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Abstract 

Background:  Lung auscultation is fundamental to the clinical diagnosis of respiratory disease. However, auscultation 
is a subjective practice and interpretations vary widely between users. The digitization of auscultation acquisition and 
interpretation is a particularly promising strategy for diagnosing and monitoring infectious diseases such as Coronavi‑
rus-19 disease (COVID-19) where automated analyses could help decentralise care and better inform decision-making 
in telemedicine. This protocol describes the standardised collection of lung auscultations in COVID-19 triage sites and 
a deep learning approach to diagnostic and prognostic modelling for future incorporation into an intelligent autono‑
mous stethoscope benchmarked against human expert interpretation.

Methods:  A total of 1000 consecutive, patients aged ≥ 16 years and meeting COVID-19 testing criteria will be 
recruited at screening sites and amongst inpatients of the internal medicine department at the Geneva University 
Hospitals, starting from October 2020. COVID-19 is diagnosed by RT-PCR on a nasopharyngeal swab and COVID-
positive patients are followed up until outcome (i.e., discharge, hospitalisation, intubation and/or death). At inclusion, 
demographic and clinical data are collected, such as age, sex, medical history, and signs and symptoms of the current 
episode. Additionally, lung auscultation will be recorded with a digital stethoscope at 6 thoracic sites in each patient. 
A deep learning algorithm (DeepBreath) using a Convolutional Neural Network (CNN) and Support Vector Machine 
classifier will be trained on these audio recordings to derive an automated prediction of diagnostic (COVID positive 
vs negative) and risk stratification categories (mild to severe). The performance of this model will be compared to a 
human prediction baseline on a random subset of lung sounds, where blinded physicians are asked to classify the 
audios into the same categories.
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Background
Since the invention of the stethoscope by René-Théo-
phile-Hyacinthe Laennec in the nineteenth century, the 
interpretation of internal body sounds has made the 
stethoscope a ubiquitous part of a doctor’s uniform. As 
stethoscopes are easy to handle, inexpensive and non-
invasive, they can provide valuable clinical informa-
tion at any level of care, and are a fundamental step in 
the preliminary clinical diagnosis and early assessment 
of pulmonary disease to shorten delays in diagnosis and 
emergency management [1]. However, the utility of this 
tool is ultimately dependent on the user’s perceptual 
capacity to discriminate and interpret pathological pat-
terns in sound across the respiratory cycle. Follow-up 
comparative assessments are then based on the user’s 
ability to remember these patterns from a previous time 
point, or mentally reconstruct them from descriptions 
written in clinical notes. As this interpretation is a highly 
subjective skill, inter-listener variability limits interoper-
ability, where accuracy ranges widely with experience and 
differs across specialities [2, 3]. Discrepancies also arise 
due to a lack of standardisation in nomenclature [3] ren-
dering the results equivocal and/or incomprehensible 
to other caregivers. Other sources of heterogeneity may 
originate from differences in the intrinsic properties of 
the stethoscope and extrinsic patient-related factors such 
as obesity, ambient noise and patient compliance (e.g., 
crying child).

To better standardise the detection of abnormal lung 
sounds, there has been a recent interest in digitizing res-
piratory sound acquisition using electronic stethoscopes 
[4–7] and then analysing it using artificial intelligence 
(AI) methods of deep learning [8–13]. For the COVID-
19, caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), AI methods have revealed clear 
patterns in its radiological presentation [14–19], and 
some preliminary evidence on the predictive capacity of 
respiratory sound is emerging. For instance, the appli-
cation of simple models such as logistic regression and 
support vector machine (SVM) were able to predict the 
diagnosis of COVID-19 from breath and cough sounds 
crudely collected on a mobile application with an area 
under the curve (AUC) of around 70% [20]. Another 
group achieved above 95% sensitivity and specificity on 
discriminating COVID-19 coughs from other pathologies 

as well as healthy patients [21]. However, no evidence 
exists for the potential of digital lung sounds for early 
detection and, more importantly, risk stratification in 
COVID-19. Indeed, while around 80% of infections are 
either asymptomatic or self-resolving after a few weeks of 
mild disease, the remaining 20% can rapidly progress to 
acute respiratory distress syndrome with a poor progno-
sis and high mortality [22, 23]. Hence, early risk stratifica-
tion is crucial for prompt referral and early intervention, 
as well as the appropriate allocation of limited hospital 
resources.

