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• Background Investigating the causes and consequences of intraspecific trait variation (ITV) in plants is not 
novel, as it has long been recognized that such variation shapes biotic and abiotic interactions. While evolutionary 
and population biology have extensively investigated ITV, only in the last 10 years has interest in ITV surged 
within community and comparative ecology.
• Scope Despite this recent interest, still lacking are thorough descriptions of ITV’s extent, the spatial and tem-
poral structure of ITV, and stronger connections between ITV and community and ecosystem properties. Our pri-
mary aim in this review is to synthesize the recent literature and ask: (1) How extensive is intraspecific variation 
in traits across scales, and what underlying mechanisms drive this variation? (2) How does this variation impact 
higher-order ecological processes (e.g. population dynamics, community assembly, invasion, ecosystem product-
ivity)? (3) What are the consequences of ignoring ITV and how can these be mitigated? and (4) What are the most 
pressing research questions, and how can current practices be modified to suit our research needs? Our secondary 
aim is to target diverse and underrepresented traits and plant organs, including anatomy, wood, roots, hydraulics, 
reproduction and secondary chemistry. In addressing these aims, we showcase papers from the Special Issue.
• Conclusions Plant ITV plays a key role in determining individual and population performance, species interactions, 
community structure and assembly, and ecosystem properties. Its extent varies widely across species, traits and envir-
onments, and it remains difficult to develop a predictive model for ITV that is broadly applicable. Systematically char-
acterizing the sources (e.g. ontogeny, population differences) of ITV will be a vital step forward towards identifying 
generalities and the underlying mechanisms that shape ITV. While the use of species means to link traits to higher-
order processes may be appropriate in many cases, such approaches can obscure potentially meaningful variation. We 
urge the reporting of individual replicates and population means in online data repositories, a greater consideration of 
the mechanisms that enhance and constrain ITV’s extent, and studies that span sub-disciplines.

Key words: Community ecology, comparative ecology, effect traits, functional traits, functional ecology, intraspe-
cific trait variation, ITV, levels of organization, response traits, trait-based ecology.

INTRODUCTION: A HISTORICAL PERSPECTIVE

For centuries, humans have described phenotypic variation 
across and within plant species. Domestication of crops by in-
digenous peoples was only possible through careful observation 
of intraspecific variation in traits such as grain size, and targeted 
breeding (Zizumbo-Villarreal and Colunga-GarcíaMarín, 2010; 
Abbo et al., 2012). Historical records reveal the first mention 
of environmentally driven intraspecific variation in the fourth 
century BCE (Stegmann, 2020). In 1786, the German nov-
elist Johann Wolfgang von Goethe noted shifts in willow leaf 
morphology across an elevation gradient (Stegmann, 2020). 
During the 19th century, Charles Darwin and Alfred Russell 
Wallace sought to explain the underlying mechanisms that 
drove variation in form and function, and posited that variation 
within species was an essential building block necessary for 

natural selection (Darwin, 1859). Later studies described how 
variation within species determines niche width/breadth (Van 
Valen, 1965) and how niche overlap determines community as-
sembly and structure (Gleason, 1926; Clements, 1936). In the 
mid- to late 20th century, (John) Philip Grime (1965) reared 
plants from different habitats under controlled conditions to 
understand how ‘susceptibilities’, or traits, drove sub-optimal 
performance in particular environments. Such studies were in-
sightful, as they could be used to investigate the mechanisms 
controlling a species’ distribution and predict its occurrence 
within a community. This sub-discipline has since been re-
ferred to as comparative, functional or trait-based ecology [see 
Shipley et al. (2016) for a more comprehensive history], which 
recognizes the utility of plant traits rather than taxonomy for 
characterizing community and ecosystem processes.
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Relative to evolutionary and population ecology, which have 
a long and rich history of investigating variation within spe-
cies, community and trait-based ecological studies have pre-
dominantly explored variation across species. In particular, 
trait-based or comparative approaches often seek to examine 
patterns of variation in easily measurable plant traits across a 
large number of species spanning wide ecological gradients. 
This focus on variation across species arose naturally from the 
search for general ecological principles and rules that could 
be applied to all species. One popular approach is to position 
species along axes based on morphological and physiological 
traits to understand their life-history strategy. For example, the 
highly cited leaf economics spectrum (Wright et al., 2004) de-
scribes trade-offs among plant traits influencing resource acqui-
sition and leaf carbon economy. Species on the ‘slow’ end of 
the spectrum have thick, long-lived, nutrient-poor leaves, while 
‘fast’ species exhibit the opposite pattern. While the utility of 
these large-scale and species-wide approaches at local scales 
has been called into question (Anderegg et al., 2018), a study in 
this Special Issue (Gorné et al., 2020) detected evidence of the 
leaf economics spectrum within a single species under homo-
geneous environmental conditions. This is a significant finding, 
as previous studies have concluded that selective pressures 
imposed by environmental conditions rather than genetic con-
straints (e.g. pleiotropic effects) control the evolution of the leaf 
economics spectrum (Donovan et al., 2011). Studying patterns 
of trait covariation within species thus provides novel oppor-
tunities to consider the forces driving trait covariation across 
species, as we will highlight below.

The increasing popularity of trait-based studies, coupled with 
the advent of online data repositories, has resulted in a large 
number of published datasets that report species means (e.g. 
TRY; Kattge et al., 2011). Many ecological studies have drawn 
their conclusions on the basis of these species-level datasets, 
explicitly or implicitly assuming that variation within species is 
smaller than variation across species (McGill et al., 2006). It is 
also generally assumed that even when ITV is considerable, it 
should not obscure trends across species or alter a species’ trait-
based rank within a community (Grime and Hunt, 1975; Grime, 
1979). While there is some empirical support for this claim 
(Albert et al., 2010; Hulshof and Swenson, 2010; Siefert et al., 
2015), in other instances a species’ rank has been shown to de-
pend on the extent of ITV (Fajardo and Siefert, 2016). Several 
key empirical studies published in rapid succession challenged 
the use of species means and put forth a call to action for more 
studies of its extent (Albert et al., 2010; Hulshof and Swenson, 
2010; Jung et al., 2010; Messier et al., 2010). Since that time, 
the ecological significance of ITV has been reviewed numerous 
times (Albert et al., 2011, 2012; Bolnick et al., 2011; de Bello 
et al., 2011; Lepš et al., 2011; Violle et al., 2012; Siefert et al., 
2015; Shipley et  al., 2016), yet there remain critical gaps in 
our understanding of how ITV influences higher-order eco-
logical processes, including species interactions and ecosystem 
resilience.

In the last decade there has been a notable rise of interest 
in ITV among trait-based and community ecologists, which 
has motivated the publication of this Special Issue. The studies 
that form part of this Special Issue have been chosen for their 
novel focus on downstream effects of ITV on population-, 

community- and ecosystem-scale processes. To provide context 
for how ITV influences ecological processes, we briefly review 
the mechanisms underlying ITV, drivers and sources of ITV, 
and the extent of ITV across underrepresented plant functional 
traits (e.g. anatomy, chemical defence) and organs (e.g. woody 
stems rather than leaves), focusing on terrestrial plants. Here, 
plant functional traits are defined as morphological or physio-
logical traits that indirectly influence fitness via effects on 
growth, survival and reproduction (Violle et al., 2007), but in 
some cases we describe trait variation in the context of whole-
plant metrics. Our goals are to incentivize ecologists to quantify 
intraspecific trait variation (ITV) and make these data available, 
similar to what has occurred with species means, and to estab-
lish research questions that will more effectively address ex-
isting knowledge gaps.

