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Multiwave pandemic dynamics 
explained: how to tame 
the next wave of infectious 
diseases
Giacomo Cacciapaglia  1,2,5*, Corentin Cot1,2,5 & Francesco Sannino3,4,5* 

Pandemics, like the 1918 Spanish Influenza and COVID-19, spread through regions of the World in 
subsequent waves. Here we propose a consistent picture of the wave pattern based on the epidemic 
Renormalisation Group (eRG) framework, which is guided by the global symmetries of the system 
under time rescaling. We show that the rate of spreading of the disease can be interpreted as a 
time-dilation symmetry, while the final stage of an epidemic episode corresponds to reaching a time 
scale-invariant state. We find that the endemic period between two waves is a sign of instability in the 
system, associated to near-breaking of the time scale-invariance. This phenomenon can be described 
in terms of an eRG model featuring complex fixed points. Our results demonstrate that the key to 
control the arrival of the next wave of a pandemic is in the strolling period in between waves, i.e. when 
the number of infections grows linearly. Thus, limiting the virus diffusion in this period is the most 
effective way to prevent or delay the arrival of the next wave. In this work we establish a new guiding 
principle for the formulation of mid-term governmental strategies to curb pandemics and avoid 
recurrent waves of infections, deleterious in terms of human life loss and economic damage.

Pandemics, like the 1918 Spanish Influenza1 and COVID-19, spread through regions of the World in subse-
quent waves. There is, however, no consensus on the origin of this pattern, which may originate from human 
behaviour rather than from the virus diffusion itself. Time-honoured models of the SIR type2 or others based 
on complex networks3–5 describe well the exponential spread of the disease, but cannot naturally accommodate 
the wave pattern. Nevertheless, understanding this time-structure is of paramount importance in designing 
effective prevention measures. Here we propose a consistent picture of the wave pattern based on the epidemic 
Renormalisation Group (eRG) framework6,7, which is guided by the global symmetries of the system under 
time rescaling. We show that the rate of spreading of the disease can be interpreted as a time-dilation symmetry, 
while the final stage of an epidemic episode corresponds to reaching a time scale-invariant state. We find that the 
endemic period between two waves is a sign of instability in the system, associated to near-breaking of the time 
scale-invariance. This phenomenon can be described in terms of an eRG model featuring complex fixed points8. 
Our results demonstrate that the key to control the arrival of the next wave of a pandemic is in the strolling 
period in between waves, i.e. when the number of infections grows linearly. Thus, limiting the virus diffusion in 
this period is the most effective way to prevent or delay the arrival of the next wave. In this work we establish a 
new guiding principle for the formulation of mid-term governmental strategies to curb pandemics and avoid 
recurrent waves of infections, deleterious in terms of human life loss and economic damage.

As it emerged from the Spanish Influenza that hit the World in three consecutive waves between spring 1918 
and the early months of 1919, virus-driven pandemics can feature a wave pattern, even though the origin of this 
behaviour is not understood1. The very recent pandemic, caused by the coronavirus SARS-CoV-2, is showing 
a similar pattern, with a first wave hitting in the spring of 2020, and following ones still raging various regions 
of the World. Reliable algorithms were used at the beginning of the pandemic to predict the evolution of the 
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number of cases affected by the COVID-19 disease9–11, however it has proven difficult to predict the arrival of a 
second wave in the fall 202012. With the exception of a few countries like China, Vietnam and New Zealand, all 
regions of the World are suffering from multiple waves of COVID-19 infections.

The diffusion of the virus can be described by various time-honoured models, like compartmental models 
of the SIR type2 and complex networks3–5. These mathematical frameworks account for the exponential growth 
of the number of new infected cases, and the slowing down of the spreading once most of the susceptible indi-
viduals are infected. However, it is not a simple task to generate a wave pattern. For instance, in SIR models, one 
could induce a second wave either by injecting by hand new individuals in the susceptible sub-population, or by 
including a probability that the removed individuals may return to the state of susceptible. The latter case can-
not apply to the COVID-19, as very few cases of recovered individuals being infected again have been recorded.

