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Abstract

Excited-state catalysis, a process that involves one or more excited catalytic species, has emerged 

as a powerful tool in organic synthesis because it allows access to the excited-state reaction 

landscape for the discovery of novel chemical reactivity. Herein, we report the first excited-state 

palladium-catalyzed 1,2-spin-center shift reaction that enables site-selective functionalization of 

carbohydrates. The strategy features mild reaction conditions with high levels of regio- and 

stereoselectivity that tolerate a wide range of functional groups and complex molecular 

architectures. Mechanistic studies suggest a radical mechanism involving the formation of hybrid 

palladium species that undergoes a 1,2-spin-center shift followed by the reduction, deuteration, 

and iodination to afford functionalized 2-deoxy sugars. The new reactivity will provide a general 

approach for the rapid generation of natural and unnatural carbohydrates.
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Visible-light-induced excited-state palladium catalysis has emerged as a promising strategy 

for developing valuable reactions.1 Seminal work by Gevorgyan,2 Fu,3 and Yu4 showed that 

photoexcited Pd-complexes undergo rapid, radical oxidative addition into aryl/alkyl-halide 

bonds, forming aryl/alkyl-Pd species with hybrid reactivity in which the closed-shell Pd(II) 

complex is in equilibrium with an open-shell alkyl radical/Pd(I) intermediate through a 

reversible photoexcitation/recombination process (Figure 1).5 This hybrid reactivity has been 

exploited in a range of transformations, such as desaturation reactions,2a, 6 Mizoroki-Heck 

reactions,2b, 3, 7 difunctionalization of conjugated dienes,8 and others.4, 9 Despite these 

recent advances, the application of either ground-state or excited-state Pd-catalysis to 

mediate 1,2-spin-center shift (SCS)10 remains elusive. We envisioned that with a functional 

group such as acyloxy at the β-position, the alkyl radical/Pd(I) species could undergo a 1,2-

SCS, accessing a new reaction site for further functionalization (Figure 1).11 The 

establishment of such reactivity is significant because it will (i) enable unique reactions 

capable of the rapid generation of molecular complexity and late-stage functionalization of 

complex molecules; (ii) provide new strategic bond formation that leads to otherwise 

difficult or unobtainable molecular architecture; and (iii) guide the design and development 

of new chemical reactions.

Carbohydrates, the most abundant biomolecules, have indispensable roles in a wide range of 

biological processes, including cell-cell recognition, protein folding, neurobiology, 

inflammation, and infection.12 The possibility of modifying sugar structure(s) to enhance or 

otherwise alter the physiological properties of the parent molecule is therefore highly 

attractive.13 Selective C-2 functionalization of carbohydrates has attracted significant 

interest because the resulting 2-deoxy sugar derivatives, in which the C-2 hydroxyl group of 

sugar has been replaced by other functional groups, are ubiquitous in nature and are found in 

medicine, molecular imaging, cell engineering, and catalysis.14 Conventional methods to 

access C-2 functionalized 2-deoxy sugars rely on the derivatization of advanced 

intermediates such as glycals and 1,2-epoxy- or 1,2-cyclopropyl-sugars.15 These protocols 

often involve multi-step precursor syntheses and harsh reaction conditions, and have limited 

reaction scope. We envisaged that the establishment of excited-state Pd-catalyzed 1,2-SCS 

reactivity would enable a general, controllable, and selective catalytic strategy for C-2 

functionalization of carbohydrates using readily available 1-halosugars.16
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The mechanistic hypothesis of the proposed transformation is outlined in Figure 2. We 

envisioned that photoexcited palladium catalyst [Pd(0)]* undergoes radical oxidative 

addition with 1-halo sugar 1, generating the hybrid 1-glycosyl-Pd-X complexes IIa and IIb.
2b, 3 The glycosyl radical IIa favors the B2,5 boat conformation (IIIa) because of the 

hyperconjugation between the singly occupied molecular orbital (SOMO) and σ*C-O orbital 

of the C-2–OAc group.17 Such an interaction is more pronounced in glycosyl radicals 

because the lone pair electron of the endocyclic-O (ηO, anomeric interaction) raises the 

SOMO energy level. Such an extended anomeric interaction weakens the C-2–OAc bond 

and promotes the 1,2-SCS through a concerted [2,3]-acyloxy rearrangement with a cyclic 

five-membered ring transition state IIIb,11b, 17a forming the deoxypyranosan-2-yl radical 

IVa that prefers the 4C-1 chair conformation.18 Although the anomeric radical is more stable 

than the secondary alkyl radical, the molecular stability gained from the formation of an 

anomeric C–O bond in IVa drives the desired 1,2-SCS.19 Under visible-light irradiation, the 

intermediate IVa is in equilibrium with alkyl-Pd(II)X complex IVb, which allows access to 

both open- and closed-shell reactivities. We anticipate that these hybrid Pd species can 

engage in a wide range of cross-coupling reactions through processes such as (i) 

transmetalation followed by reductive elimination, or (ii) radical coupling or atom/group 

transfer followed by reduction of Pd(I)X to furnish the desired C-2 functionalized 

carbohydrate 2 and regenerate Pd(0) catalyst, completing the catalytic cycle.