MECHANISMS UNDERLYING PLANT ITV

Intraspecific trait variation results from genotypic variation and 
variation in trait expression within genotypes (i.e. phenotypic 
plasticity) (Schlichting, 1986; Sultan, 1987; Pigliucci, 2001). 
Whereas genotypic variation encompasses genetic differences 
among individuals or populations, phenotypic variation in-
volves non-genetic changes in traits (Abrams, 1994). Genetic 
variation can result from local adaptation to particular habitats 
(i.e. ecotypic variation) and from genetic differentiation among 
populations due to drift, developmental noise or random muta-
tions (Scheiner, 1993). The latter can result in variation among 
individuals reared in identical environments. Whether ITV is 
driven by phenotypic plasticity, local genetic adaptation, or 
both, is influenced by the extent of gene flow (Via and Lande, 
1985; Van Tienderen, 1991; Baythavong, 2011) and the degree 
of environmental heterogeneity.

Phenotypic plasticity has a heritable genetic basis (Scheiner, 
1993), and populations and species vary in their plasticity 
(Bradshaw, 1965; Schlichting and Smith, 2002). Whether plasti-
city or fixed trait expression is more likely to evolve in response 
to changing environmental pressures is unclear but relevant for 
predicting plant responses to climate change and other global 
threats (Christmas et al., 2016). Studies of plasticity are more 
common for plants than are studies of local adaptation, most 
likely due to the ease with which plasticity is quantified, and 
evidence suggests that plasticity plays an important role for 
plant populations experiencing rapid environmental change 
(Nicotra et al., 2010). Although phenotypic plasticity is often 
assumed to be adaptive, it may also be neutral, non-adaptive 
or maladaptive (Ghalambor et al., 2007). In this Special Issue, 
March-Salas et al. (2020) report that although phenotypic plas-
ticity in flowering time due to shifting precipitation patterns 
had a heritable basis, there was no evidence for rapid evolu-
tionary change across three generations. These results contrast 
with earlier reports of rapid evolution of fixed traits (March-
Salas et al., 2019) and suggest that rapid adaptation to chan-
ging climate may be slower for phenotypically plastic traits 
than fixed traits.

A growing body of work has revealed that extensive ITV 
occurs across generations. Such transgenerational effects have 
now been described for many plant functional traits (Bossdorf 
et  al., 2008; Sultan et  al., 2009; Herman and Sultan, 2011; 
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Holeski et al., 2012) and are typically referred to as epigenetic 
variation, defined as interactions among molecular processes 
that alter gene expression and function without changing the 
underlying DNA sequence (Richards, 2006; Holeski et  al., 
2012). DNA methylation has been identified as an important 
mechanism underlying transgenerational effects (Jablonka 
and Raz, 2009; Richards et  al., 2010, 2017). In this Special 
Issue, Puy et  al. (2020) used experimental demethylation in 
Arabidopsis thaliana populations and determined that epigen-
etic forces were responsible for driving variation in specific leaf 
area (SLA), but also plant growth (and therefore productivity) 
in response to waterlogging and fertilization. The authors also 
found that demethylation influenced competitive interactions 
within monocultures and mixed stands. Determining the role 
of transgenerational plasticity for species interactions and com-
munity processes is an exciting and promising area of research, 
as it has the potential to unite evolutionary biologists and com-
munity ecologists towards a common goal.

The key mechanisms underlying ITV at different levels of 
organization are summarized in a conceptual diagram (Fig. 
1). Intraspecific trait variation within and across individuals is 
driven by abiotic and biotic cues that induce phenotypic plasti-
city. Traits can also vary across plant developmental stages, i.e. 
ontogeny, and in some cases the extent of ITV is constrained 
by biomechanical or biophysical properties (see section Extent 

of plant intraspecific trait variation). At the population and 
community level, ITV can drive variation in whole-plant per-
formance, altering population dynamics but also species inter-
actions. Over time, local genetic adaptation and epigenetic 
forces further enhance ITV, shifting community dynamics in 
conjunction with abiotic and biotic filters. Changes in the extent 
of ITV, coupled with shifts in trait means, can produce down-
stream effects on ecosystem fluxes and vegetation dynamics, 
driving shifts in species distributions and global fluxes.

The role of abiotic and biotic factors in driving ITV

While trait variation between species (BTV) is often evalu-
ated over large abiotic gradients, ITV is strongly driven by 
microenvironmental heterogeneity in abiotic and biotic fac-
tors, including irradiance, air temperature and aridity, as well as 
competition and herbivory. The extent of ITV and the direction-
ality of its response have been shown to vary across gradients 
of light availability (Carlucci et al., 2015; Burton et al., 2017), 
climate (Bloomfield et al., 2018; Kühn et al., 2020; Westerband 
et al., 2020), soil pH (Dong et al., 2020) and soil nutrient avail-
ability (Siefert and Ritchie, 2016; Niu et  al., 2020). In this 
Special Issue, Westerband et al. (2020) report greater ITV in 
leaf chlorophyll content and leaf area as environments became 
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Fig. 1. Controls and consequences of ITV in plants across levels of organization. The mechanisms that influence ITV are shown in blue. Trait variation within 
(sub-individual) across individuals can be induced by abiotic and biotic forces that trigger plastic responses but can also result from ontogenetic variation. This is 
particularly relevant for response traits, i.e. those that respond to abiotic and biotic factors. Biophysical properties constrain the extent of variation within individ-
uals. At larger scales, high ITV can influence individual plant performance and, consequently, population dynamics. Shifts in performance also mediate species 
interactions. Over time, population-level variation results from local genetic adaptation and/or epigenetic forces, which bring about changes in gene frequencies 
over time. Shifts in species interactions will ultimately drive changes in community assembly and structure, via biotic filtering, while abiotic filtering continues 
to operate. Finally, variation in community properties triggers shifts in ecosystem properties (e.g. fire regimes), and will be evident at the largest scales, as species 
distributions change. While not shown, shifts in species distributions and ecosystem and global properties will induce shifts in response traits, beginning the cycle 

again.
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more humid in Hawaiian forests, and Kühn et  al. (2020) re-
port that the extent of within-population variability in leaf traits 
associated with carbon economy, e.g. SLA, leaf dry matter 
content (LDMC) and carbon:nitrogen ratios, increased with 
elevation in species native to Tenerife (Canary Islands, Spain). 
Studies such as these are useful for identifying sources driving 
within-ITV.

Intra-annual variation in abiotic properties, e.g. seasonality 
in climate, drives a significant portion of ITV, but its import-
ance varies across traits. For example, growing season ex-
plained only a small portion of the total variation in leaf mass 
per area (LMA; 0 and 20% from two studies), and a much 
larger portion of the variation in leaf nutrient concentrations 
(9–40 %) (Fajardo and Siefert, 2016; Bloomfield et al., 2018). 
A recent study found that LMA of a South African shrub de-
clined with increasing precipitation when a high proportion of 
annual rainfall occurred in the winter months, but exhibited the 
reverse trend when rainfall occurred in summer or throughout 
the year (Moore et al., 2020). These findings suggest that by 
describing seasonally driven ITV we may better understand 
why trait–climate relationships in particular species deviate 
from the species-wide trends. Quantifying the extent of tem-
poral variation in traits can improve the accuracy and precision 
of models estimating ecosystem function.