In an article first posted at the beginning of August13, we successfully predicted the occurrence of a second 
wave in Europe starting in September–October. The analysis is based on the eRG framework6, extended by 
interactions between various countries7. The approach is based on the analysis of the time evolution of the total 
number of infected cases and the symmetries that this epidemic curve reveals, allowing to extract reliable infor-
mation from the data independently on the specific conditions met in each country. In fact, all the elements that 
can influence the velocity of the disease spreading are included in a single parameter, which contains the effect of 
local conditions, non-pharmaceutical interventions and socio-demographical characteristics. The eRG, therefore, 
can provide complementary information to studies that analyse in detail the effect of various measures14–18. As an 
example, the eRG framework has been used to study the effect of mobility reduction in Europe and the US during 
the first wave19, highlighting a universal time-frame of 2–4 weeks before an observable effect can be detected in 
the virus diffusion. For comparison, detailed studies of the mobility in the US20 have been able to identify the 
locations and events that foster the infection of new individuals and ignite hotspots.

In this work we focus on the total number of infected cases, as this is the most reliable tracker of the time-
evolution of the pandemics. In fact, other data, like the number of deaths and of hospitalisations, depend on 
factors like the age distribution and medical pre-conditions of the infected individuals, which can influence 
the delay between the infection and the time-stamp in the data. The master multiwave equation for the time-
evolution of the total number of infected cases Ij(t) in a region j reads:

where the first term on the right-hand side is a generalisation for w + 1 consecutive waves of the CeRG equations8 
and the second term contains the interactions between regions7. Here, we will always consider the number 
of cases per million inhabitants in order to compare different regions. In the master equation, most of the 
parameters are explicitly independent on the normalisation, as Ij(t) always appears divided by the total number 
of cases at the end of the first wave, Aj : the only exception is the interaction term, which also depends on the 
population of the regions ( nmj measures the population of region-j in millions). The parameters γj measure the 
effective velocity of the virus in each regions, and can be associated to an effective infection rate. This parameter 
can be eliminated from the equation by measuring the time in terms of a region-dependent scale, τj = γjt , once 
the couplings kjl are also rescaled: γj can therefore be interpreted as a local time-dilation, characteristic of each 
region and taking into account all the non-pharmaceutical measures and local conditions in each region. These 
parameters can be extracted from the data at the beginning of the epidemic diffusion in each region, indepen-
dently on the normalisation of the number of cases, which is very sensitive to the testing strategies21 changing 
during the pandemic. More details on the equations, and on the meaning of other parameters can be found in 
the Supplementary Information.

The master equation (1) encodes the multiwave pattern in two ways: in the first term, the parameters δj,ρ 
destabilise the fixed points at Ij(τ ∗ρ ) = Aj/ζρ ; in the second term, the interactions with other regions, or with 
an external source, can also destabilise the system and drive a new growth of Ij towards the next fixed point. In 
fact, for δj,ρ = 0 , the number of infected will grow until Ij(τ ∗ρ ) = Aj/ζρ , where the growth stops because of the 
vanishing of the beta function. This is a steady-state, independent of time, which signals the end of the infection. 
For δj,ρ < 0 , the zero is moved on the complex plane and cannot be reached, thus driving an endemic state with 
linear growth, which we call strolling in honour to the application of this formalism in high energy physics8. The 
second term has been used13 to predict the European second wave of September 2020, where kjl was associated 
to an estimated number of travellers between each country. In general, both effects are expected to be present: 
as we will see, the instability due to δ provides a maximal delay for the arrival of the next wave, which is directly 
related to the number of new cases recorded during the strolling period between waves. The presence of a large 
interaction can induce an early arrival of the new wave.

Thus, effective measures to prevent and control the next wave of a pandemic like COVID-19 can only go via a 
strict control of the number of cases inside the country or region, combined to effective tracking of new infected 
individuals traveling in. This is precisely the strategy followed by China, Vietnam and New Zealand, leading to 
an early extinction of the disease and the absence of a second wave.