Owing to the initial non-specific symptomatic pres-
entation of COVID-19, diagnosis and risk stratification 
are based on more objective paraclinical exams, such as 
reverse transcription polymerase chain reaction (RT-
PCR) to detect the genetic signatures of SARS-CoV-2 in 
nasal-pharyngeal swabs for diagnosis, and high-resolu-
tion chest computerized tomography (CT) to estimate 
prognosis [24, 25]. However, even RT-PCR may yield 
false-negative results [26] and in times of high transmis-
sion, testing backlogs can render turn-around times clini-
cally irrelevant [27]. On the other hand, risk stratification 
by CT is inconvenient for a variety of reasons. Firstly, 
these machines are usually housed in centralised high-
level healthcare infrastructures, inappropriate for triage, 
and necessitate the transfer/handling of potentially infec-
tious patients. Secondly, they expose patients to ioniz-
ing radiation and, thirdly, the cost and skill required to 
acquire and use these machines have made CT scanners 
rarely available in many parts of the world.

Thus, we aim to develop a set of early diagnostic and 
risk-stratification algorithms for COVID-19 from lung 
auscultations. To this end, we will collect standardised 
digital lung recordings from patients triaged for COVID-
19 testing at screening sites or already hospitalised for 
diagnosed COVID-19. We hypothesize that early diag-
nostic and prognostic acoustic signatures of COVID-19 
can be detected by deep learning independently of the 
caregiver’s auscultation skills, thus better standardising 
decision making and resource allocation.

Methods
Study design
This is a single-centre population-based study divided 
into two aims; a case–control study for diagnostic 

Discussion:  This approach has broad potential to standardise the evaluation of lung auscultation in COVID-19 at vari‑
ous levels of healthcare, especially in the context of decentralised triage and monitoring.

Trial registration: PB_2016-00500, SwissEthics. Registered on 6 April 2020.

Keywords:  COVID-19, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Deep learning, Artificial 
intelligence, Respiratory sounds, Auscultation, Pneumonia
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classification, and a prospective cohort study for risk 
stratification. For diagnosis, cases will be those testing 
positive for COVID-19 by RT-PCR for SARS-CoV-2 virus 
on a nasopharyngeal swab (sensitivity: 89.0%, specific-
ity: 99.70%) [28] at any time during the 14  days follow-
ing enrolment. Thus, if a patient is initially classified as 
COVID-negative and becomes positive within 14  days 
of enrolment the initial test result is considered false-
negative and the patient is then re-classified as COVID-
positive. Controls will be those presenting at triage who 
consistently receive negative COVID-test results during 
the 14 days following their enrolment. In addition to tri-
age sites, COVID-positive hospitalised patients (not in 
intensive care) will also be enrolled. RT-PCR tests will 
be performed and repeated according to public health 
guidelines, described in Table  1. For risk stratification, 
COVID-positive patients will be separated into ordinal 
severity classes shown in Table 2.