Interactions between abiotic and biotic factors are less fre-
quently reported with regard to their effects on ITV, despite 
the important role of species interactions in shaping plant trait 
strategies (Agrawal, 2020). Using a field experiment, Jessen 
et al. (2020) found that grazing by mammalian herbivores on 
tundra plants influenced their plasticity in height, SLA and leaf 
carbon:nitrogen ratios in response to fertilization, but the dir-
ection of the response varied across species. Competitive inter-
actions can also exert a significant effect on ITV. The ‘niche 
packing’ hypothesis posits that highly diverse plant commu-
nities should be characterized by low ITV, due to increased 
interspecific competition and strong selection for reduced niche 
overlap (Violle et al., 2012). Conversely, the ‘individual vari-
ation’ hypothesis posits that when species diversity is high, ITV 
is enhanced rather than constrained (Clark, 2010) (see section 
Effects on higher-order processes). There is empirical evidence 
to support both hypotheses (Helsen et al., 2017).

When examined within species, several studies found that 
patterns of trait variation across environmental gradients differ 
from those observed at the species level (Siefert et al., 2014; 
Dong et al., 2020), which may result from high ITV. While a 
meta-analysis on a global dataset reported consistent species-
wide patterns for LMA, leaf nitrogen concentrations and stable 
carbon isotope values (δ 13C) across an elevation gradient 
(Midolo et al., 2019), these patterns do not always hold when 
evaluated for below-ground traits. In this Special Issue, Taseski 
et al. (2020) examined patterns of root trait variation across a 
hydrological gradient in Australian species, and found that root 
tissue density (RTD), the ratio of root dry mass to root volume, 
decreased with soil organic matter (SOM) across and within 
species, while specific root length (SRL), which is often con-
sidered the below-ground equivalent of SLA, decreased with 
increasing SOM in some species but not others. This finding is 
surprising given that RTD and SRL may be expected to covary, 
as RTD reflects tissue construction costs while SRL reflects root 

absorptive capacity. However, the best model for SRL included 
within-ITV while the best model for RTD did not. Studies such 
as these are useful, as they clarify the extent to which ITV in-
fluences species-wide patterns of trait variation.

Role of ontogeny

Ontogenetic trait variation results from developmentally 
regulated shifts in trait expression that may be coordinated 
with environmental cues or occur independently of the envir-
onment (Mason et al., 2013). Heteroblasty is a classic example 
of ontogenetically derived ITV, referring to abrupt and extreme 
changes in phenotype within individuals throughout develop-
ment (Zotz et al., 2011). For example, in Acacia koa, juvenile 
leaves have higher rates of mass-based photosynthesis while 
the mature phyllode, a flattened petiole and rachis that mimics 
a leaf, have higher photosynthetic water use efficiency (the ratio 
of photosynthetic capacity to water loss) and tolerance to high 
irradiance (Pasquet-Kok et al., 2010).

Ontogenetic trait variation can be an equally, if not more 
important, driver of trait variation than environmental cues, al-
though in many instances the two cannot be disentangled. In 
this Special Issue, Funk et  al. (2020) determined that a fac-
ultatively drought-deciduous shrub, Artemisia californica, 
expressed significant variation in LMA, leaf nitrogen concen-
tration and leaf photosynthetic traits with age but not watering 
treatment, while only leaf water potential varied (becoming 
more negative) under drought conditions. Also in this Special 
Issue, Martin and Isaac (2020) found that larger coffee plants 
displayed leaf traits associated with conservative resource use 
compared with smaller plants, and that the effect of plant size 
on several leaf traits was largely robust to variation in light and 
soil nutrient availability. Variation in soil nutrient availability 
affected the strength of trait–trait relationships (e.g. LMA–leaf 
nitrogen), but the overall patterns were similar across fertiliza-
tion treatments.

Ontogenetic variation in plant functional traits can mediate 
higher-order processes, such as species interactions. For ex-
ample, Bond et al. (2004) determined that heteroblasty in two 
woody species was associated with defence from herbivory 
by large birds, such that juvenile morphology resulted in 
lower susceptibility to damage. Indeed, ontogenetic trajec-
tories have been described for both plant defence traits and 
levels of herbivory across numerous plant species (Barton and 
Koricheva, 2010), and these ontogenetic shifts can also involve 
tri-trophic interactions with natural enemies (Quintero et  al., 
2013). Ontogenetic variation is also likely to be ecologically 
important under fluctuating environmental conditions. If envir-
onments are fluctuating at a rate that exceeds that of phenotypic 
plasticity, or if environments are highly unpredictable, mis-
matches between traits and environmental conditions across 
ontogeny are more likely to occur.

EXTENT OF PLANT ITV

Evidence is growing that the extent of ITV is non-negligible, 
although clear patterns have yet to emerge. In a global analysis, 
Siefert and colleagues (2015) reported that, on average, ITV 
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accounts for 25 % of total trait variation within communities. 
Nonetheless, the extent of ITV varies dramatically among traits 
and species; ITV can be equivalent to or surpass BTV for LMA 
(Fajardo and Siefert, 2018; Tautenhahn et  al., 2019), LDMC 
(Kang et al., 2014; Read et al., 2017; Benavides et al., 2019), 
leaf nutrient concentration (Fajardo and Siefert, 2016; Burton 
et al., 2017; Umaña and Swenson, 2019a), dark respiration rate 
(Bloomfield et al., 2018), height (Luo et al., 2016; Tautenhahn 
et al., 2019), biomass allocation (Umaña et al., 2018) and stem 
wood density (Kang et  al., 2014). Indeed, a recent study of 
five grassland species determined that 9 of 14 focal traits had 
higher ITV than BTV, which was thought to be driven by the 
exceptionally wide geographical ranges of the focal species 
(Tautenhahn et al., 2019).

While meta-analyses are appropriate for determining the 
global mean and sources of ITV across species, biomes and 

environmental gradients, estimates of ITV vary in quality as a 
consequence of variation in sampling methods. Many studies 
estimate ITV from very few individuals, even for widespread 
species, and there is no consensus regarding the scale at which 
within- versus across-population ITV is separated. There have 
also been calls to forego traditional sampling protocols when 
investigating community properties (Violle et  al., 2012), as 
the most frequently used metric [94.4 % of papers versus 1.9–
7.4 % (Yang et al., 2020a)] of ITV, the coefficient of variation 
(CV), has been found to underestimate ITV in nearly 50 % of 
examined cases, and is particularly prone to underestimating 
ITV when the data suffer from kurtosis, small sample sizes or 
skewness (Yang et al., 2020a). We emphasize that our under-
standing of ITV’s extent would be improved by more consistent 
and comprehensive sampling methods across studies (Table 
1) and may clarify many of the idiosyncratic patterns that are 

Table 1. Recommendations for quantifying ITV, which will facilitate a deeper understanding of its causes and its ecological significance 
across levels of organization. We focus on experimental design and analysis and data collection techniques; detailed research questions 

are outlined in the main text

Question Solutions

What are the 
mechanisms, 
drivers, and 
sources of 
ITV?

