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Abstract

Synthesis of the bacterial cell envelope requires a regulated partitioning of resources from central 

metabolism. Here, we consider the key metabolic junctions that provide the precursors needed to 

assemble the cell envelope. Peptidoglycan synthesis requires redirection of a glycolytic 

intermediate, fructose-6-phosphate, into aminosugar biosynthesis by the highly regulated 

branchpoint enzyme GlmS. MurA directs the downstream product, UDP-GlcNAc, specifically into 

peptidoglycan synthesis. Other shared resources required for cell envelope synthesis include the 

isoprenoid carrier lipid undecaprenyl phosphate and amino acids required for peptidoglycan cross-

bridges. Assembly of the envelope requires a sharing of limited resources between competing 

cellular pathways and may additionally benefit from scavenging of metabolites released from 

neighboring cells or the formation of symbiotic relationships with a host.
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Introduction

“There is no delight in owning anything unshared.” ~Seneca (1st century A.D.)

The metabolic pathways that sustain life are a deeply entangled network of reactions that 

allow the efficient conversion of nutrients into energy and biomass [1]. Detailed 

reconstructions of metabolism in Escherichia coli include more than 2700 reactions that link 

~1200 metabolites, with a small subset serving as key nodes for metabolism or as global 

regulatory signals [2]. Building a cell envelope is a resource-intensive process and imposes a 

substantial metabolic burden. Gram-positive peptidoglycan (PG) is multi-layered and can 

represent >20% of cell dry weight [3]. Although the PG layer in Gram-negative bacteria is 

thinner, the cell envelope additionally includes an outer membrane. Many Gram-positive 

bacteria also elaborate wall-linked capsular polysaccharide (CPS) and extracellular 

polysaccharides (EPS). The substantial metabolic flux associated with PG synthesis is 

unmasked when this process is blocked by antibiotics. Cell wall deficient L-forms of B. 
subtilis (which emerge upon interruption of PG synthesis) have increased carbon flux into 

lower glycolysis and the TCA cycle, which enhances flux through the electron transport 

chain and triggers oxidative stress [4].

Here, we highlight the regulation of the key branchpoint enzymes GlmS and MurA. GlmS 

controls the entry of fructose-6-phosphate (F6P) into envelope synthesis, and MurA directs 

UDP-GlcNAc into PG synthesis. PG also relies on other shared metabolites (glutamine, 
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acetyl-CoA, UTP) and a shared anchor lipid, undecaprenyl phosphate (UP). Cells can also 

acquire metabolites for cell wall synthesis from their neighbors, and in extreme cases 

symbiotic partners may share the burden of synthesizing the enzymes required for PG 

synthesis.

Balancing glycolysis with synthesis of aminosugars.

PG is a glycopolymer comprised of two aminosugars, N-acetyl-glucosamine (GlcNAc) and 

N-acetyl-muramic acid (MurNAc). Aminosugar biosynthesis initiates when the transaminase 

GlmS converts F6P to glucosamine 6-phosphate (GlcN6P) using glutamine as the amino 

donor. Subsequent steps catalyzed by GlmM (mutase) and GlmU (bifunctional acetyl/uridine 

transferase) generate the key branchpoint intermediate, UDP-GlcNAc (Fig. 1A).

As befits its role as an essential branchpoint enzyme, GlmS is highly regulated. In 

Salmonella Typhimurium, GlmS activity is regulated by nitrogen status, consistent with the 

requirement of glutamine (Gln) as amino donor. Regulation involves a nitrogen-metabolic 

phosphotransferase system, PTSNtr, analogous to PTS systems involved in sugar import. The 

PTSNtr EI enzyme is phosphorylated under low nitrogen conditions (signaled by a high α-

ketoglutarate/Gln ratio), and this phosphoryl group is transferred through NPr (an HPr 

paralog) to EIIANtr. The resulting EIINtr~P sequesters GlmS in an inactive complex, thereby 

shutting down aminosugar synthesis (Fig. 1A). When Gln availability is high, EIIA(Ntr) is 

dephosphorylated and degraded by Lon protease, thereby relieving GlmS inhibition [5].

