al., 2016), it cannot convincingly identify 

the permanent location of the memory trace (engram) (Brodt et al., 2018).

Microstructure MRI would be an ideal candidate to map structural plasticity. Remarkably, 

mean diffusivity decrease of about ~1% was observed within hours of performing 

corresponding tasks: in rats performing spatial naviation task (in cingulate cortex, corpus 

callosum and dentate gyrus) (Blumenfeld-Katzir et al., 2011), and in human hippocampus 

after 2 h of spatial learning and memory task based on a computer-race game (Sagi et al., 

2012). Learning-specific memory engram (mean diffusivity drop of ~0.5%) was detected in 

humans after just 1 hour of an object-location memory task, and it was found that memory 

activity occurs in posterior parietal cortex, rather than in hippocampus; furthermore, this 

engram overlapped with the related functional activity (Brodt et al., 2018).

While mean diffusivity is not specific to tissue microstructure, histological staining revealed 

morphometric changes in astrocytes (Blumenfeld-Katzir et al., 2011; Sagi et al., 2012). The 
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premise of microstructure MRI is to become specific to cellular-level changes. Of course, 

detecting such minute compartment-specific changes based on adequate models would be a 

daunting task, given the overall small signal change. However, this avenue of research seems 

highly impactful, with the microstructure community providing a potentially indispensable 

tool to study most fundamental neuroscience problems.

7.4. Looking for synergies and building bridges

The main challenge for the field of microstructure mapping, and the most impactful point of 

synergy, is the validation of our models using the ground truth. Conceptually, the simplest 

validation methods rely on building microstructure-inspired phantoms (recently reviewed by 

Fieremans and Lee (2018)) that can be used to calibrate our measurements. However, 

ultimately bridging the gap from the neuroscience side relies on obtaining the precise and 

intact ground truth of neuronal structure in two-dimensional histology (Chklovskii et al., 

2002; Caminiti et al., 2009; Liewald et al., 2014) and more recently, in three dimensions 

with sequential-slice electron microscopy (Lichtman and Denk, 2011; Mikula et al., 2012; 

Motta et al., 2019), expansion microscopy (Chen et al., 2015), and expansion/lattice light-

sheet microscopy (Gao et al., 2019). Such in vivo ground truth is nontrivial to obtain 

(especially to preserve the extra-cellular space from shrinkage), to segment and to analyze.

Furthermore, while ex vivo measurements are easier to compare with histology, they may 

not generally reflect the in vivo morphology; Shepherd et al. (2009) uncovered a strong 

effect of a fixative on the diffusion properties. Hence, it is key to preserve tissue morphology 

as intact as possible while fixing and reconstructing it in two and three dimensions.

Combining machine-learning methods for segmenting the structure (Tian et al., 2020) with 

Monte Carlo simulations in realistic microstructure in 2 dimensions (Xu et al., 2014) and in 

3 dimensions (Lee et al., 2020c,e,a) could provide ultimate quantitative tests of the 

theoretical concepts outlined above, as well as bridge them with further experimental 

validation. This kind of interdisciplinary research is only just starting, and is bound to bring 

important breakthroughs. Becoming specific to distinct parts of neuronal microgeometry in 
vivo offers a tantalizing prospect to quantify microstructure changes, such as demyelination, 

axonal loss and inflammation in white matter, or functional changes such as water exchange 

rate in gray matter, in disease, aging and development.

Complementary to the neuroscience input into our models, the microstructure community is 

ready to be challenged by the pointed requests from the neuroscientists — what effects are 

most relevant for us to try to become sensitive to by modeling, experimental design and 

validation? Can we make the field of tissue microstructure imaging bigger than the sum of 

its parts?

8. Outlook

To recap, model-based tissue microstructure imaging rests on the foundation developed 

within condensed-matter and statistical physics over the past half-century, naturally 

embracing concepts of coarse-graining and effective medium. Arguing about convergence of 

integrals and model assumptions, summing up Feynman diagrams and implementing the 
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coarse-graining as part of renormalization-group approach, all acquire a whole new 

dimension when performed in the building where patients are being diagnosed. Such an 

experience can be extremely stimulating and inspiring for a physicist, otherwise used to 

dealing with soulless elementary particles or electrons in a piece of a semiconductor. 