Results
The CeRG multiwave model, corresponding to (1) without the interaction terms, can be used to effectively 
describe a pandemic episode in multiple subsequent waves. To illustrate the model, in the top panels of Fig. 1 
we show some features of the solutions for an isolated region with only two waves, corresponding to w = 1 and 
δ1 = 0 . The latter condition ensures that the epidemic is extinguished after the second wave. All results are 
shown for number of cases normalised to the first wave, and expressed in the local time τ = γ t . Panel (a) shows 
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three solutions (solid lines) together with the corresponding new cases (dashed lines), for three values of p0 . We 
can clearly see the two-wave structure emerging in the solution, the fact that the second peak tends to be flatter 
than the first (for ζ1 = 1/2 ). Furthermore, larger values of the exponent p0 tend to delay the second peak and 
flatten it. An important factor in controlling the arrival of a future wave is the number of new cases during the 
intermediate strolling phase, which we encode in the parameter

normalised to the total number of infected cases after the first wave, A, and expressed in terms of the local time. 
For the CeRG multiwave model in Eq. (1), the parameter St for each interwave period can be expressed as

for the strolling phase after the kth wave. This is a crucial parameter in controlling the timing of the second wave, 
as illustrated in panel (b) of Fig. 1 where we show the peak delay �τpeak (in local time) as a function of St . For 
St → 1 , the delay goes to zero as the two waves merge into a single one, while it grows for smaller values follow-
ing a power law that depends on p0 . The peak delays also depend strongly on ζ1 , which encodes the height of the 
second peak, being more delayed for decreasing ζ1 : for values above 0.8, however, the second wave becomes too 
small, thus the solution looses physical relevance.

To connect the result in Fig. 1b to a specific country or region, it is enough to fit the values of A and γ from the 
current wave, and appropriately rescaling the values of St and �τpeak : the delay in real time is �tpeak = �τpeak/γ 
while the new daily number of cases during the strolling is Aγ St . In the left panel of Fig. 2 we provide a template 
for a country/region with A = 50, 000 and γ = 0.1 (inverse days). The band, which can be considered an error on 
the prediction, comes from varying p0 . This plot shows that controlling the number of daily new cases during the 
endemic strolling phase below 10 could be enough to push the next wave peak beyond 40 weeks. In the right panel 
we show the same plot for 5 European countries, obtained by fitting the epidemiological data of the current wave.
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Figure 1.   Illustration and validation of the CeRG multiwave model. The panel (a) shows sample solutions of 
the CeRG multiwave equation for w = 1 , with δ1 = 0 , so that the epidemic episode is extinguished after two 
waves. The total number of cases, normalised to the first peak, is shown in solid, while the normalised new 
cases are shown in dashed. In the panel (b) we show the dependence of the delay between the two peaks of new 
infections, �τpeak measured in the local time, as a function of St . The CeRG parameters are fixed to the following 
values, unless specified: p0 = 0.5, p1 = 0.65, ζ1 = 0.5 . Panel (c) shows the CeRG model applied to the second 
and third wave in Japan (blue) as compared to the data (red) and the eRG fits of the two waves (orange). In panel 
(d) we show the value of the geographical uniformity indicator as defined in the text for a sample of countries, 
showing that the virus is more equally spread in the various regions during the second wave, in most cases.
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Comparing the predictions of the CeRG multiwave model to data is not an easy task: in fact, the number 
of detected infections, collected via the positivity of the tests done in each country, depends crucially on the 
number of tests done each day21 and on the specific testing policy adopted over time. For instance, during the 
first wave, many countries did fewer tests while focusing on hospitalised cases, while a more extensive testing 
campaign occurred starting in the summer months. As a consequence, quantities that depend on the number 
of cases, like the delay between peaks, cannot be computed accurately as a bias between two waves is present in 
the data. We, therefore, will apply the model to the second wave and following ones. As an example, in panel (c) 
of Fig. 1 we show the data for Japan compared to a scenario based on the CeRG multiwave model. Japan is an 
ideal candidate for this model since, being an island, the frontiers can be well-controlled, and one can consider 
the country as an isolated system. Furthermore, the second wave has already ended, followed by a two-month 
period of strolling with around 450 new infected cases detected each day. The CeRG model, shown in blue, 
provides a good quantitative and qualitative description of the data, and predicts that the third wave will peak 
at the beginning of December and be slightly higher than the second ( ζ1 = 0.4 ). Between the first and second 
waves, instead, no significant strolling was observed. This scenario could be interpreted in the following way: 
after the first wave, the virus diffusion was strongly limited by the enacted measures. However, new infected cases 
may have entered the country from abroad and/or spontaneous emergence of local hotspots inside the country 
(parametrised by the k-interactions). After the second wave, the virus kept spreading geographically within the 
population triggering at a later stage the third wave. The latter phase can be described by the CeRG model, while 
the transition between the first and second wave is due to external interactions. We do not attempt to unify the 
three waves because of the bias in the counting.