GlmS production may also be feedback regulated by its product, GlcN6P (Fig 1B,1C). In E. 
coli, the mRNA of the bicistronic glmUS operon is processed to yield an unstable glmS 
mRNA, which in turn is stabilized and translationally activated by the action of a small 

regulatory RNA (sRNA), GlmZ [6] (Fig. 1C). GlmZ is unstable, being targeted for 

degradation by RNase E by the adaptor protein RapZ [7]. The induction of GlmS expression 

relies on a decoy sRNA, GlmY, which also binds RapZ. In addition to its role as an RNase E 

adaptor, RapZ serves as the sensor GlcN6P [8] (Fig. 1C). When GlmS activity is low, 

GlcN6P-free RapZ indirectly activates transcription of the glmY decoy sRNA. The net result 

is that GlmS translation responds sensitively to changes in the GlmS product, GlcN6P.

GlmS regulation in Bacillus subtilis is also complex. The first level of feedback regulation 

occurs when the glmS ribozyme cleaves and inactivates the glmS mRNA in response to the 

GlmS product, GlcN6P [9] (Fig. 1B). Additional control is provided by the GlmR(YvcK) 

regulator. GlmR stimulates GlmS activity when not bound to the downstream metabolite 

UDP-GlcNAc [10,11]. GlmR is required for growth on gluconeogenic carbon sources [12], 

where low F6P levels limit GlmS activity [13] (Fig. 1A). This requirement for GlmR can be 

bypassed by mutations that inactivate the glmS ribozyme or by exogenous aminosugars [14]. 

When bound to UDP-GlcNAc, GlmR associates instead with a RapZ homolog, YvcJ (Fig 

1A) [10,11]. GlmS may also be regulated by ClpCP-dependent proteolysis [15]. 

Collectively, these mechanisms ensure that GlmS partitions sufficient carbon from 

glycolysis/gluconeogenesis into aminosugar biosynthesis for cell wall synthesis. A glmR/
yvcK homolog is essential in Staphylococcus aureus [16], and mutants in Listeria 
monocytogenes (yvcK) and Mycobacterium tuberculosis (cuvA) are defective in cell wall 
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biosynthesis [17,18]. However, it is unclear if all GlmR family members have this same 

mechanism.

UDP-GlcNAc is a precious cargo.

The next key branchpoint intermediate is UDP-GlcNAc, a shared metabolite used by MurA 

in the first committed step of PG biosynthesis (Fig. 2). In Gram-positive bacteria, UDP-

GlcNAc is also used for synthesis of the cell surface glycopolymers wall teichoic acid 

(WTA) and CPS [19,20]. WTA is a long copolymer consisting of glycerol-P (or ribitol-P) 

units and is covalently linked to PG by a short linker often comprised of GlcNAc and N-

acetylmannosamine (ManNAc) [21–23]. UDP-GlcNAc can also serve as a donor for WTA 

glycosylation [24,25]. UDP-GlcNAc is also the sugar donor for the synthesis of bacilllithiol 

(BSH), comprised of cysteine, D-glucosamine, and malic acid. BSH is the major low 

molecular weight thiol in many Gram-positive bacteria and can be present at millimolar 

levels [26].

The mechanisms that balance the flux of UDP-GlcNAc between PG synthesis and 

competing pathways have been studied in detail in L. monocytogenes. The conserved, 

multimeric GpsB protein functions as a cell cycle regulator by interacting with penicillin-

binding proteins (PBPs) and scaffolding the assembly of multi-protein complexes [27–29] 

(Fig. 2). Genetic analysis revealed that gpsB mutations are suppressed by increasing the 

level of MurA through loss of the ClpCP protease, or decreasing activity of other enzymes 

that compete for UDP-GlcNAc [30]. These competing enzymes include GtcA and 

LMO2550 (involved in GlcNAc decoration of WTA) and MnaA (generates UDP-N-

acetylmannosamine in support of WTA synthesis). In B. subtilis, the major MurA isozyme 

(MurAA) is also degraded by ClpCP, but whether this serves a regulatory role is not yet 

resolved [31].