Design and analysis
• Use mixed linear models to account for hierarchical relationships (e.g. species/individual/branch)
• Apply variance partitioning analysis to determine sources of trait variation, e.g. site, across species, within species, climate, soil. Report 

total variation alongside these analyses
• Use common garden experiments to separate plasticity from genetic differentiation, and incorporate with field studies whenever 

possible
• Quantify spatiotemporal patterns in ITV alongside BTV. Search for parallels or discrepancies
• Use multivariate environmental variables, e.g. integrate aridity and soil texture, in regressions
• Use phylogenetic analyses if traits are suspected to be highly conserved among closely related species
• Test for patterns of covariance and for underlying biophysical or developmental constraints on ITV, e.g. hydraulic constraints on tree height
Data collection
• Apply nested sampling designs, e.g. region/site/plot
• When collecting trait data, track the identity of the individual plant but also the individual branch or stem
• Measure biotic forces, e.g. competition and herbivory, but also interactions between abiotic and biotic variables, e.g. herbivore intensity 

over soil gradients
How does ITV 

influence 
individual 
higher-order 
processes?

Design and analysis
• Measure traits that are likely to be under selection, rather than always using commonly measured traits such as SLA, and use 

integrative traits that capture multiple functions. Consider using ‘effect’ traits, i.e. traits that directly influence ecosystem processes
• Analyse trait–performance relationships across a range of ages/sizes, genotypes, environmental conditions and levels of organization  

and test for interactions, e.g. genotype × environment to understand phenotypic variation but also trait × environment × size, to 
understand consequences for performance

• Incorporate ITV within demographic models, and calculate demographic rates for co-occurring species
• Simulate ITV when data are lacking, using published datasets to explore sensitivities of population growth or community dynamics 

to ITV
Data collection
• Measure traits across a range of plant ages or sizes, and environments
• Measure at least one metric of plant performance, i.e. growth, survival, reproduction, but ideally more than one as there may be trade-

offs among them
• Measure ITV in traits of interacting species, e.g. plant and its pollinator

What is the 
extent of 
ITV and are 
there key 
generalities?

Design and analysis
• Quantify extent of intraspecific trait variation (e.g. CV, SD) and distributions of data
• Investigate changes in CV across environmental gradients
• Report population means or individual level (replicate) data rather than species means in published trait databases
• Report underlying genetic structure/variation
• Investigate ITV in underrepresented traits or functions: biomass allocation, anatomy, defence, chemistry, hydraulics, architecture
• Investigate ITV in underrepresented plant functional groups, biomes, across latitudinal gradients, and at global scale
Data collection
• Randomly sample individuals or organs
• Repeatedly sample over time to assess temporal variation
• Sample more extensively within species (ideally 20 if reporting CV but at least 5). Measure more extensively if environmental 

conditions are particularly heterogeneous (e.g. sites spanning topographic gradients)
• Expand the breadth of traits measured to include roots, stems and reproductive organs
• Use a combination of individual traits and multifunctional (integrative traits) and consider whether focal traits are likely to be under 

strong selection, e.g. wood density may be more meaningful along aridity gradients than chlorophyll content
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commonly observed in the ITV literature. Given that low ITV is 
a key assumption for using species means in ecological studies 
(Garnier et al., 2001; Lecerf and Chauvet, 2008; Messier et al., 
2010), accurately determining its extent is paramount for 
understanding its drivers and ecological consequences. Below 
we summarize the extent of ITV reported across traits, biomes 
and levels of organization, from studies published since Siefert 
et  al. (2015). The values reported were primarily generated 
from variance partitioning or variance decomposition analysis 
(Supplementary Data Table S1).

Variation across types of traits

Our understanding of ITV is limited by research biases as 
most studies quantifying the extent of ITV have focused on 
leaf nutrient concentration, height and leaf morphology. Of the 
leaf morphological traits, SLA, or its reciprocal, LMA, is the 
most well-studied and expresses considerable within-species 
variation (Supplementary Data Table S1). The ITV in leaf ni-
trogen and phosphorus concentrations and plant height follow 
SLA in order of the frequency with which they are reported 
(Supplementary Data Table S1).

Overall, ITV tends to be greater for leaf nutrient concen-
trations than for leaf morphological traits (Siefert et al., 2015; 
Supplementary Data Table S1), greater in photosynthetic traits 
relative to anatomical traits, and greater for whole-plant met-
rics, such as height, relative to leaf traits (Siefert et al., 2015; 
Supplementary Data Table S1). These differences likely reflect 
varying degrees of phenotypic plasticity and genetic regulation. 
For example, a large-scale study of widespread European herbs 
sampled across extensive temperature and precipitation gradi-
ents reported a mean ITV of only 18 % for two leaf anatomical 
properties, stomatal density and guard cell length (Tautenhahn 
et al., 2019), suggesting low phenotypic plasticity and limited 
local adaptation. Stem anatomical traits, including wood density 
and specific stem density, have been shown to exhibit the same 
pattern of relatively low ITV (Burton et al., 2017), although this 
is not always the case (Umaña and Swenson, 2019b).

Compared with leaf traits, fewer studies report the CV for 
hydraulic, root or reproductive traits (e.g. floral characters). The 
paucity of data for stems and roots makes it difficult to draw 
broad conclusions regarding the extent and sources of ITV 
across plant organs, which is necessary for understanding trait 
covariance patterns at the species level. The quartile coefficient 
of dispersion (a metric similar to but more robust than the CV) 
values range from 6 to 42 % for hydraulic properties depending 
on the trait (Rosas et al., 2019) whereas branch-level proper-
ties, such as wood radial growth, have CV values up to 56 % in 
Scots pine spanning large latitudinal and environmental gradi-
ents (Martínez-Vilalta et al., 2009). From the few studies that 
have examined root traits, relatively high ITV has been detected 
for root chemical content and specific root length, although this 
can vary dramatically among species, with ITV ranging from 
15 to 95  % (Supplementary Data Table S1). Relatively few 
studies have reported the CV for floral traits, with the exception 
of floral morphology (variation in the size, shape and colour), 
which can determine the extent of reproductive isolation and 
therefore speciation (Dormont et  al., 2019). From a global 

study, the CV for reproductive architecture and morphology is 
estimated to be 20 % (Kuppler et al., 2020).