With this hypothesis in mind, we started our investigations using readily available α-

glucosyl bromide (1a) as a model substrate. Initial experiments showed that upon exposing 

1a to 24 W blue light-emitting diodes (LED) in the presence of Pd(PPh3)4 (5.00 mol%), N, 

N-diisopropylethylamine (DIPEA, 2.00 equiv) in isopropyl acetate (i-PrOAc, 0.05 M) at 

room temperature for 20 h, we observed 94% yield of α-only product 2a with >20:1 C-2 

selectivity (Table S1, entry 1). The Pd(PPh3)4 catalyst was shown to be critical for the 

desired reactivity because replacing it with PPh3, Pd(PPh3)Cl2, led to no reaction or 

significantly lower yield and selectivity (entries 2 & 3). We recognized that the relative rates 

of the intramolecular 1,2-SCS and the intermolecular hydrogen atom transfer must be 

controlled to achieve high levels of regioselectivity. It was envisioned that the unique inner-

sphere coordination interaction between the Pd catalyst and alkyl radical could stabilize and 

modulate the reactivity of radical intermediates, thus minimizing the premature C-1 

reduction.1e, 20 Indeed, the use of other common Ru-, Ir-, and organic-based photoredox 

catalysts, where inner-sphere coordination is not feasible, proved to be ineffective and 

afforded the product with low yields and selectivity (entries 4–6). Reactions in acetonitrile 

were sluggish and were accompanied by the erosion of the regioselectivity (entry 7). Control 

experiments showed that DIPEA, an oxygen-free environment, and light were all essential 

for the desired reactivity (entries 8–10).

With the optimized conditions in hand, we next examined the scope of the reaction. In 

general, a wide range of α-bromosugars afforded the desired 2-deoxy sugars with up to 95% 

yield and >20:1 regioselectivity (Table 1A).21 α-Glucosyl bromides with different ester 

protecting groups such as acetyl, benzoyl, or pivaloyl worked well (2a-2c). Other α-

bromosugars, including those derived from acetylated L-fucose, D-xylose, and D-galactose, 

were also viable substrates (2d-2f).22 Substrates with benzyl-, methyl-, and the acid-
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sensitive tert-butyldimethylsilyl-protected C-6 hydroxyl groups were well tolerated, 

affording the desired products 2g-2i in 72–91% yields with >20:1 C-2 selectivity. A free C-6 

hydroxyl group, which is useful for further functionalization and often serves as a glycosyl 

acceptor, reacted smoothly and gave product 2j in 72% yield. A fused ring structure also 

proved to be compatible with the reaction conditions (2k). The structure of the migratory 

ester group has little effect on the reaction efficiency because C-2 esters substituted with 

alkyl, aryl, or heteroaryl groups underwent excited-state Pd-catalyzed 1,2-SCS smoothly, 

forming the corresponding products 2l-2q in 74–90% yields. A melibiose derivative gave the 

desired 2-deoxy-disaccharide 2r in 89% yield. Notably, the reaction affords the α−2-

deoxyglycosides exclusively, and the corresponding β-isomers were not observed.

The synthetic utility of this process is further highlighted by its amenability to (i) a late-stage 

modification of functionally dense natural product- and drug-conjugated sugar derivatives 

and (ii) the synthesis of deuterated 2-deoxy sugars (Table 1). For example, α-Bromoglucose 

derivatives of oleanolic acid, Indomethacin, Probenecid, Bezafibrate, Febuxostat, 

Zaltoprofen, Ibuprofen, and Adapalene reacted and afforded the desired products 2s-2z in 

good yields and excellent levels of regioselectivity, demonstrating that the method can be 

used in the preparation of pharmaceutically relevant compounds. Furthermore, deuterium-

labeled sugars are versatile probes for the study of biological processes such as metabolic 

and biosynthetic pathways,23 and useful chiral building blocks for the synthesis of chiral 

deuterated precursors of bioactive molecules.24 Using d8-THF as the solvent and Cs2CO3 as 

the base under otherwise identical reaction conditions, we successfully obtained a series of 

(2-2H1)-2-deoxy sugars d-2a, d-2d, d-2e, d-2i, d-2k, and d-2r in yields of 88–98% and with 

high levels of regioselectivity and deuterium incorporation (Table 1B).