Testing the geographical diffusion of the virus in each country can provide useful indications on the mecha-
nism behind each wave. For this purpose, we define a uniformity indicator, χ2 , which encodes how far is the 
distribution of new cases in regions of the country from a completely flat one. Smaller values of χ2 indicate a 
more uniform distribution. For Japan, we considered the new cases in the various prefectures (where we exclude 
Okinawa for the geographical distance from the mainland) during the first and second waves, as shown in red in 
Fig.1d. The second wave has a larger χ2 , which could be interpreted as more localised diffusion due to hotspots or 
travellers returning to their home cities. We also report the indicator for the month of November, which we would 
expect to be reduced if the strolling plays an important role in creating the third wave. The result is too prelimi-
nary, as Japan is still far from the peak of the third wave and the indicator is found to be minimised at the peak.

Having validated the CeRG approach, we can now apply it to understand and predict the next wave in vari-
ous regions of the World. As a caveat, we should recall that the interactions between regions and the presence of 
hotspots can also affect the results and anticipate the insurgence of the next wave.

Europe: Most of the European countries are being hit by a second wave of the COVID-19. A general trend 
we observe is that the infection rate during the second wave is smaller than the one of the first wave, as shown 
by the values of γeRG in Supplementary Table T1 in the Supplementary Information. The comparison is done 
by fitting the two waves independently by use of the eRG model. Moreover, the expected cumulative number of 
infected cases during the second wave is much larger than that for the first wave, even taking into account the 
higher number of tests performed during the second wave. The emergence of the second wave was explained as 
arising from the interactions between countries13, nevertheless the presence of strolling between the two waves 
indicates that both effects participated. The decrease of the geographical uniformity indicator, shown in Fig. 1d, 
indicates that the strolling had an important role in diffusing the virus across the countries (for England, the 
uniformity was present since the first wave). The geographical diffusion may also be the reason behind the fact 
that the second wave has infected a larger portion of the population.

The CeRG model cannot be applied straightforwardly to the first two waves, due to the uncertainty in their 
relative normalisation, while it can be used to estimate when a third wave will hit starting from the data of the 

Figure 2.   Strolling control to delay the next wave. Delay of the next peak (in real time weeks) as a function 
of the strolling severity, expressed in terms of the daily number of new infected cases per million inhabitants 
( Aγ St ). In the right panel, we show the results for the CeRG model applied to France, Italy, the UK, Germany 
and Spain. In the left panel we show the result for a template country with A = 50, 000 and γ = 0.1 . The band is 
given by varying p0 between 0.5 and 0.6.
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current (second) wave. The result is shown in Table 1, and in Fig. 3 and the top row of Fig. 4 (additional plots 
are provided in the Supplementary Information). The timing of the next wave peak depends crucially on the 
time-dilation parameter γ , and on the amount of strolling in the intermediate endemic phase: in the projec-
tions, we fitted γ to reproduce the second wave and fixed St = 0.01 , with the corresponding total number of new 
cases, expected during the strolling, reported in the figures. The last column of Table 1 shows that a wide range 
of peak timings are expected, ranging from March to November 2021, where we associated an error of 1 week 
to the projection due to a variation of 10% in the infection rate. These results show clearly that controlling the 
infection rates and reducing the level of strolling after the end of the second wave are keys to delaying the next 
wave. Another element that should be included is the number of travellers across various countries13, which can 
help propagate the wave from country to country, thus affecting the ones with pronounced delayed projections.