Population
Inclusion criteria are consecutive consenting adult 
patients (i.e. aged ≥ 16 years) meeting COVID-19 testing 
criteria. At the time of writing, testing criteria are having 
been in close contact (less than 1.5 m for a total of 15 min 
or more) with documented SARS-CoV-2 infection, and/
or having any of the following symptoms: cough, dysp-
noea, fever, sudden loss of taste/smell, flu-like symp-
toms (i.e. sore throat, runny or stuffy nose, muscle or 
body aches, headaches, fatigue, etc.) [29]. Exclusion cri-
teria are: (1) oxygen supplementation greater than 10L/

min delivered by any device (due to major modifications 
of the auscultatory sounds), (2) mechanically ventilated 
patients (due to major modifications of the auscultatory 
sounds), (3) severely ill patients hospitalised in intensive 
care units, (4) patients who cannot be mobilised for pos-
terior auscultation, (5) patients known or suspected of 
immunodeficiency, and or under immunotherapy. Due 
to the non-specific symptoms of COVID, the negative 
patients comprise a vast range of differential diagnoses 
which are not recorded as we rather aim represent all 
patients attending a screening facility irrespective of the 
differential diagnosis.

Data collection
For each patient, demographic and clinical data will be 
collected including, age, sex, medical history, pre-existing 
diseases known to predispose poor outcomes in COVID-
19 (according to the US Centers for Disease Control and 
Prevention [30]), and signs and symptoms of the current 
episode. Lung auscultations will be recorded with a Litt-
mann 3200 electronic stethoscope (3 M Health Care, St. 
Paul, USA) using the Littmann StethAssist proprietary 
software v.1.3. Digital lung auscultations will be per-
formed at 6 thoracic sites for at least 30 s each. The sites 
are four posterior (left and right apical and basal zones) 
and 2 axillary sites (right, left). Anterior sites will not 
be auscultated to both reduce the interference of heart 
sounds and prevent the airborne transmission of SARS-
CoV-2 to investigators. The audio files and patient clini-
cal data will be encoded as anonymised files by the local 

Table 1  Study schedule

✓: performed, (✓): performed with stipulated conditions
a  If recruited in triage sites: (1) No hospitalisation within 7 days of enrolment, (2) hospitalisation within 7 days of enrolment with discharge, (3) hospitalisation within 
7 days of enrolment with ICU admission/death

If recruited as inpatients: (1) Discharge with without worsened condition attributable to COVID-19, (2) Worsened condition attributable to COVID-19 with ICU 
admission/death
b  If initially negative and remains symptomatic with renewed testing criteria
c  If later hospitalised
d  Not collected once admitted to intensive care

Time point t0 Day 1 Each 48 h Day of outcomea

Study procedures

Recruitment ✓
Eligibility screening ✓
Informed consent form ✓
Assessments

Case report form (Demographic + clinical data) ✓
RT-PCR SARS-CoV-2 test (sensitivity) ✓ (✓)b (✓)b

