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Using deep learning to predict 
temporomandibular joint disc 
perforation based on magnetic 
resonance imaging
Jae‑Young Kim1,6, Dongwook Kim2,6, Kug Jin Jeon3, Hwiyoung Kim4 & Jong‑Ki Huh5* 

The goal of this study was to develop a deep learning-based algorithm to predict temporomandibular 
joint (TMJ) disc perforation based on the findings of magnetic resonance imaging (MRI) and to 
validate its performance through comparison with previously reported results. The study objects were 
obtained by reviewing medical records from January 2005 to June 2018. 299 joints from 289 patients 
were divided into perforated and non-perforated groups based on the existence of disc perforation 
confirmed during surgery. Experienced observers interpreted the TMJ MRI images to extract 
features. Data containing those features were applied to build and validate prediction models using 
random forest and multilayer perceptron (MLP) techniques, the latter using the Keras framework, a 
recent deep learning architecture. The area under the receiver operating characteristic (ROC) curve 
(AUC) was used to compare the performances of the models. MLP produced the best performance 
(AUC 0.940), followed by random forest (AUC 0.918) and disc shape alone (AUC 0.791). The MLP and 
random forest were also superior to previously reported results using MRI (AUC 0.808) and MRI-based 
nomogram (AUC 0.889). Implementing deep learning showed superior performance in predicting disc 
perforation in TMJ compared to conventional methods and previous reports.

Disc perforation occurs in the late stage of temporomandibular joint (TMJ) disease. It may affect treatment 
planning and can be useful in predicting the prognosis of the disease1–3. Magnetic resonance imaging (MRI) is 
considered the gold standard for examination of disc of TMJs2,4. However, results among several reports predict-
ing disc perforation based on MRI vary and the diagnostic accuracy of MRI in detecting TMJ disc perforation 
is known to be poor2,3,5–7.

Artificial intelligence (AI) technology is beginning to affect our daily lives, the field of medicine not excepted. 
Indeed, the number of articles applying machine learning to medical research has been growing rapidly in recent 
years8,9. Several studies have been also conducted to evaluate the diagnosis and prognosis in the field of oral and 
maxillofacial surgery. Zhang et al. reported a model that predicts postoperative facial swelling after third molar 
extraction with 98% accuracy using an artificial neural network10. Kim et al. also applied machine learning 
technique to predict the occurrence of bisphosphonate related-osteonecrosis of the jaw11.

In addition, deep learning, a class of machine learning, is increasingly being applied in the field of diagnosis 
and prediction related to medical imaging, yielding impressive results12. Yang et al. reported favorable result for 
automated detection of cyst and tumor of the jaw in panoramic images13. Lee et al. reported that cephalometric 
images can be applied for differential diagnosis of orthognathic surgery and orthodontic treatment based on 
deep convolutional neural networks with 95.4 ~ 96.4% success rate14. More recently, there are many attempts for 
diagnosis of osteoarthritis of the temporomandibular joint based on cone-beam computed tomographic image 
using machine learning15,16.

Although deep learning based on medical imaging has had a monumental impact, processing a stack of MRI 
slices rather than a single image such as a fundus photograph requires considerable effort as well as significant 
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computational resources in terms of memory and processing speed17–19. Moreover, despite the ability of deep 
learning to extract features directly from data, predictions made solely by machines are limited in terms of 
accuracy and reliability; moreover, they raise legal, ethical, and psychosocial issues8,9,12.

Thus in this study, experienced observers interpreted the TMJ MRI images to extract data on specific features 
for use in building machine learning-based prediction models. The goal of this study was to construct machine 
learning models to predict TMJ disc perforation based on experienced investigators’ MRI readings and the vali-
date the performance of the models. Random forest and multilayer perceptron (MLP), a class of deep learning 
method, were used. There have been to our knowledge no published studies applying deep learning or machine 
learning to TMJ disc perforation.

Results
A total of 299 temporomandibular joints from 289 patients involved in this study. The characteristics of the study 
objects are shown in Table 1. In univariate analysis, there was significant difference statistically in all parameters 
except fluid collection between non-perforated and perforated group. A multiple logistic regression analysis was 
performed with parameters showing significance in the univariate analysis (Table 2). The factors significant in 
multivariable analysis were increased age, disc shape (eyeglasses or amorphous), low signal intensity of bone 
marrow in MRI, joint space, and changes in the condyle and fossa, consistent with a previous study5. Female 
patients were approximately twofold more likely to have disc perforation than male patients. When disc shape 
was amorphous, the possibility of disc perforation was increased almost 45-fold compared to normal disc shape.