In the right panel of Fig. 2 we show the delay between the current and next waves (in weeks) for 5 European 
countries, as a function of the daily number of new cases during the strolling. Thus, to delay the next wave peak 
beyond 40 weeks from the current one, it would suffice to keep the number of new cases below 10 per day. Delays 
beyond 20 weeks can be obtained with 100 new cases per day per million inhabitants. France has comparatively 
larger delays due to the smaller γ obtained from the data.

The US: The US has already seen two waves in April and July–August, and is undergoing a third. However, 
the first two waves are geographically distinct, with the episode in April mainly involving New York and New 
England, and the second spreading all over the remaining states. This is well illustrated by the geographical uni-
formity indicator in Fig. 1d, which sharply drops between the two episodes. The third point, based on the data of 
November, is still preliminary and will decrease as the third wave approaches its peak. To analyse the evolution 
of the COVID-19 epidemic in the US, a dedicated study which takes into account sub-regions is required. The 
uniformity analysis suggests that the first two episodes should be described in terms of interactions between 
states, while the third one may be originated by the strolling. Results of this analysis and projections for the future 
waves in the US will be presented in a separated article22.

Other countries: We included in our analysis a selection of countries for other regions of the World, selected 
in order to represent all continents. Note that we retained only countries for which the multiwave analysis is best 
explained in terms of the CeRG model, i.e. where diffusion of the virus in sub-regions do not produce features 
that would require a multi-region analysis. The latter situation can be tackled within coupled CeRG equations, 
but this analysis goes beyond the scope of the present work.

Table 1.   Numerical results for the eRG fit of the current wave and the CeRG forecast for the next wave. 
Columns 2 and 3 contain the results for the fit of the current wave using the eRG model6, where A is given in 
number of cases per million inhabitants and γeRG in inverse days. The current wave corresponds to the second 
one for all countries, except for South Africa, Bolivia and Saudi Arabia for which it is the first. In the last 
three columns we show the expected peak dates (within a 1 week error) of the current and next waves and the 
expected value of the number of daily new cases per million inhabitants I ′

strol
 during the inter-wave strolling 

period. Except for Australia, South Africa, Bolivia, Saudi Arabia, Japan and South Korea, we fix St = 0.01 , 
p0 = 0.55 , p1 = 0.6 and ζ1 = 1/2 , while γ and A0 are chosen to fit the second wave (first for South Africa, 
Bolivia, Saudi Arabia). For countries currently in the strolling period, all the parameters of the CeRG model 
are fitted.

Country

eRG fits CeRG forecast

Current wave Current peak Next peak

A γeRG Date ( ±1 w) I
′

strol
Date ( ±1 w)

France 61(6)× 10
3 0.048(5) 2020-11-07 35 2021-11-20

Italy 41(2)× 10
3 0.075(8) 2020-11-17 37 2021-07-17

UK 21.3(2)× 10
3 0.0717(8) 2020-11-08 17 2021-07-24

Germany 20(3)× 10
3 0.058(2) 2020-12-13 14 2021-10-05

Spain 30(4)× 10
3 0.067(1) 2020-10-31 22 2021-08-04

Switzerland 40(4)× 10
3 0.10(1) 2020-11-04 70 2021-04-20

Netherlands 26.1(2)× 10
3 0.0797(8) 2020-10-24 24 2021-06-19

Belgium 40.7(4)× 10
3 0.121(2) 2020-10-24 70 2021-03-13

Denmark 12(2)× 10
3 0.062(2) 2020-11-07 9 2021-09-11

Iceland 9.9(1)× 10
3 0.087(2) 2020-10-10 12 2021-04-20

Canada 16(2)× 10
3 0.046(5) 2020-12-07 71 2022-01-08

South Africa 11039(35) 0.0704(5) 2020-07-11 18 2021-01-06

Bolivia 12240(20) 0.0442(2) 2020-07-25 3.7 2021-07-28

Saudi Arabia 9560(20) 0.0447(3) 2020-06-20 9.2 2021-04-17

Australia 735(3) 0.1015(7) 2020-07-25 1 2021-04-17

Japan 434(5) 0.094(1) 2020-08-08 3.4 2020-12-02

South Korea 157(3) 0.136(6) 2020-08-26 0.7 2020-11-25



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6638  | https://doi.org/10.1038/s41598-021-85875-2