Previous studies have suggested that plant traits should be 
coordinated with one another in similar ways across organs, 
leading to whole-plant functional strategies (Reich, 2014). For 
example, leaves and stems are inextricably linked and their 
traits should covary with one another in similar ways whether 
evaluated across or within plant species. Despite this assertion, 
trait covariance patterns observed across species can be weaker 
when evaluated within species due to high ITV (Laughlin et al., 
2017; Read et al., 2017; Kumordzi et al., 2019; Nolting et al., 
2020). For example, if a trait varies strongly across an envir-
onmental gradient within a single species due to plasticity, it 
can weaken the trait covariance patterns observed across spe-
cies, which reflects evolutionary adaptations. In a study of six 
widespread species in Puerto Rico, species-level trait covari-
ance patterns (e.g. δ 13C, δ 15N, leaf carbon concentration, leaf 
nitrogen concentration, leaf area, SLA, thickness) were incon-
sistent when evaluated within species (Umaña and Swenson, 
2019b). In this Special Issue, Heyduk et al. (2020) report ex-
tensive genotypic variation in the upregulation of crassulacean 
acid metabolism (CAM) photosynthesis, and weak covari-
ance between leaf anatomical and photosynthetic traits for 
C3  +  CAM hybrid Yucca species spanning a large latitudinal 
gradient. The authors determined that cell size and intercellular 
air space, which are integral components associated with CAM 
photosynthesis, were not associated with CO2 assimilation in 
the hybrid despite their known functional associations. Also in 
this issue, Bachle and Nippert (2020) detected weak covariance 
between leaf microanatomical properties (e.g. mesophyll area) 
and SLA, a whole-leaf property, in a C4 grass sampled across 
climate gradients. This is surprising given that mesophyll area 
is a lower-level component of SLA, and the two should thus 
be coordinated. However, the authors demonstrate that SLA 
had much higher ITV (reported as the CV) than the anatom-
ical traits and did not vary significantly across the study sites 
while the anatomical properties exhibited the reverse trend 
(low CV but significant trait–environment relationships). These 
findings suggest that we should consider the role of ITV when 
evaluating species-level trait covariance patterns. Weak covari-
ance may also reflect poor selection of focal traits, which can be 
ameliorated by reporting multiple traits at once or using multi-
variate traits (Table 1).

Extent of ITV across levels of organization

The ‘spatial variance partitioning assumption’ offers a spa-
tially explicit framework depicting the relationship between 
intraspecific (ITV) and interspecific (BTV) trait variation across 
levels of biological organization (within-individual to within-, 
then among-population) (Albert et al., 2011). According to this 
model, at small scales the amounts of ITV and BTV are low and 
increase with spatial scale, saturating at different points along 
the continuum. Intraspecific trait variation plateaus when the 
scale encompasses the entire species’ distribution. These pat-
terns lead to general predictions, such as reductions in the ex-
tent of ITV at larger scales, and higher BTV than ITV at larger 
scales. However, at the local or community scale, the model 
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lacks precision for whether ITV will exceed BTV because this 
depends on species distributions, gene flow, environmental het-
erogeneity and the traits of interest. In some cases, predictions 
do not hold (see section Extent of Plant ITV).

Although the extent of ITV within individual plants (10–18 % 
of total variation; Supplementary Data Table S1) is typically 
less than that observed within or among populations (within, 
5–75 %; among, 22–38 %), it may still be biologically mean-
ingful. For example, in this Special Issue March-Salas et  al. 
(2020) reared common sainfoin, Onobrychis viciifolia, in a 
multigeneration experiment and reported that within-individual 
and within-population variability in flowering phenology and 
seed number per inflorescence increased when precipitation 
was less predictable. The authors also determined that intra-
individual variability is plastic and under stabilizing selection, 
suggesting clear links between ITV and fitness under variable 
environments. In some cases, variation within individuals, or 
‘sub-individual variation’ (Herrera, 2017), can exceed variation 
among individuals in a population. Such variation may be bio-
logically meaningful for plants, given that their modular nature 
permits greater sub-individual variation than would be ex-
pected in most animals (Herrera, 2017). There is also evidence 
that within-individual variation is partly constrained by bio-
physics (Fig. 1), which considers how physical laws and prop-
erties operate on organisms. For example, maximum tree height 
appears to be constrained by gravity and friction, which create 
high hydraulic resistance within the xylem vessels, tissues that 
serve as conduits for water between the roots and canopy. Even 
when soil moisture is not limiting to plant growth, trees are con-
strained to 120 m or less (although historically as tall as 130 m 
has been reported), because above this height water stress be-
comes too great, limiting leaf expansion and photosynthesis 
(Koch et al., 2004).

Considering the prescribed methods of sampling plant func-
tional traits (Perez-Harguindeguy et al., 2013), which constrain 
variation by avoiding shaded, older or blemished leaves, it is 
probable that ITV is greater than has been appreciated and 
would be better incorporated via random sampling of individ-
uals and tissues within individuals (Table 1).

Extent of ITV across biomes and habitat types

While an increasing number of studies report the extent of 
ITV, variable patterns across species, biomes and traits make 
a general model elusive. For example, LMA and leaf area in 
woody species have been shown to exhibit ITV (reported as the 
CV) as low as <5 % or as high as 90 %, depending on whether 
they were sampled in boreal or tropical forest (Bastias et al., 
2017). Similarly, ITV in height varies considerably across spe-
cies and biomes (Supplementary Data Table S1), from as low 
as 5 % (from variance decomposition analysis) in understorey 
plants of Oregon (Burton et al., 2017) to as high as 90 % (re-
ported as the CV) in the pocosin-to-savannah ecotone of North 
Carolina (Mitchell et al., 2017). Habitats characterized by high 
microenvironmental heterogeneity over small spatial scales, 
such as forest understories and alpine meadows, typically ex-
hibit higher ITV at local scales relative to homogeneous envir-
onments (Burton et al., 2017; Chalmandrier et al., 2017; Read 
et al., 2017; Kumordzi et al., 2019), and in these cases ITV may 

surpass BTV. Additional research may help clarify the role of 
climate, resource availability and plant growth forms in driving 
ITV’s extent.

EFFECTS ON HIGHER-ORDER PROCESSES

Various studies have clarified the role of ITV in the context 
of eco-evolutionary dynamics, species’ niche breadths and 
community assembly and structure (Jung et  al., 2010; Violle 
et al., 2012; Shipley et al., 2016; Fajardo and Siefert, 2019). 
However, more work is needed to clarify how ITV influences 
higher-order processes, including population growth and per-
sistence, invasion success, species distributions, ecosystem 
function (e.g. productivity), and resilience and resistance to dis-
turbance. Intraspecific trait variation can have demonstrable ef-
fects on whole-plant performance and population performance 
(Fig. 1), and can induce changes in species interactions, which 
determine community assembly and structure. Over time, 
ecosystem-level processes will also change alongside commu-
nity shifts, and large-scale shifts in vegetation will follow. We 
emphasize that there are feedbacks between these processes, as 
changes in vegetation type and ecosystem function influence 
the extent of ITV.

Individual performance

Linking ITV to higher-order ecological processes, such as 
population and community dynamics, requires strong associ-
ations between traits and performance (growth, survival and 
reproduction), yet these connections are often weak (Paine 
et  al., 2015; Funk et  al., 2020; Swenson et  al., 2020) or 
context-dependent (Heschel et al., 2004; Angert et al., 2014). 
Trait–performance relationships have also been shown to vary 
substantially when evaluated across species and spatial scales. 
For example, wood density is a strong predictor of growth for 
species across biomes (Kunstler et al., 2016) but appears to be 
a weak predictor of growth and competitive ability within two 
widespread Nothofagus species (Fajardo, 2016). One possible 
explanation for this weak link is high ITV, as traits may have 
positive effects on performance at one developmental stage or 
size but have weak or opposite effects at another (Falster et al., 
2018). Clarifying how ITV influences plant performance will 
require sampling across environment gradients and plant devel-
opmental stages or sizes (Table 1).