Capsular polysaccharide (CPS) helps pathogens evade complement fixation, opsonization, 

and phagocytosis [32]. CPS production initiates with UDP-GlcNAc, a parent compound for 

capsule building blocks such as UDP-NAc-fucosamine and UDP-D-N-mannosaminuronic 

acid (Fig. 2). CPS is often subject to nutritional regulation. For example, S. pneumoniae 
grown in galactose (abundant in respiratory mucus) or GlcNAc have the highest level of 

capsule, followed by glucose or sucrose. The lowest levels of CPS were observed during 

growth on fructose due to decreased pools of the UDP-sugar precursor [33]. Mutations that 

affect metabolism often have pleiotropic effects. In the case of S. pneumoniae lysine 

decarboxylase (cadA), deletion indirectly affected glycolysis and in turn caused reduced 

UDP-sugars and impaired CPS biosynthesis [32].

In E. coli, UDP-GlcNAc is a shared substrate for MurA and LpxA. LpxA directs UDP-

GlcNAc into LPS synthesis by conjugation to an R-3-hydroxyacyl chain. However, the next 

reaction (LpxC deacetylase) is the committed step for the LPS pathway. LpxC activity is 

reduced by FtsH-dependent proteolysis when LPS is in excess [34–36]. Proteolysis is also 

central to the regulation of LPS synthesis in Francisella tularensis. In this microbe, RipA is a 

conserved membrane protein that stabilizes LpxA to direct entry of GlcNAc into LPS 

biosynthesis [37].
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Catch and release: PASTA kinases coordinate envelope biogenesis.

Many Gram-positive bacteria contain eukaryotic-like serine/threonine kinases (eSTK) with 

extracellular PBP and serine/threonine kinase associated (PASTA) domains [38]. These 

signaling kinases may respond to peptidoglycan-associated muropeptides [39,40] and, in at 

least some systems, directly regulate PG synthesis. In Listeria monocytogenes, the PrkA 

kinase regulates a protease adaptor protein, ReoM, that activates ClpCP-dependent 

degradation of MurA, thereby reducing PG synthesis. Activation of PrkA by muropeptides 

leads to ReoM phosphorylation, thereby decreased MurA degradation [41]. PASTA kinases 

are also critical for cell envelope homeostasis in M. tuberculosis [42], where PknB 

phosphorylates proteins related to PG synthesis including GlmU [43] and CwlM, an 

essential intracellular cell wall amidase homolog. CwlM localizes to the membrane and 

regulates the lipid II flippase MurJ. However, upon phosphorylation CwlM~P localizes to 

the cytoplasm where it activates MurA [44,45] (Fig. 3). PknB also regulates outer membrane 

mycolic acid synthesis [46,47].

Walls and bridges: diversion of amino acids to PG.

In addition to aminosugars, PG synthesis requires amino acids for the peptide crosslinks. A 

typical pentapeptide, such as in E. coli or B. subtilis, consists of L-Ala, D-Glu, meso-

diaminopimelate (mDAP), and two D-Ala residues. However, there is some variation in 

other organisms [48]. Both Ala and Glu are abundant amino acids, and racemases facilitate 

the interconversion of the L- and D-isomers. Meso-diaminopimelate (mDAP) is a precursor 

on the pathway to lysine.

Mutations that perturb pentapeptide synthesis can trigger morphological abnormalities or 

cell lysis. In Caulobacter crescentus mutants lacking the RNA chaperone Hfq are slow 

growing and morphologically altered [49]. Genetic studies traced this defect to decreased 

activity of TCA cycle enzymes. The resulting increase in α-ketoglutarate (KG) inhibited 

succinyldiaminopimelate aminotransferase (KG is a product of the reaction), an enzyme 

required for mDAP biosynthesis [49]. A similar stalling of PG synthesis was observed in a 

B. subtilis strain lacking aspartate transaminase (AspB), the first enzyme in Asp 

biosynthesis, when grown in rich medium. Asp is a precursor for mDAP biosynthesis, and 

limitation therefore compromises PG synthesis [50].

Crossing the border: undecaprenol phosphate as a carrier lipid.