Establishing ties with the neuroscience community to apply modern physics methods to 

study brain microstructure and function may prove equally rewarding, and I hope this 

overview can stimulate such a dialogue at a time when our field has reached a new level of 

rigor.

Because an overall framework — from theory (model) to measurement to image processing 

to parameter estimation — performs as well as its weakest link, microstructure imaging 

places unusual demands on each step. It forces us to calibrate our measurements, be as 

precise as possible in identifying and removing noise and artifacts, and develop open-source 

image processing pipelines. In fact, the whole logic of microstructure imaging development, 

as that of a fundamental scientific field within an applications-driven MRI community, 

dictates setting the highest bar on understanding everything we do. In this aspect, 

microstructure imaging is akin to any other fundamental, curiosity-driven research field, 

where the lack of an immediate “killer application” shifts the emphasis onto the intellectual 

standards, striving for the deepest possible understanding of the phenomena we are 

modeling and measuring.

While maintaining this unusually high bar on the depth-above-else may seem excessive from 

the purely applied standpoint, history of science tells that uncompromising rigor eventually 

harbors the greatest dividends. It is in this way, through taking no shortcuts and excuses, that 

physicists were able to reinvent the world by delivering a transistor, a laser, a 

communications satellite, the field of NMR (which led to MRI), and the whole ecosystem of 

far-reaching applications of the fundamental quantum-mechanical concepts they discovered 

largely driven by their curiosity. Likewise, within MRI research today, the microstructure 

imaging community is setting the bar on the rigor in modeling, on the experimental design, 

image processing, accuracy and precision, calibration and validation, — thus making us 

better at what we do even in routine acquisitions. This may as well be the most tangible 

contribution of tissue microstructure imaging so far, even if its actual quantitative markers 

have not widely percolated into neuroscience research and clinical practice. And yet, in due 

course, they inevitably will.

I would like to end this review article by recalling a conversation with a manager at a major 

scanner manufacturer. When I expressed a wish that MRI sequences be calibrated using 

standardized phantoms, and the resulting precision metrics included in device specifications, 

I was told “Scanners are not sold as measurement devices, but rather as imaging devices.” To 

make progress, all of us — the community of MRI researchers, as well as radiologists and 

neuroscientists, and ultimately the manufacturers — better change our thinking. An MRI 

scanner is already a highly advanced physical measurement apparatus. We ought to treat it as 

such if we are to transform it into a genuine in vivo tissue microscope, especially now that 

the multi-decade project of bridging between the relevant fundamental physics and biology 

enters its most consequential stage.
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Fig. 1. 
dMRI propagator Gt,x, Eq. (2), as an ensemble-average of the local diffusion propagator 

Gt; xt, x0 (see text), here sampled using Monte Carlo (MC) simulations in the geometry of 

non-overlapping impermeable circular “cells” of diameters 0.35–6.25 μm. The intra-cellular 

(restricted) Gt; xt, x0, sampled by red MC paths, for long enough t fills up each cell, such that 

the net restricted contribution Gt,x averaged over all red paths remains non-Gaussian, as 

shown in bottom-left panel (Gt,x is bounded in x, and it becomes t-independent practically 

after t ≳ 1ms, with a bounded variance (1) plotted in bottom-right panel). The extra-cellular 

(hindered) Gt; xt, x0, sampled by blue MC paths, is allowed to spread infinitely far, hence its 

ensemble-average Gt;x asymptotically spreads as a Gaussian with variance growing 

asymptotically linearly with t, Eq. (1), with the slope D(t)∣t→∞ = D∞ < D0. Bottom-left and 

middle panels show the ensemble-averaged propagator projected onto the x-axis, by 

integrating the displacements along the y-axis. Bottom-right panel also shows Eq. (1) for the 

free diffusion, with D = D0, as a reference. Most of the information about cell sizes, shapes 

and their packing is washed out after the ensemble averaging. Figure courtesy of Lee (2019).
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Fig. 2. 
A hierarchy of effective theories relevant for tissue microstructure (bottom to top): From the 

atomic scale (many-body Schrödinger’s equation governing the dynamics of atoms and of 

their electronic orbitals); to a simple diffusion equation within any small domain of 

cytoplasm or extra-cellular space, with classical particle density ψ emerging after coarse-

graining ∣Ψ∣2 and integrating out the environment coordinates (Feynman and Vernon, 1963; 