Because plant function is largely driven by suites of traits 
working synergistically and traits can vary substantially within 
individual plants, it is reasonable to assume that not all trait–
performance relationships will be biologically meaningful. An 
increasing number of studies are calling for trait–performance 
relationships to be evaluated using suites or networks of traits 
(Table 1) rather than individual traits (Laughlin and Messier, 
2015). In this Special Issue, Nolting et al. (2020) determined 
that the power to predict plant size for five Protea species 
from the Western Cape Region of South Africa was vastly im-
proved with a multivariate regression (including physiological 
and structural traits) versus univariate regressions, and physio-
logical traits had clear links to plant size and reproductive ef-
fort despite higher ITV than BTV in physiological traits. It is 
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also evident that individual performance metrics are not always 
effective predictors of population-level performance, as there 
may be trade-offs between growth, survival and reproduction 
across a plant’s lifetime (Laughlin et al., 2020).

Demand is increasing for the use of more functionally inte-
grative (reflecting various functional roles) and phenotypically 
integrative (combining individual-level biomass allocation data 
with organ-level data) traits to examine trait–performance rela-
tionships (Yang et al., 2020b). Specific leaf area, one of the most 
widely measured traits, expresses some of the highest levels of 
ITV among plant functional traits (Supplementary Data Table S1) 
and has multiple functional roles (e.g. regulating light capture, 
nutrient retention, resistance to structural damage). Yet in some 
habitats SLA may be under weaker selection than other traits. For 
plants inhabiting sandy plains in Brazil, midday water potential 
was much more strongly associated with dominance rankings than 
SLA (Rosado and de Mattos, 2017), and water potential has been 
described as an integrative trait (Ackerly, 2004; Dias et al., 2020). 
Because researchers may be biased or incorrect in their selection of 
the most ecologically relevant traits, additional steps must be taken 
towards identifying integrative and biologically relevant traits and 
quantifying their ITV (Table 1).

When using species means over individual replicates, the 
ability to detect meaningful trait–performance relationships 
may be stymied when ITV is high. In this Special Issue, Yang 
et al. (2020b) found that to generate more accurate predictions 
of tree growth on the basis of traits required data at the level of 
individuals rather than species means. The authors argue that in-
dividuals within and across species express significant variation 
in how they allocate carbon, resulting from underlying ontogen-
etic variation or microenvironmental heterogeneity. Thus, a con-
sequence of high ITV may be a weak ability to predict plant 
performance, particularly when traits are averaged across popu-
lations or species. It is also important to consider the role of ITV 
in obscuring higher-order interactions between traits, plant per-
formance and environmental conditions. For example, rooting 
depth should increase plant performance under conditions of 
drought, but high seasonally driven ITV could weaken the rela-
tionship between rooting depth and soil moisture when averaged 
across the entire year. Similarly, ontogenetically driven ITV can 
also obscure expected relationships. In this Special Issue, Funk 
et al. (2020) determined that younger individuals of a drought-
deciduous shrub had higher ITV across a moisture gradient rela-
tive to older individuals, and there was only weak evidence to 
support the prediction that trait–performance relationships were 
stronger for younger individuals, as they may be more vulner-
able to drought. Thus, to generate more accurate and meaningful 
predictions of trait–environment and trait–performance relation-
ships, future studies should consider random or systematic sam-
pling of individuals across a range of sizes or developmental 
stages (Table 1). Alternatively, mixed effects models can be used 
to account for random effects of plant size, age or developmental 
stage, and can be used to separate ITV from BTV even when 
ITV is not the focal response variable.

Population-scale processes

The extent of variation in plant phenotypes is at the very 
core of evolutionary biology and population biology. Among 

evolutionary biologists, a population’s mean absolute fitness 
is often considered in terms of an individual’s lifetime contri-
bution of offspring to a population. Among demographers, the 
average lifetime fitness is considered equivalent to the popu-
lation growth rate for overlapping generations. In both discip-
lines, a key aim is to capture variation across individuals in 
terms of their growth, survival and reproduction, i.e. vital rates. 
Variation in vital rates, but also traits that influence vital rates, 
can contribute substantially to population persistence, and to 
vegetation dynamics (see section Ecosystem-scale processes) 
and are described below.

Coupled with individual-level variation in vital rates (demo-
graphic stochasticity), the extent to which functional traits vary 
among individuals can play a key role in determining whether 
that population will persist over time. Across populations, 
phenotypic variation in traits relevant to abiotic stress tolerance, 
such as drought, can reveal a population’s capacity to adapt 
to changing environmental conditions (Nicotra et  al., 2010; 
Valladares et al., 2014). In this Special Issue, Welles and Funk 
(2020) used a common garden experiment to compare drought 
acclimation responses across wild radish populations spanning 
an aridity gradient in California (USA), and found that popula-
tions from arid regions expressed higher leaf nitrogen concen-
tration, low LMA and earlier flowering than those from mesic 
regions. While this phenotype is consistent with a drought es-
cape strategy, the authors also reported greater investment in 
below-ground biomass among arid populations, which is more 
consistent with a drought tolerance strategy. These findings 
suggest that intermediate strategies are likely to confer an ad-
vantage over strictly drought-escapist or drought-tolerant strat-
egies, and reveal the importance of population-level ITV for the 
evolution of plant ecological strategies.

Evolutionary studies often regress traits onto mean fitness 
to study traits under selection, while demographic models can 
evaluate the sensitivity of population growth rates to lower-
level parameters that influence vital rates, i.e. examine the ef-
fects of plant functional traits on population dynamics. In the 
last several years, interest has surged in demographic models 
that more explicitly integrate functional traits (Adler et  al., 
2014; Westerband and Horvitz, 2017; Jenouvrier et al., 2018; 
Salguero-Gómez et  al., 2018; Smallegange and Ens, 2018), 
leading to ‘trait-based population models’. For example, 
Westerband and Horvitz (2017) used integral projection models 
to measure the sensitivity of population growth rates to light-
saturated leaf photosynthesis across a range of plant sizes and 
a range of light environments. Snell et al. (2019) highlight how 
ITV in seed dispersal influences population dynamics, persist-
ence and spatial spread, but also community processes including 
assembly, composition and coexistence. For example, infre-
quent long-distance dispersal events by robins was a stronger 
determinant of the spatial spread of an invasive shrub than more 
common, short-distance dispersal events (Horvitz et al., 2015). 
Integral to the more widespread use of such models are trait 
databases such as the StrateGo Network (Salguero-Gómez, 
2018) and the COMPADRE Plant Matrix Database (Salguero-
Gómez et al., 2015), which have increased the availability of 
demographic and functional trait data measured on the same in-
dividuals. Carrying out functional and demographic fieldwork 
on the same individuals in the field is highly labour-intensive 
but should be prioritized (Blonder et al., 2018).

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcab011#supplementary-data
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The capacity to integrate ITV within species distribution 
models (SDMs) is on the horizon. When resource availability 
is temporally variable, populations that contain extensive vari-
ation in traits regulating resource uptake and use are more likely 
to include genotypes or individuals that can withstand poten-
tially unfavourable conditions (Hooper et  al., 2005; Bolnick 
et al., 2011). Species distribution models and individual-based 
models have the capacity to include ITV to generate more ac-
curate predictions of population and community dynamics 
(Moran et al., 2016), although computational limitations make 
this a significant challenge (Zhang and DeAngelis, 2020). 
Chardon et al. (2020) compared a traditional SDM with models 
that assumed variation across genetic groups or habitat types, 
reporting how the latter strongly outperformed the former. As 
technology advances, limitations of these approaches will be 
reduced.