The machine learning models were built based on the above results. The training progress is shown by plot-
ting the loss of each iteration in Fig. 1. Statistically significant factors from the above analyses were considered 
when constructing the random forest and MLP models. MLP produced the highest performance (AUC 0.940), 

Table 1.   Characteristics of study objects. IQR Interquartile range, ADcR anterior displacement with reduction, 
ADsR anterior displacement without reduction. *p < 0.05, **p < 0.01, ***p < 0.001.

Non perforated group Perforated group p-value

Number of joints N = 168 N = 131

Age (year)*** < 0.001

Median [IQR] 27.0 [22.0; 33.0] 32.0 [26.5; 44.5]

Gender* 0.029

Male 30 (17.9%) 10 (8.4%)

Female 138 (82.1%) 120 (91.6%)

Shape of the disc*** < 0.001

Biconcave 30 (17.9%) 1 (0.8%)

Folded 46 (27.4%) 7 (5.3%)

Flattened 34 (20.2%) 17 (13.0%)

Eyeglass-shaped 40 (23.8%) 35 (26.7%)

Amorphous 18 (10.7%) 71 (54.2%)

Signal intensity of bone marrow*** < 0.001

Normal 152 (90.5%) 87 (66.4%)

Low 16 (9.5%) 44 (33.6%)

Fluid collection 0.178

Grade 0 82 (48.8%) 54 (41.2%)

Grade 1 58 (34.5%) 52 (39.7%)

Grade 2 24 (14.3%) 18 (13.7%)

Grade 3 4 (2.4%) 7 (5.3%)

Disc displacement*** < 0.001

Normal + ADcR 51 (30.4%) 7 (5.3%)

Early ADsR 56 (33.3%) 31 (23.7%)

Late ADsR 61 (36.3%) 93 (71.0%)

Joint space*** < 0.001

Normal 38 (22.6%) 7 (5.3%)

Narrowing 125 (74.4%) 91 (69.5%)

Bone to bone contact (close) 3 (1.8%) 12 (9.2%)

Bone to bone contact (open) 2 (1.2%) 21 (16.0%)

Changes of condyle and fossa*** < 0.001

2 or less features 149 (88.7%) 72 (55.4%)

2 or more features 19 (11.3%) 58 (44.6%)
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followed by random forest (AUC 0.918) and disc shape alone (AUC 0.791). (Fig. 2, Table 3). The AUC of MLP 
and random forest outperformed previous reports. (AUC 0.8083, AUC 0.8895).

The random forest model does yield the importance of the variables in each model, as shown in Fig. 3. Accord-
ing to the result of our model, shape of the disc appeared to have the most impact among the variables which 
were significant in multiple logistic analysis.

The sensitivity and specificity of each model at its optimal cutoff is also investigated. MLP model showed 
85.2% of sensitivity and 84.8% of specificity. Random forest model showed 96.3% of sensitivity and 75.8% of 
specificity. They are summarized in Table 4.

Discussion
Presence of temporomandibular disc perforation does not necessarily mean the patient needs surgical interven-
tion. However, identification of TMJ disc perforation may affect treatment planning since it can be seen in the 
late stage of TMJ arthrosis and the stage of internal derangement affects treatment planning2.

Although MRI is widely considered the gold standard in evaluating TMJ, clear criteria for diagnosing TMJ 
disc perforation have not yet been proposed3,5,7. The diagnostic value of MRI for identifying the presence of a 
perforated disc is reported to be limited, only a handful of reports having assessed it with ROC curves2–4.

Previously, Shen et al. reported an AUC of 0.808 (95% CI 0.77–0.85) by diagnosing TMJ perforation with 
MRI3. One thing to consider is that this study included 2524 joints, but only 207 joints were perforated. This 
imbalance between the numbers of cases and controls allows high diagnostic accuracy, exceeding 90%, despite the 
sensitivity being as low as 0%. In other words, if there are only 10 perforated joints among 100 joints, diagnostic 
accuracy of 90% is easily achieved by simply diagnosing every joint as non-perforated, while none of the perfo-
rated joints are diagnosed correctly. The study still has significance in that it is the first report assessing efficacy 
of MRI-based diagnosis of TMJ disc perforation based on ROC curve rather than only sensitivity and specificity. 
The ROC curve is an efficient method for assessing a diagnostic test as it visualizes all possible combinations of 
true positive rates and false positive rates.