Caldeira and Leggett, 1981; Kamenev, 2011); to the diffusion equation with heterogeneous 

local diffusivity D(x) describing the microstructural complexity at the cellular level; to the 

dynamics of the diffusion-weighted signal, Eq. (2), acquired over an MRI voxel, with 

∂x
2 − q2, ∂x

4 q4, …, corresponding to the cumulant expansion in the powers of diffusion 

wave vector q after the Fourier transform. The effective-medium retarded response functions 

D(t), W(t), … give rise to the time-dependent diffusivity D(t), time-dependent kurtosis K(t), 
and so on (Novikov and Kiselev, 2010), (Novikov et al., 2019, Sec. 2).
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Fig. 3. 
Coarse-graining of axonal fiber microstructure as an (almost) Gaussian filter with an 

increasing width L(t), relevant for the hindered diffusion in the extra-axonal space. With 

increasing t, spins “see” gradually more averaged extra-axonal space properties, with the t 
→ ∞ limit corresponding to a perfectly homogeneous extra-axonal compartment 

characterized by Gaussian diffusion (Novikov et al., 2019, Sec. 1.3). For illustration 

purposes, a cutout of electron micrograph of axons in sector 2 of the corpus callosum in an 

adult rhesus monkey (Fig. 6A from the histology work by LaMantia and Rakic (1990)) was 

taken, and a Gaussian filter was applied to it, with a filter window ~L(t) progressively 

increasing from L = 0 up to L ≃ 10 μm, corresponding to the diffusion time range t ≃ 0–100 

ms.
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Fig. 4. 
Standard Model of diffusion in neuronal tissue (Novikov et al., 2019, Sec. 3). In the long 

time limit (iii), elementary fiber segments (fascicles), consisting of intra- and extra-neurite 

compartments, are described by at least 4 independent parameters: f, Da, De
∥ and De

⊥, with a 

possible addition of the isotropic CSF compartment. Within a macroscopic imaging voxel, 

such segments contribute to the directional dMRI signal according to their orientational 

dispersion P(n).
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Fig. 5. 
Which geometric features of axons are we potentially sensitive to with dMRI? Starting from 

a realistic axon shape segmented from 3-dimensional electron microscopy (Lee et al., 2019), 

coarse-graining over the increasing diffusion length L(t) first highlights the caliber variations 

(beads or varicosities) at the ρ ~ 1 μm scale, followed by the undulations with wavelength of 

the order λu ~ 30 μm. The fully coarse-grained “stick” compartment of negligible radius is 

characterized by one-dimensional Gaussian diffusion.
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Fig. 6. 
The phase diagram of dMRI, assuming the standard pulsed-gradient sequence of Stejskal 

and Tanner (1965), where δ is the pulse duration and Δ is the interval between pulses. The 

planes (Δ, q) and (δ, g) are shown separately in Fig. 7 for clarity. The bottom plane represent 

the sequence timings δ ≤ Δ, with the narrow-pulse limit corresponding to the Δ axis and the 

widest possible pulses correspond to the diagonal δ = Δ. The coarse-graining, Fig. 3, occurs 

in this plane: it is a property of the diffusion process, irrespective of the diffusion gradients 

that define the vertical axis. For convenience, the units on the vertical axis are different for 

different limits, representing the relevant parameters, q = gδ and g, correspondingly.
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Fig. 7. 
The narrow-pulse (left) and wide-pulse (right) limits of the dMRI phase diagram from Fig. 

6. For convenience, the narrow-pulse plane from Fig. 6 is reflected here so that t = Δ grows 

from left to right; q = gδ. The units on the axes are made dimensionless using the structural 

length and time scales (4). The contour lines of constant b = (gδ)2(Δ−δ/3) are drawn in 

beige. The borderlines in the phase diagram are meant to represent smooth crossovers 

between regions (they are not sharp), hence their scaling, as well as that of the signal, are 

given only by order-of-magnitude relations. The coarse-graining regimes (i)—(iii) of Section 

4 are t̄ ≪ 1, t̄ ≳ 1, and t̄ ≫ 1, correspondingly, whereas applying the diffusion gradients 

(vertical axes) helps one to separate between distinct compartments and to quantify the 

shapes and sizes (4) by taking a snapshot of the coarse-graining at the scale 1/q or ℓg. See 

Section 6 and (Kiselev, 2020) for further details.
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