Community-scale processes

Because abiotic and biotic filters act on individuals rather 
than species, phenotypic variation within and among individ-
uals can influence community composition and community dy-
namics (Violle et al., 2012). Within-plant variation can broaden 
a species’ ecological breadth and thus alter the number and 
strength of inter- and intraspecific interactions (Bolnick et al., 
2011; Herrera et al., 2015). It has been argued that high within-
individual phenotypic variation resulting from divergent re-
sponses to environmental cues can promote species richness 
by reducing interspecific competition relative to intraspecific 
competition (Clark, 2010). High phenotypic variation may also 
constrain species richness (Hart et al., 2016), and it is likely 
that both dynamics occur (Helsen et al., 2017).

A number of reviews have suggested that community-scale 
studies should incorporate ontogenetically derived or temporal 
patterns of ITV, multivariate and covarying traits, and informa-
tion regarding the underlying genetic basis and heritability of 
trait variation and the abiotic drivers of ITV (Albert et al., 2011; 
Bolnick et al., 2011, Violle et al., 2012). Although relatively 
uncommon, in cases where ITV contributes more strongly to 
community-level trait variation than BTV, community assembly 
models that do not incorporate ITV may produce misleading 
or erroneous conclusions, as has been described previously 
(Violle et al., 2012). We note that recently developed commu-
nity assembly models are now capable of incorporating ITV to 
predict species abundances, maximize functional diversity and 
achieve particular functions in restored communities, such as 
drought tolerance (Laughlin et al., 2012, 2018); however, these 
models may require high replication within species for effective 
parameterization (Laughlin et al., 2012).

Although it has received less attention, another goal of 
community-based research is to understand the consequences 
of ITV for plant–herbivore interactions, plant–microbial inter-
actions and invasion. For example, chemical resistance and 
extrafloral nectaries, small glands that occur at the base of the 
leaf, declined across ontogeny in a multi-year study of clonally 
replicated aspen trees, and this ontogenetic component of ITV 
was itself heritable, as demonstrated in this Special Issue by 
Cole et  al. (2020). This ontogenetically driven variation in 

defence and resistance to herbivores suggests a shift towards 
herbivory tolerance with plant age, consistent with previous 
studies revealing ontogenetic shifts from a dependence on 
resistance to tolerance across ontogeny (Boege et  al., 2007; 
Massad, 2013). With regard to invasion, a number of studies 
have reported greater phenotypic plasticity of functional traits 
in non-native invasive species relative to natives (Funk, 2008; 
Hiatt and Flory, 2020) and non-invasive species (Davidson 
et al., 2011), which may result in more extensive ITV among 
invasives. However, studies that quantify the extent of ITV in 
natives and invasives are relatively rare, and the relative con-
tributions of genotypic variation and phenotypic plasticity are 
usually not determined. Rarer still are studies that quantify the 
extent of ITV in natives and invasives across relevant environ-
mental gradients. In this Special Issue, Westerband et al. (2020) 
determined that the extent of ITV in leaf phosphorus concen-
tration, leaf chlorophyll content and leaf area was positively 
correlated with available soil moisture and mean annual rainfall 
in natives, whereas soil moisture and rainfall were positively 
correlated with ITV in leaf thickness and photosynthetic water 
use efficiency in invasives. These findings suggest differential 
plasticity and local adaptation in response to climate among 
native plants and non-native invaders in Hawaii. Similarly, 
Kühn et al. (2020) determined that while the phenotypic trait 
spaces of native and non-native species within Tenerife (Canary 
Islands, Spain) overlapped, the extent of ITV in LDMC and 
SLA decreased with elevation in invasives but increased with 
elevation in natives. These studies reveal distinct patterns of 
within-species variation that will likely mediate species inter-
actions, and are further evidence that evaluating ITV, as op-
posed to BTV alone, can yield novel insights regarding species 
interactions and community processes. Whether or not high 
ITV across populations is driven by plasticity, local adapta-
tion, or both, is integral to understanding resistance to invasion 
(Richards et al., 2006; Hulme, 2008; Davidson et al., 2011), as 
high ITV has been shown to produce significant overlap in traits 
between native plants and their non-native invaders, which can 
increase resistance to invasion (Funk et al., 2008).

Ecosystem-scale processes

The extent of ITV can influence ecosystem properties via 
‘effect’ traits, i.e. traits that influence ecosystem processes 
such as nutrient and water cycling (Lavorel and Garnier, 2002; 
Suding et al., 2008). These traits include leaf nitrogen concen-
tration, leaf lifespan, respiration and leaf area index (LAI; the 
amount of leaf area per unit ground surface area), and previous 
studies have determined that effect traits can strongly influence 
ecosystem properties, including net primary production (Reich, 
2012). Shifts in ecosystem properties will subsequently trigger 
changes in ‘response’ traits (Lavorel and Garnier, 2002; Suding 
et al., 2008), traits that respond strongly to environmental gra-
dients. Thus, there are feedbacks between ITV’s extent and 
ecosystem properties such as productivity, nutrient cycling and 
resistance to disturbance that warrant further study.

Although the extent of ITV appears to vary widely across 
traits, species and habitats, even simple efforts to incorporate 
ITV in ecosystem models appear to improve their predictive 
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power. Lecerf and Chauvet (2008) found that intraspecific 
variation in litter quality across distinct geographical origins 
largely explained variation in decomposition rates. Reich et al. 
(2014) determined that including intraspecific variation in 
gymnosperm needle longevity, biomass allocation and nitrogen 
content across biogeographical gradients improved the ability 
to predict primary production and LAI. Lu et al. (2017) mod-
elled land area fractions and found that the model’s predictive 
power increased when both ITV and BTV were integrated into 
models. Similarly, Sakschewski et  al. (2015) modelled trait 
variation (ITV and BTV) using a distribution of values rather 
than a constant value per plant functional type and were able 
to represent plant functional diversity more realistically at the 
local and regional scales. Reich et al. (2014) acknowledge that, 
in some cases, including more realistic variation within species 
reduces model performance, but such steps are vital as they lay 
the groundwork for future advances in ecosystem modelling 
approaches.

Clarifying the extent and drivers of ITV can also refine our 
understanding of how community-level properties shift in re-
sponse to ecosystem properties (Fig. 1). For example, Mitchell 
et al. (2020) experimentally manipulated fire return intervals in 
a long-leaf pine ecosystem in southeastern USA and reported 
lower community-weighted mean values of SLA in plots that 
had experienced more burns, and higher SLA values in less 
frequently burned plots, indicating a community-level shift to-
wards more resource-conservative strategies (associated with 
lower SLA) with increasing fire frequency. This study cap-
tures links between ecosystem properties and ITV, and similar 
studies could be used to predict shifts in community-weighted 
trait means under changing environmental conditions (McGill 
et al., 2006).