www.nature.com/scientificreports/

Figure 3.   Strolling as a precursor of a COVID-19 third wave. Most European countries are still undergoing 
a second wave of COVID-19. In this figure we show how a strolling period, consistent on a fixed number of 
new infections per day (indicated in each panel) could lead to a third wave, as indicated by the solid band. The 
prediction corresponds to St = 0.01 , and is compared to the data (adjourned to November 23) and the eRG fit 
from Table 1 (dashed orange). The plot includes France, Italy, Germany and the UK.

Figure 4.   Strolling as a precursor of a new COVID-19 wave. The top panels shows Spain and Denmark, while 
the remaining European countries included in this study are shown in the Supplementary Information. In the 
bottom panels we show two sample countries from other regions of the World. In both cases, currently the 
epidemic is in the strolling regime after the first wave, indicating an imminent restart of the epidemic. In cases 
with an ongoing strolling, St is fitted to reproduce the data.
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In Table 1 we show the results for the selected countries, also illustrated in the bottom row of Fig. 4 for South 
Africa and Saudi Arabia. In most selected cases, the country is in the strolling regime, following the end of the 
first or second wave, thus allowing us to tune the CeRG parameters to reproduce the strolling and give a more 
reliable forecast for the following wave. In some cases, like South Africa, the high level of strolling indicates that a 
new wave is imminent. As we are not trying to perform a fit, due to the many uncertainties in the social distancing 
and testing policies, the scenario we present should be considered as a probable one. Yet, it should be noted that 
the model does not leave much room to modify the expected number of total infected cases during the future 
wave nor change the timing substantially, without drastic pharmaceutical or non-pharmaceutical interventions.

Discussion
We provide a mathematical understanding of the wave pattern for pandemics, like the COVID-19 one. The 
approach is employed to forecast the timing of a future wave based on the number of new infections during the 
intermediate endemic phase. The timing of the new wave is related to a newly introduced parameter, St , that can 
be easily deduced from the cumulative number of infected cases. We studied several countries in different regions 
of the World and, in absence of any pharmaceutical interventions, we estimate the timing of the next wave of 
infections. We found countries where a new wave will start in December 2020, like South Africa, and countries 
where it could start as late as October 2021, like in France. Our predictions will be affected by the border control 
regulations with the generic effect of inducing an early increase in the number of infections.

Our understanding of the wave structure of the COVID-19 pandemic draws the attention to the inter-wave 
strolling period. We discover that controlling the number of new infections during the strolling period is neces-
sary to delay the beginning of a future wave. This amounts to imposing social distancing measures and break 
potential chains of infections after the end of the wave in order to keep St as low as possible. Delaying the next 
wave is crucial in order to have enough time to realise an effective vaccine campaign.

Our results can effectively guide policymakers to time (non)pharmaceutical interventions to delay or reduce 
the impact of future COVID-19 waves. Until now, most measures are taken when the number of new infected 
cases has already grown substantially. At this point in time one can only contain the wave, not avoid it, with 
serious impact for the loss of human lives as well as the economy. We prove that intervening during the stroll-
ing period of endemic diffusion is essential to delay or avoid a new wave while buying time for pharmaceutical 
interventions, like an effective vaccine campaign. More specifically, to maximise the delay, the strolling parameter 
must be kept small, St ≈ 10−5 for an optimal use of the enacted measures. In most countries, this implies that 
the number of new cases at the end of the wave should be kept at the level of 10 cases per million inhabitants per 
day. This effect can be achieved by keeping or introducing new measures after the end of the wave, in the form 
that is more appropriate for the local conditions.
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