Undecaprenyl phosphate (UP) is a C55 isoprenoid lipid needed to shuttle hydrophilic 

envelope precursors across the membrane [51] (Fig. 2). UP serves as a lipid anchor during 

assembly of PG, LPS O-antigen, and WTA [20]. UP is synthesized in its pyrophosphate 

form (UPP), and PG transglycosylases also release UPP. Therefore, phosphatases are 

required for UP synthesis and recycling. The total number of UP(P) carrier molecules in the 

cell is limited, with an estimated ~1.5 × 105 copies per cell in E. coli and S. aureus [52]. The 

UP lipid carrier is coupled to PG precursors to generate the lipid II donor for PG synthesis, 

and then released and dephosphorylated after transglycosylation. This cycle is estimated to 

take ~90 seconds, with the flipping of UP(P) back to the cytosol likely rate-limiting [53].
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Depletion of the UP(P) carrier lipid disrupts PG synthesis. Indeed, this is the mechanism of 

action of bacitracin, which sequesters UPP. Depletion can also result from mutations or 

antibiotics that block other UP-dependent pathways, including lipo/oligosaccharides, WTA, 

and CPS synthesis. The impact of UP sequestration first emerged in studies of WTA. 

Mutations that block late stages of WTA synthesis led to cell death, whereas loss of the first 

enzyme in the pathway (TagO, Fig 2) leads to cells that are misshapen, but viable [54]. This 

insight led to the development of Targocil, an antibiotic that inhibits WTA export thereby 

depleting UP and triggering a shutdown of PG synthesis [55]. In E. coli, PG synthesis is also 

highly sensitive to conditions that lead to UP limitation [56,57].

Reuse it or lose it: PG recycling.

PG synthesis relies on the ordered insertion of newly synthesized glycan strands into the 

existing wall structure. While the details are still debated, active PG synthesis requires 

endopeptidases to cleave peptide crossbridges to make room for new strand insertion [58]. In 

addition, lytic transglycosylases degrade some of the existing PG structure to release 

muropeptides [58]. The generation and release of muropeptides during growth is substantial 

(Fig. 3), with up to ~50% of PG recycled each generation. In Gram-negative bacteria, where 

muropeptides are recaptured from the periplasm, recycling is efficient [59]. In Gram-positive 

bacteria there is significant loss of muropeptides to the environment. Studies in S. aureus, B. 
subtilis, and Streptomyces coelicolor suggest that aminosugars released from the cell wall 

may be recycled upon entry into stationary phase. However, the efficiency of recycling is 

low, with only 5–10% MurNAc recovery [60].

The Gram-positive cell wall additionally contains WTA, which can comprise up to 60% of 

the wall mass [61]. Synthesis of WTA, a sugar-phosphate copolymer, places a high demand 

on cellular phosphate reserves. In B. subtilis, the PhoPR regulatory system responds to 

phosphate limitation by repressing WTA synthesis and activating the synthesis of a 

substitute phosphate-free polymer, teichuronic acid (Fig 3) [62]. The cell may also recycle 

phosphate from existing WTA. PhoR activates expression of a WTA catabolic teichoicase 

(GlpQ) and phosphohydrolase (PhoD) (Fig 3) [63]. This phosphate scavenging mechanism 

can be used to selectively degrade the WTA of neighboring bacteria. For example, S. aureus 
produces a ribitol-phosphate WTA, and phosphate-limited cells express a teichoicase that 

releases glycerol-phosphate from the WTA of neighboring bacteria [64].

The virtue of charity: interspecies resource sharing.

The large metabolic demands associated with envelope synthesis may be reduced if 

precursors can be obtained from neighboring organisms. For example, the obligate 

intracellular pathogen Rickettsia relies on >50 host-derived metabolites for growth [65]. 

Among these, isoprenoid precursors are required for synthesis of the UP(P) carrier lipid 

[66]. As a result, treatment of mammalian cells with statins that reduce isoprenoid synthesis 

lead to a decreased proliferation and morphological defects in resident Rickettsia (Fig 4) 

[66].