Digital auscultation collection

COVID-positive recruited in triage sites ✓ (✓)c (✓)c (✓)c,d

COVID-positive recruited as inpatients ✓ ✓ ✓ (✓)d

COVID-negative patients ✓



Page 4 of 8Glangetas et al. BMC Pulm Med          (2021) 21:103 

Ta
bl

e 
2 

O
ut

co
m

e 
gr

ou
ps

D
ia

gn
os

tic
 o

ut
co

m
e

Ri
sk

 s
tr

at
ifi

ca
tio

n 
ou

tc
om

es

Tr
ia

ge
 p

at
ie

nt
s 

CO
VI

D
+

H
os

pi
ta

lis
ed

 p
at

ie
nt

s 
CO

VI
D
+

CO
VI

D
+

A
ny

 p
os

iti
ve

 R
T-

PC
R 

fo
r S

A
RS

-C
oV

-2
 o

n 
a 

na
so

ph
ar

yn
ge

al
 

sw
ab

 d
ur

in
g 

th
e 

14
 d

ay
s 

fo
llo

w
in

g 
en

ro
lm

en
t

M
ild

O
ut

pa
tie

nt
s 

di
sc

ha
rg

ed
 h

om
e 

w
ith

 m
ild

 d
is

ea
se

 w
ith

ou
t 

ho
sp

ita
lis

at
io

n 
w

ith
in

 7
 d

ay
s 

of
 e

nr
ol

m
en

t
Pa

tie
nt

s 
w

ith
ou

t w
or

se
ni

ng
 c

on
di

tio
n 

at
tr

ib
ut

ab
le

 to
 

CO
VI

D
-1

9 
an

d 
di

sc
ha

rg
ed

 h
om

e

M
od

er
at

e
Pa

tie
nt

s 
ho

sp
ita

lis
ed

 w
ith

in
 7

 d
ay

s 
of

 e
nr

ol
m

en
t a

nd
 

N
O

T 
re

ce
iv

in
g 

in
te

ns
iv

e 
ca

re
 a

t a
ny

 p
oi

nt
 d

ur
in

g 
th

ei
r 

ho
sp

ita
lis

at
io

n

Pa
tie

nt
s 

w
ith

 w
or

se
ni

ng
 c

on
di

tio
n 

at
tr

ib
ut

ab
le

 to
 C

O
VI

D
-

19
 re

qu
iri

ng
 IC

U
 re

fe
rr

al
/o

r d
yi

ng
 d

ur
in

g 
fo

llo
w

-u
p

Se
ve

re
Pa

tie
nt

s 
ho

sp
ita

lis
ed

 w
ith

in
 7

 d
ay

s 
of

 e
nr

ol
m

en
t a

nd
 

su
bs

eq
ue

nt
ly

 re
qu

iri
ng

 IC
U

 re
fe

rr
al

/o
r d

yi
ng

CO
VI

D
-

Co
ns

is
te

nt
ly

 n
eg

at
iv

e 
RT

-P
C

R 
fo

r S
A

RS
-C

oV
-2

 o
n 

a 
na

so
ph

ar
yn

ge
al

 s
w

ab
 d

ur
in

g 
th

e 
14

 d
ay

s 
fo

llo
w

in
g 

en
ro

lm
en

t



Page 5 of 8Glangetas et al. BMC Pulm Med          (2021) 21:103 	

investigators and uploaded to the RedCap server hosted 
by the hospital (REDCap, Vanderbilt University, Nash-
ville, TN, USA; https://​www.​proje​ct-​redcap.​org/​resou​
rces/​citat​ions/). Patients positive for COVID-19 will then 
be followed up until outcome (i.e., discharge, hospitalisa-
tion, intubation and/or death, which serve as labels for 
prognostic risk stratification). Hospitalised patients will 
have repeat lung auscultations each 48 h until discharge, 
ICU referral or death. The study schedule is detailed in 
Table 1.

Sample size calculation
Deep learning algorithm derivation: will be used to 
decompose the audio signals into meaningful param-
eters. Each patient will provide 6 recordings of 30 s each. 
The sample size considerations are estimated for the train 
and test sets in such a way that performance (sensitivity, 
specificity, area under the receiver operating character-
istic [ROC] curve and accuracy) could be derived with 
minimal variance on a stable training curve.

Assuming a similar discriminative power compared to 
a previous work (personal communications) distinguish-
ing healthy and pathological lung sounds in pneumonia 
from 80 patients in balanced classes (40 pathological and 
40 control) with 8 auscultation sites of 30 s each, we esti-
mate to achieve convergence at above 80% AUC-ROC 
with 10% variability using the same number of patients 
in each class (i.e. for diagnosis: 40 COVID positive and 40 
COVID negative, and for risk stratification: 40 severe and 
40 non-severe). Starting with the requirement for risk 
stratification of 40 COVID-positive patients with severe 
disease: 20% of COVID-positive patients are expected to 
be classified as “severe” (with hospitalisation required) 
[31]. We would thus require at least 200 COVID-positive 
patients to be recruited. As the expected positivity rate 
for patients at this recruitment sites averages around 
20%, we would require at least 1000 enrolments to secure 
200 COVID-positive patients (Fig. 1).