Table 2.   Univariate and multiple logistic regression analyses. ADcR anterior displacement with reduction, 
ADsR anterior displacement without reduction. *p < 0.05, **p < 0.01, ***p < 0.001.

Variables

Univariate Multiple

OR (95% CI) p-value OR (95% CI) p-value

Age 1.06 (1.04–1.09) 0.000*** 1.05 (1.02–1.09) 0.002**

Sex

Male 1 1

Female 2.37 (1.17–5.14) 0.021* 2.04 (0.76–5.83) 0.276

Shape of the disc

Biconcave 1 1

Folded 4.57 (0.76–87.59) 0.165 1.12 (0.13–24.74) 0.892

Flattened 15.00 (2.82–278.31) 0.011* 6.27 (0.98–123.82) 0.075

Eyeglasses-shaped 26.25 (5.19–479.44) 0.002** 11.72 (1.55–251.4) 0.040*

Amorphous 118.33 (22.97–2178.49) 0.000*** 44.92 (5.84–975.71) 0.002**

Signal intensity of bone marrow

Normal 1 1

Low 4.80 (2.61–9.25) 0.000*** 3.47 (1.48–8.56) 0.005**

Fluid collection

G0 1

G1 1.36 (0.82–2.27) 0.234

G2 1.14 (0.56–2.29) 0.716

G3 2.66 (0.76—10.55) 0.133

Disc displacement

Normal + ADcR 1

Early ADsR 4.03 (1.71–10.69) 0.002** 1.45 (0.45–4.93) 0.367

Late ADsR 11.11 (5.01–28.28) 0.000*** 0.94 (0.25–3.63) 0.898

Joint space

Normal 1 1

Narrowing 3.95 (1.79–10.02) 0.002** 3.21 (1.09–10.74) 0.066

Bone to bone contact (close) 21.71 (5.39–115.90) 0.000*** 9.19 (1.51–70.15) 0.047*

Bone to bone contact (open) 57 (13.09–413.06) 0.000*** 45.4 (6.53–497.03) 0.000***

Changes of condyle and fossa

2 or less 1 1

2 or more 6.23 (3.51–11.47) 0.000*** 3.79 (1.75–8.58) 0.002**
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Figure 1.   Training and validation curves. The training progress is shown by plotting the loss of each iteration. 
The accuracy of the validation set is also plotted together for every epoch.

Figure 2.   ROC and AUC of machine learning methods. MLP performed best (AUC 0.940), followed by 
random forest (AUC 0.918) and disc shape alone (AUC 0.630). MLP multilayer perceptron, RF random forest, 
ds shape of the disc.

Table 3.   Statistical significance of the difference between the areas under ROC curves. DeLong’s test and 
Bootstrap test were used. MLP multilayer perceptron.

Random forest (p-value) Disc space alone (p-value)

MLP 0.344 < 0.01*

Random forest < 0.01*
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A previous study which constructed a nomogram based on MRI findings reported the AUC to be 0.889 
(95% CI 0.804–0.973)5. In this study, the best performing deep learning model showed an AUC of 0.940 (95% 
CI 0.884–0.995). This is the highest result reported, despite being validated with mutually exclusive datasets 
from the training set.

Deep learning is yielding quantum leaps in a wide range of technologies affecting our lives. Face recogni-
tion, voice-to-text, personal assistants, and natural language understanding have become commonplace, and 
self-driving cars are on the horizon. The field of medicine is no exception: as the number of healthcare startups 
using artificial intelligence is increasing, so are markets involving this technology rapidly emerging. Across the 
board, medical imagery will likely constitute a primary input for practical applications using AI in healthcare.

Classic data-driven approaches in radiology depend on features seen as important from a human radiologist’s 
point of view, such as density, heterogeneity of tumors, shape, etc20. Convolutional neural network (CNN), a class 
of deep learning, automatically discovers the best features for a given task without requiring human-mediated 
feature selection12,20. CNN reaches or sometimes exceeds human performance in specific tasks.

While this study implemented a deep learning approach to construct a TMJ disc perforation detection model, 
feature selection and assessment were done by doctors and not by computer. A large amount of data is required 
for a well-performing CNN, which automates the feature selection process. Machine learning will only get better 
over time as data sets increase in size and computing power grows21. Given the small amount of available data, 
deep learning with human-crafted features performs better20. Moreover, it does not require extensive computing 
power as well. Also, it has been noted that even minor changes to the input data, often invisible to human eye, 
can result in dramatically different classifications20,22. Human verification is thus still required.