Interspecies cross-feeding is also essential for the survival of Tannerella forsythia. This 

organism lacks GlmS, MurA, and MurB synthetic enzymes, and relies instead on scavenging 
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of PG turnover products from its periodontal neighbors [59]. Co-habiting Fusobacterium 
nucleatum may act as a patron to provide muropeptides and perhaps LPS-derived sugars, 

and sialic acid may be scavenged from salivary mucins and glycoproteins in the oral mucosa 

[67]. It is likely that further analysis of complex microbial communities will reveal other 

examples of metabolically interdependent cells that share the burden of synthesizing cell 

envelope precursors.

Organisms in long-term associations may instead share the burden of enzyme production. 

The ability of an endosymbiont to transfer the metabolic burden of gene maintenance, 

transcription, and protein synthesis to its host is evolutionarily advantageous, assuming that 

the enzyme can be imported to fulfill its necessary function. The amoeba Paulinella 
chromatophora, for example, grows photosynthetically by virtue of a symbiotic association 

with a cyanobacterium that resides as a plastid (chromatophore) in the host cytosol [68]. 

This plastid retains a 1 Mb genome, but several metabolic pathways, including PG synthesis, 

require enzymes whose genes now reside in the amoeba. In the case of PG, the bacterial 

MurF enzyme for attaching D-Ala-D-Ala to the stem peptide is host encoded and must be 

imported for PG synthesis [68].

This type of gene transfer has been taken even further in a bacterium (Moranella) residing 

within another bacterium (Tremblaya), which in turn resides as a symbiont in an insect 

(mealybug) (Fig 4) [69]. Both bacterial symbionts have greatly reduced genomes, with only 

400 protein-coding genes in Moranella, and 120 in Tremblaya. Although Moranella retains 

genes for most of the enzymes needed to assemble PG in the periplasm, it lacks those 

needed for the cytosolic steps leading to the lipid I precursor. These genes are in the insect 

genome, having been imported from multiple bacteria. Remarkably, to function in 

Moranella, these insect-synthesized proteins must cross five lipid bilayers (Tremblaya has 

three and Moranella two). The ability of Moranella to synthesize PG therefore reflects a 

shared burden of enzyme synthesis, with enzymes for the late stages of synthesis encoded by 

the endosymbiont and those for early stages imported from the insect host [69]. Given the 

ubiquity of reductive genome evolution in symbionts, it is likely that cell envelope synthesis 

is a shared burden in many other systems.

Conclusions.

Assembling a cell envelope imposes a large metabolic burden on cells. Cells have evolved a 

wide variety of mechanisms to economically regulate the flux of precursors needed for 

envelope biogenesis, often by controlling the activity of the enzymes at critical crossroads of 

metabolism. Situations that deplete required precursors, either through mutation, nutrient 

limitation, or the action of antimicrobial compounds, weaken the envelope and can lead to 

cell death. Cells may bypass precursor limitation by scavenging relevant nutrients from the 

environment or by cleaving cell surface structures from neighboring cells. Finally, we 

highlight examples where the metabolic burden is shared between intracellular bacteria and 

their hosts, either through provision of metabolic intermediates or by sharing the burden of 

enzyme synthesis.
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Highlights

• Bacteria are protected and shaped by membranes and a peptidoglycan wall

• Peptidoglycan is often linked to a polysaccharide capsule and teichoic acids

• Synthesis of the cell envelope requires a partitioning of shared metabolites

• The key branchpoint enzymes are regulated by multiple feedback mechanisms

• Key metabolites may be obtained from other bacteria or a eukaryotic host
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Figure 1. Regulation of the GlmS branchpoint enzyme.
A) Post-translational regulatory mechanisms. Glucose (Glc) is imported through a PTS and 

enters glycolysis where the branchpoint metabolite fructose-6-phosphate (F6P) is partitioned 

to aminosugar biosynthesis by GlmS. In Salmonella Typhimurium, GlmS is inhibited by the 

phosphorylated EII protein of the PTSNTR system under conditions of nitrogen deficiency 

(sensed by a high α-ketoglutarate to glutamine ratio). In B. subtilis, GlmS is stimulated the 

regulator GlmR(YvcK), and this activation is inhibited by binding to the next key 

branchpoint metabolite UDP-GlcNAc (UDP=blue square; GlcNAc is purple hexagon), 

Sachla and Helmann Page 14

Curr Opin Microbiol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GlmR:UDP-GlcNAc binds to YvcJ, which reduced GlmS activity/ GlmS is also subject to 

ClpCP-dependent proteolysis. (B) Feedback regulation of GlmS translation. In B. subtilis, 

the glmS transcript includes a 5’-regulatory ribozyme that binds GlcN6P, resulting in 

cleavage and inactivation of the mRNA. (C) Translation of the E. coli glmS mRNA is 

activated for recognition by the ribosome (pink) when bound to the regulatory RNA glmZ. 