Currently there are around 4900 tests per week 
in the targeted outpatient group in Geneva Univer-
sity Hospitals. Thus, with a test positivity rate of 11.4% 
as of November 11th 2020  [32], we would have 4341 
COVID-negative and 559 COVID-positive patients per 
week, meaning that recruitment should take one week. 

Assuming 50% recruitment consent and accounting the 
lability of these epidemiological values, we anticipate a 
recruitment period of 1–2 months.

Human predictive baseline
In order to generate a human baseline for sound-based 
diagnostic and risk stratification interpretation, ran-
domly selected lung sounds will be blinded for outcomes 
and randomly evaluated by several clinicians (residents, 
fellows, professors and pulmonologists) who will be 
required to classify them as either COVID-positive or 
COVID-negative (with and without the availability of 
their clinical and demographic information). Once this 
is completed, the clinicians will be given only the set of 
COVID-positive samples and asked to stratify their risk 
(with and without the availability of their clinical sympto-
mology and demographic information collected on day 0 
before any diagnostic tests are undertaken). Lung sounds 
will also be annotated by expert consensus for audible 
pathology types (wheezing, crackles, rhonchi, etc.).

A kappa statistic for interrater concordance will be 
computed for each evaluation and a ROCAUC reported 
according to the outcome. The distribution of discrimi-
native sound patterns identified by the human clinical 
experts will be explored by unsupervised machine learn-
ing using clustering on k-means (grouping sounds into k 
number of clusters, which will be further optimized using 
the Elbow method). Thus, objective sound patterns will 
be clustered by k-means in a vector space [33] and the 
distribution of human labels within these clusters will 
be reported to visualise the alignment between objective 
patterns and human interpretation.

The development of DeepBreath
DeepBreath is a deep learning algorithm to diagnose and 
stratify risk of COVID-19 from lung sounds. In prepara-
tion for these analyses, digital auscultations are cleaned 
to crop non-biological frequencies and amplitudes gen-
erated by ambient noise. The frequency range of normal 
lung sounds extends from below 100 Hz to 1000 Hz, with 
a sharp drop at approximately 100 to 200 Hz [1], whereas 
tracheal sound extends between 100 and 5000  Hz. In 
the lower band range (under 100  Hz), heart and tho-
racic muscle sounds overlap [34]. Abnormal lung sounds 

Fig. 1  Sample size required to secure at least 40 patients in each outcome group

https://www.project-redcap.org/resources/citations/
https://www.project-redcap.org/resources/citations/
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(wheezing, rhonchi etc.) have characteristic frequencies 
and duration, differentiating them from each other [1]. 
In this study, all signals will be sampled at 16 kHz with a 
resolution of 8-bit, and the built-in filter will range from 
20 to 2000 Hz. Heart and thoracic muscle sounds, as well 
as other background low-frequency noises will be filtered 
out through a high-pass filter (cut-off frequency 150 Hz).

The sounds will then be divided into overlapping time 
windows of between 1 and 10 s and transformed to Mel 
Frequency Cepstral Coefficients (MFCCs). Several data 
augmentation techniques will be explored, such as ampli-
tude scaling, pitch shift, and random time shift. The 
effect of each pre-processing method will be tested and 
the best performing approach according to sensitivity 
and specificity will be reported. This dataset will then be 
fed into a convolutional neural network with max pool-
ing and dropout before binary classification by a support 
vector machine (SVM) into positive vs negative COVID-
19 test results (diagnostic model) or hospitalisation/death 
vs outpatient/self-resolving (risk stratification model). 
Longitudinal auscultations on individual patients who 
were hospitalised will also be used to assess the severity 
and progression of the disease, normalized at the time of 
symptom onset.

Statistical analysis plan
Firstly, the collected data will be described. Continu-
ous variables will be reported as means with their 95% 
confidence intervals (CI). Categorical variables will be 
reported as proportions and percentages. Features will 
be compared between outcome groups for diagnosis 
(COVID-positive versus COVID-negative) and progno-
sis (within COVID positive: outpatient, hospitalisation, 
worsening patients requiring ICU referral/death) using 
logistic regression, with risk ratios and CI95%. Pearson’s 
and Spearman’s correlation coefficients will be used to 
assess the relationship between continuous variables nor-
mally and non-normally distributed, respectively.