The “black box” nature of AI-based diagnosis, meaning the inability to identify the reason for each decision, is 
another limitation9. Doctors will rarely follow the advice of a machine if they cannot see the reasoning underlying 
that advice, especially when the responsibility for the patient remains with the clinicians9,23. There are ongoing 
studies on this, some of them achieving a measure of interpretability. However, though not fully interpretable, 
the random forest model does yield the importance of the variables in each model, as shown in Fig. 3.

In this study, temporomandibular disc perforation was confirmed by surgeon during open TMJ surgery. In 
some cases, however, the perforation was not identified according to the size or location of disc perforation, which 
is a limitation of this study. It is thought that the most optimal condition is to interpret and analyze all images 
by AI technique, if disc perforation can be diagnosed more completely through image. Recently, Chauhari et al. 
reported that super-resolution magnetic resonance images were created by deep learning and the images can 

Figure 3.   Plot showing importance of the variables in the random forest model. The importance is determined 
by the amount of reduction in uncertainty caused by arranging a variable in the tree structure. If a variable 
causes a large reduction in uncertainty, it occurs high up in the classification hierarchy and should thus be 
considered important.

Table 4.   Sensitivity and specificity of each model at optimal cutoff point. Optimal cutoff was considered the 
point maximizing the sum of sensitivity and specificity. MLP multilayer perceptron.

Model Sensitivity Specificity Cutoff point of probability

MLP 85.2% 84.8% 0.508

Random forest 96.3% 75.8% 0.196

Disc shape alone 80.8% 63.0% 0.307
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be used for diagnosis24. With the advancement of AI technology and the development of image technology, it is 
expected that image interpretation and prediction of AI alone in the future.

Machine learning approaches are increasingly finding application in the field of medicine and will benefit 
patients whose doctors have learned to implement them. The history of medicine is replete with cases in which 
new techniques have been adopted by a few with notable success and then become widespread. To aid readers 
wishing to try out this new technology, we are sharing the R code used in this study as an attachment (Sup-
plementary Data).

Methods
Patients.  443 patients received open TMJ surgery between January 2005 and January 2018 at the Depart-
ment of Oral and Maxillofacial Surgery, Gangnam Severance Hospital, Yonsei University. The following criteria 
were excluded: diagnosed tumors such as osteochondroma and synovial chondromatosis; a congenital deformity 
such as hemifacial microsomia or hemifacial hyperplasia; the absence or inadequate quality of TMJ MRI; and 
prior total TMJ replacement or arthroplasty.

This retrospective study was approved by the Institutional Review Board of Gangnam Severance Hospital 
(No. #3-2018-0129) and complied with the tenets of the Declaration of Helsinki. Written or verbal informed 
consent was not obtained from any participants because the IRB of Gangnam Severance Hospital waived the 
need for individual informed consent, as this study had a non-interventional retrospective design and all data 
were analyzed anonymously.

Following this selection process, 299 joints from 289 patients remained. These were divided into two groups, 
perforation and non-perforation, based on the existence of disc perforation identified during surgery. The char-
acteristics of the study objects are shown in Table 1.

Statistical analyses.  Comparison of parameters between groups in Table 1 were assessed using the chi 
square test, Fisher’s exact test, and the Cochran-Armitage trend test for categorical variables. The Mann–Whit-
ney rank sum test was used for continuous variables. Statistical analyses were performed using the R program-
ming language (R Core Team, Vienna, Austria, 2018).

Magnetic resonance imaging.  MRI was acquired on a 3.0-T Magnetom scanner (Achieva, Philips Medi-
cal, Best, The Netherlands) with 3-inch surface coils for the TMJs. For T1-weighted imaging, the following 
parameters were used: repetition time, 450 ms; echo time, 20 ms; slice thickness, 3 mm; field of view, 120 mm; 
and acquisition matrix size, 240 × 240. The parameters for T2-weighted imaging were as follows: repetition time, 
2,900 ms; and echo time, 90 ms. Sagittal plane MRI was analyzed by two oral and maxillofacial surgeons and 
an oral and maxillofacial radiologist with reference to previous studies3,5,7,25. All observers were experienced in 
TMJ MRI interpretation. Images were interpreted at the same time and a final decision was made by consensus.