However, when GlcN6P is high the glmZ transcript is degraded by RNase E, which is 

recruited by RapZ. When GlcN6P is low, RapZ triggers expression of a decoy transcript 

(GlmY) that sequesters RapZ, and the GlmZ sRNA is spared to activate glmS translation.
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Figure 2. UDP-GlcNAc is a key branchpoint metabolite.
UDP-GlcNAc (red) is a shared precursor directed to peptidoglycan (PG) synthesis by MurA. 

PG synthesis relies on a UP-linked disaccharide-pentapeptide (lipid II), which is exported by 

MurJ so that penicillin-binding proteins (PBPs) and the Rod complex (elongasome) can 

catalyze the transglycosylation (TG) and transpeptidation (TP) reactions for PG synthesis. In 

Gram-positive bacteria, UDP-GlcNAc is additionally directed to wall teichoic acid (WTA) 

synthesis by MnaA (for UDP-ManNAc synthesis) and TagO (which couples GlcNAc to UP). 

WTA polymers are synthesized in the cytosol, flipped across the membrane by the TagGH 

complex, and covalently linked to PG (TagTUV enzymes). UDP-GlcNAc is also required for 

bacillithiol (BSH) synthesis, CPS synthesis and, in Gram-negative bacteria, for LPS 

biosynthesis. Branchpoint enzymes are highlighted with a yellow background.
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Figure 3. Degradation and recycling of the cell envelope.
Cell growth is accompanied by release of muropeptides generated by lytic transglycosylases 

(lytic TG) and endopeptidases/transpeptidases (lytic EP.TP) (1), which may be recycled. 

Recycling pathways involve degradation to release GlcNAc and MurNAc sugars and amino 

acids. Gram-negative bacteria may import muropeptodes and recycle intracellularly (not 

shown). In B. subtilis (orange), MurNAc and GlcNAc, are imported by PTS transporters 

MurP and NagP. The oral pathogen Tannerella forsythia is auxotrophic for MurNAc, which 

is imported by MurT and processed to generate UDPMurNAc (gray). Muropeptides can also 
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activate some PASTA kinases, which phosphorylate many target proteins (targetome). In 

some systems, this can regulate the PG branchpoint enzyme MurA. (2) During phosphate 

limitation, Gram-positive bacteria may recycle WTA (glycerol-P copolymer) aided by the 

GlpQ and PhoD proteins. Secreted teichoicases may also cleave WTA off of nearby cells to 

scavenge phosphate. Phosphate limitation in B. subtilis triggers a switch from synthesis of a 

glycerol-P-based WTA to a functionally similar, but phosphate-free teichuronic acid 

polymer.
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Figure 4. Resource sharing beyond kin.
Left: Rickettsia (pink rectangles) obtains isoprenoid precursors from its host. The inhibition 

of host HMG-CoA reductase restricts this metabolic crossfeeding and ultimately affects 

Rickettsia survival. Right: Moranella is snugly housed in Tremblaya, which in turn lives as 

an endosymbiont in its insect host, the mealybug Planoccous citri cells. These nested cells 

share the burden of PG synthesis for the diminutive Moranella cell. The initial enzymes for 

PG biosynthesis are imported from the Mealybug and include both housekeeping enzymes 

(Glm-S,U, and M-depicted in pink) and enzymes acquired by horizontal gene transfer from 

Bacteria (MurA-F, DdlB, DapF, MltB, AmiD- depicted in yellow). The cytosolic PG 

intermediate synthesized by these imported enzymes can then be assembled by later stage 

enzymes retained by Moranella (MraY-Pbp’s- depicted in blue).
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