Dynamic vegetation models (DVMs) simulate changes in 
vegetation cover with climate at regional and global scales. 
Similar to SDMs, DVMs typically assume a single mean trait 
value per plant functional type (Van Bodegom et  al., 2012; 
Fisher et  al., 2018); however, recent reviews have identified 
ITV as a key research priority for the next generation of DVMs 
(Hartig et al., 2012; Scheiter et al., 2013; Moran et al., 2016). 
Berzaghi et  al. (2020) summarize state-of-the-art DVMs that 
can incorporate ITV, describing limitations of each type. One 
type of model, ‘plastic models of intraspecific variability’, re-
quires users to describe the relationships between traits and 
their environment; however, these lack heritable variability 
as they assume that adaptations to changes in environmental 
drivers are instantaneous. These models are also difficult to 
generalize across a wide range of species and environmental 
conditions. Another class, ‘eco-evolutionary’ models, draws on 
quantitative genetics to simulate adaptive evolution but requires 
information regarding underlying genetic architecture of focal 
traits (e.g. numbers of alleles and loci determining a trait). Thus, 
parameterizing these models requires more extensive data than 
are currently available. Another key limitation of this type of 
model, and of models in general, is the problem of complexity. 
While including ITV would likely produce more realistic es-
timates of long-term vegetation dynamics, such models are 
often computationally intensive, difficult to parameterize and 
prone to high uncertainty (Berzaghi et al., 2020). An alterna-
tive to explicit integration of ITV is to simulate ITV based on a 

combination of empirical observations and theory (‘prescribed 
trait distribution’ models) (Berzaghi et al., 2020). However, this 
technique would require a deeper and more synthetic under-
standing of the underlying mechanisms that constrain or en-
hance ITV, which is still lacking. By investigating the extent 
of ITV for underrepresented traits, species and biomes, and by 
exploring controls of ITV across spatial scales, we will be able 
to generate a much-needed, deeper and more synthetic view of 
ITV’s role at the ecosystem level.

FUTURE DIRECTIONS

The recent surge of interest in understanding the extent of ITV 
has culminated in a number of ecological studies that are de-
scriptive in nature. Relatively fewer ITV studies examine 
the underlying mechanisms controlling or enhancing ITV. 
Significant progress has been made towards understanding how 
population and community dynamics are influenced by ITV, 
and how ITV is maintained over time, but we can do more to 
draw connections across disciplines and sub-disciplines.

Here, we summarize a few key areas of future research and 
outline strategies for quantifying ITV (Table 1) in ways that 
will elucidate its ecological significance. First, simultaneously 
analysing shifts within and across species will help identify 
the potentially different mechanisms that underlie ITV and 
BTV. For example, does the extent of variation within species 
versus across species respond in similar ways to an abiotic 
gradient? Is this driven by species turnover, local adaptation 
or phenotypic plasticity? The first question can be addressed 
using nested sampling designs accompanied by linear mixed 
models and variance partitioning analysis, while the second can 
be addressed via common garden experiments. It is laborious 
to determine the underlying mechanisms producing ITV, be it 
phenotypic plasticity, genetic adaptation or epigenetic forces. 
But combinations of field studies and common garden experi-
ments will be a powerful tool for understanding the role and 
importance of ITV.

Second, to clarify the consequences of ITV across levels 
of organization, we should first focus on traits likely to be 
under selection in a given context, which may include traits 
underrepresented in the current literature or traits that integrate 
across multiple functions. We should aim to quantify relation-
ships between traits of interest and whole-plant performance 
metrics over a range of plant ages, sizes and environments, as 
well as population growth rates of co-occurring or interacting 
species. There are already approaches for including ITV within 
demographic models, and these should be more fully utilized. 
Given that population growth rates can be estimated in a variety 
of ways, including ratios of population sizes, such approaches 
are useful for understanding whether a particular trait value is 
adaptive. For example, by measuring the amount of trait vari-
ation at the population level, coupled with estimates of popu-
lation growth for multiple species spanning environmental 
gradients, one can test for correlations between trait values and 
population growth rates across species. This simple approach 
can reveal the sensitivity of population growth rates (equiva-
lent to fitness) to ITV. When ITV data are lacking, they can 
be simulated based on published datasets, although caution is 
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needed when employing such approaches given the research 
biases outlined above.

Third, an extensive body of research has clarified the extent 
of ITV in a few but well-represented plant functional traits, 
including SLA and height, and largely ignored roots, anatom-
ical properties, hydraulic traits, seed traits and traits associated 
with herbivore defence, among others. Efforts to scale ITV 
across levels of organization will be facilitated by making ITV 
data for these underrepresented traits more widely available, 
and will enhance our ability to detect patterns of ITV at re-
gional and global scales (Kuppler et  al., 2020). This paucity 
of ITV data could be addressed by incorporating ITV within 
larger studies, particularly through undergraduate and graduate 
student projects, or via citizen science projects. The National 
Phenology Network within the USA (https://www.usanpn.org/) 
provides a platform for the general public to record pheno-
logical data, and can be used to track shifts in phenological 
responses over time. Similar platforms can be generated for 
other easily measurable plant traits, such as leaf width or plant 
height. We emphasize that while many studies of ITV report the 
CV, this metric can be biased for low sample sizes, as explained 
above, and more extensive sampling is needed, particularly for 
heterogeneous habitats. Yang et  al. (2020a) determined that 
the least amount of bias in the CV occurred with sample sizes 
greater than 20 for almost all traits and species. This means 
that when reporting ITV in plant functional traits, the number 
of individual replicates within a species should be greater than 
20, whenever possible. Variance partitioning analysis is an al-
ternative and complementary approach that describes the total 
amount of variation explained within versus across species.

Lastly, greater efforts should also be made to capture tem-
poral variation in traits, due to environmental variation or on-
togeny. When coupled with nested experimental designs, mixed 
effects models can be used to partition variation among these 
sources (e.g. species, individual, branch, climate, soil). We also 
agree with previous calls to dispense with traditional sampling 
protocols whenever possible, and to use random sampling in-
stead. This will reveal ITV’s true extent.

CONCLUDING REMARKS

Our review has largely focused on identifying how ITV can in-
form ecological processes from the individual to ecosystem 
scale. From previous studies (Siefert et al., 2015), it is recom-
mended that ITV be studied when (1) it explains a large propor-
tion of total variation in traits across and within communities, 
(2) the study is conducted on a local scale, and (3) the study 
is conducted in a species-poor community (because large ITV 
broadens niche width). In these cases, the use of species means 
may lead to spurious conclusions. Here, our synthesis of recently 
published studies found that ITV’s extent across spatial scales 
does not match predictions, as ITV is sometimes larger than BTV 
(Supplementary Data Table S1). For example, Tautenhahn et al. 
(2019) measured functional trait variation in 56 grassland sites 
across Europe, and found that ITV exceeded BTV for 9 of 14 
traits. Thus, we suggest a modification of the recommendations 
of Siefert et al., as it is perhaps an oversimplication to conclude 
that regional or global studies can omit ITV, and that ITV will not 
be important in habitats with high environmental heterogeneity.

The advent of online data repositories has resulted in a greater 
availability of functional trait data, and these publicly available 
datasets are increasingly being used to study ITV, despite their 
limitations. Incremental steps can and should be taken towards 
increasing the availability and type of ITV data within these 
data repositories, as this information can be used to clarify the 
mechanisms underlying ITV patterns. Little effort is required 
to report population means, rather than species means, and to 
report estimates of variation around means as well as data dis-
tributions. As highlighted by this Special Issue, we have much 
to gain from investigating not only the extent of within-species 
variation but also its controls and ecological consequences.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Table S1: summary 
of ITV extent for plant functional traits from studies published 
since the Siefert et al. (2015) meta-analysis.
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