Disc shapes, bone marrow signal, relationship between the disc and condyle, joint space, and changes of con-
dyle and fossa were investigated. More detailed information and figures of each parameter have been described 
in a previous report5. The data derived from these features were used to build a prediction model.

Disc shapes.  “Biconcave” refers to the normal disc structure and position. “Folded” describes discs with 
either a cap- or cup-shaped (∩ -or ∪ -shaped) configuration. A “flattened” disc has a loss of the voluminous 
configuration of the anterior band, posterior band, or both. A disc shortened antero-posteriorly resembles a 
pair of eyeglasses and was named as such. A deformed disc without a distinguishing configuration was classified 
as “amorphous.” A disc falling into more than 2 of the above categories was classified into the more deformed 
category.

Signal intensity of the bone marrow.  Signal intensity of the bone marrow was assessed based on 
T1-weighted images. When the signal intensity of the condyle was lower than that of the ramus or body of the 
mandible, it was considered a low bone marrow signal; otherwise it was considered normal.

Fluid collection.  Fluid collection was considered present if high signal intensity was observed within the 
joint spaces on at least two consecutive T2-weighted sagittal MRI. The amount of collected fluid was divided into 
4 grades, from G0 to G3, where G0 refers to no fluid, G1 limited to the verge of the disc, G2 extended over the 
verge, and G3 when capsular expansion was observed.

Joint space.  The narrowing of joint space between the condyle and fossa was divided into 4 categories: 
normal, narrowing, bone-to-bone contact while mouth closed, and bone-to-bone contact on mouth opening.

Changes of condyle and fossa.  The presence of the following 5 features of mandibular condyle and 1 fea-
ture of articular fossa, 6 features in all, were investigated: osteophyte, erosion, sclerosis, flattening, and superiorly 
forming bony projection (spur) of mandibular condyle and signal changes of articular fossa2,5,7. The number of 
features were counted.

Machine learning.  Prior to formulation of machine learning models, the data set was randomly divided 
into two mutually exclusive sets, training (80%) and validation (20%)26. The training set was used to construct 
the prediction model and the validation set was used to validate the performance of each model. Area under 
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the Receiver Operating Characteristic (ROC) curve (AUC) was used to compare the performance of the models 
with one another, and also with those in previous reports.

A concise description of each machine learning algorithm is provided below. All machine learning models 
were implemented using the Keras framework27 with the R programming language (R Core Team, Vienna, 
Austria, 2016)26.

Random forest.  Random forest is a tree-based machine learning algorithm which creates subsets of deci-
sion trees and combines weak outputs of the trees to yield highly accurate results by calculating the vote of each 
tree28. Each decision tree predicts the value of a target variable based on several input variables by repeated 
classification, also known as recursive partitioning28,29. The subsets are created by multiple iterations of random 
sampling, 500 times in this study. The R package randomForest was employed28.

Multilayer perceptron (MLP).  Multilayer perceptron (MLP) is a class of artificial neural network (ANN) 
with multiple, or deep, layers of nodes. Each neuronal node connects with others in patterns similar to those 
in animal neurons and uses a non-linear activation function. This non-linear characteristic makes it possible to 
distinguish linearly inseparable data. The Keras framework27, a recent deep learning interface, was employed to 
construct an MLP model in this study.

The MLP model architecture used in this study, illustrated in Fig. 4, is composed of an input layer, three fully 
connected hidden layers and an output layer. The input layer refers to input data such as features extracted from 
TMJ MRI. The hidden layers are those where the input features are computed. The node in the output layer 
represents the computed prediction result27.

A neural network is trained by adjusting the weights and biases of each node. These parameters are repeat-
edly adjusted via an optimization algorithm called gradient descent27. Each time predictions are computed from 
a given data sample (forward propagation), the network performance is assessed through a loss function that 
measures the error of the prediction. Each network parameter is then adjusted in small increments in the direc-
tion that minimizes the loss, a process called back-propagation27,30. This MLP learning process is shown in Fig. 1.

Conclusion
Implementing deep learning showed superior performance in predicting disc perforation in TMJ compared to 
conventional methods and previous reports.

Figure 4.   Architecture of multilayer perceptron (MLP). This deep neural network consists of an input layer, 
three fully connected hidden layers with nodes numbering 32, 16, and 1, and an output layer. When a series 
of training samples is presented to the network, a loss function measures the inaccuracy of the computed 
prediction. All parameters are then slightly updated in the direction that will minimize the error, a process 
called back-propagation.
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