Missing data will be padded with zero in the CNN and 
reported in the descriptive statistics. Missingness will 
also be assessed according to other features. Features 
with more than 50% missing values or with significant 
bias in missingness will be removed. For the primary 
outcome, the ability of the DeepBreath algorithm to 
distinguish between COVID-19 positive and negative 
patients as well as between severity outcome groups will 
be quantified using the area under the receiver operat-
ing characteristic curve (AUC), sensitivity, specificity, 
positive predictive value, negative predictive value, and 
likelihood ratios, presented with their 95% CI. The accu-
racy of the AI algorithm will be compared with human 
expert discrimination by sound. The optimism of the AI 

algorithm will be estimated by the difference in perfor-
mance between the training and validation sets.

All statistical tests will be two-sided with a type-I error 
risk of 5%. Data analysis will be carried out using Graph-
Pad Prism, version 9 (GraphPad Software, San Diego, 
CA, USA) for graph figures, and R version 4.0 (R Founda-
tion, Vienna, Austria) for descriptive statistics and statis-
tical tests.

Discussion
The recent advances in deep learning are promising to 
support physicians in standardizing the detection and 
interpretation of complex patterns in pulmonary dis-
eases. Artificial intelligence has proven to outperform 
physicians in discriminating respiratory pathologies via 
respiratory functional explorations [35], symptoms [36, 
37], and/or radiological examinations [38]. The devel-
opment of AI algorithms for the analysis of respiratory 
acoustic signals has been proposed previously [9, 10]. 
It remains to be determined whether an AI algorithm 
can be used as an initial and accurate screening tool for 
patients suspected of COVID-19. Such an algorithm has 
the potential to support early diagnosis, to guide the allo-
cation of resources and identify those in need of early 
hospitalisation [39].

This study aims to collect a standardised dataset of dig-
ital lung auscultations and derive a deep leaning model 
able to detect the acoustic signatures of the presence and 
severity of COVID-19. We hypothesize that automated 
interpretation of lung auscultation could better democ-
ratize the accuracy of this critical clinical exam beyond 
the individual capabilities of the health workers that a 
patient may be fortunate (or unfortunate) to have. We 
plan to incorporate this algorithm into an autonomous 
digital stethoscope (currently under development), that 
could help decentralise high quality respiratory examina-
tion and monitoring, and perhaps even empower patients 
to assess themselves, which would reduce nosocomial 
infections occurring during the proximity of a tradi-
tional clinical exam. Making high quality lung ausculta-
tion accessible to unskilled/decentralized actors could 
broaden COVID-19 mass screening and identify patients 
at earlier stages of disease, which would prevent trans-
mission as well as allow earlier pharmacological interven-
tions and nuance the pre-test probability to better select 
candidates for further PCR testing (i.e. resource conser-
vation). Additionally, such a tool could empower patients 
confined at home to self-monitor their symptoms to 
inform telemedicine and personalize care.

This study has several limitations. First, ICU-inpa-
tients with severe COVID-19 presentations requiring 
ventilatory supports will not be considered. This will 
limit longitudinal auscultations on critically-ill patients 
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and prevent risk stratification assessment of those who 
will progress very unfavourably (or favourably) from 
this stage onwards. Second, since this study is a single 
centre study conducted in a high-income country with 
easy access to health care, caution will be taken when 
assessing the generalisability of these results to differ-
ent populations, especially in resource-limited coun-
tries and remote areas. Finally, our study population 
will be recruited primarily from an emergency depart-
ment triage centre and COVID-19-dedicated hospitali-
zation units, which may suggest more acute symptoms 
and pathological lung sounds than those encountered 
in ambulatory care services.
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