The reaction can be further extended to the synthesis of 2-iodo-2-deoxy sugars using α-

iodosugars as starting materials (Table 1C). For example, α-iodosugar derivatives of D-

galactose, D-glucose, L-fucose, and D-xylose were converted to the corresponding 2-iodo-2-

deoxy sugars 4a-4d with good yields and up to >20:1 equatorial/axial selectivity. The 

electronic nature of the migrating group had a negligible impact on reaction efficiency and 

stereoselectivity, as demonstrated by substrates 3e-3f that afforded the desired products 

4e-4f in similar yields and diastereoselectivity. Disaccharide and D-galactose derivatives of 

pharmaceuticals such as Ibuprofen, Probenecid, Febuxostat, and Zaltoprofen could be used 

to generate the corresponding products 4h-4l with >20:1 equatorial/axial ratios in good 

yield. Notably, other photocatalysts such as Ru(bpy)3
2+, Ir(ppy)3, and Eosin Y failed to 

catalyze this iodination reaction. Given that 2-iodo-2-deoxy sugars are (i) excellent glycosyl 

donors that control the stereochemistry of the newly formed glycosidic bond25 and (ii) 

versatile intermediates for further sugar derivatizations,26 our protocol will find a useful 

application in the synthesis of complex glycans for the discovery and development of new 

bioactive compounds.

Our mechanistic hypothesis of the excited-state Pd-catalyzed C-2 functionalization of 

carbohydrates depicted in Figure 2 is supported by UV-Vis measurements, Stern-Volmer 

quenching studies, radical trapping experiments, deuterium labeling studies, quantum yield 

measurements, radical clock and cross-over experiments, and kinetic studies (Figure 3). UV-

Vis measurements showed the absence of any reaction between the acetylated α-glucosyl 
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bromide (1a) and the ground-state Pd(PPh3)4 (Figure 3A). Irradiation of the reaction mixture 

with blue LED light for 5 min, however, led to a significant bathochromic shift (Δλabs = 43 

nm) with a λabs at 362 nm. The UV-Vis data suggested that an excited Pd(PPh3)4 catalyst 

readily undergoes a radical oxidative addition with 1a, generating a putative Pd(II)-species.4 

Stern-Volmer quenching studies demonstrated that only 1-halosugar quenches the excited 

Pd(PPh3)4 (Fig. S2). The radical nature of the reaction is further supported by a radical 

trapping experiment (Figure 3B). Deuterium labeling studies where Cs2CO3 was replaced by 

DIPEA under deuteration reaction conditions shifted the 2a:d-2a ratio from 1.0:7.3 to 

1.9:1.0, showing that DIPEA serves as a hydrogen atom donor (Figure 3C). Because the 

quantum yields of the C-2 reduction and iodination reactions were 0.09 and 0.24, 

respectively, an extended radical chain propagation is unlikely under our reaction conditions 

(Fig. S9 and Fig. S10).

The key 1,2-spin-center shift involving the acyloxy migration may proceed through one of 

the following reaction pathways: (P1) fragmentation to an acyloxy radical and an alkene 

with subsequent recombination; (P2) formation of a cyclic 1,3-dioxolanyl radical followed 

by ring-opening; (P3) fragmentation to an alkene radical cation and an acyloxy anion 

followed by recombination; or (P4) a concerted process involving a cyclic five-membered 

ring transition state (Figure 3D).11b The P1 pathway can be eliminated because the 

decarboxylation of an acyloxy radical (k = 109 s−1)27 is much faster than the migration (k = 

102 s−1),19 and no decarboxylation was observed in the reaction. Pathway P2 is also unlikely 

because a radical clock experiment using a substrate bearing the cyclopropyl acetate group 

(1m) afforded the desired product 2m without the formation of a ring-opening side product 

2m’. No cross-over products 5a and 5b were formed in cross-over experiments using 

substrates 1a and 1b, indicating that the reaction could proceed through either pathway P3 
with an “in-cage” recombination or pathway P4. Since the electronics of the migrating 

group has a negilible effect on the reaction rate, the acyloxy migration most likely proceeds 

through the natural, concerted pathway P4, and this agrees with the DFT calculations.28

In summary, we established and exploited the first excited-state Pd-catalyzed 1,2-SCS 

reaction for the synthesis of C-2 functionalized carbohydrates from readily available 1-

halosugars. The reaction features high levels of regio- and stereoselectivity, broad substrate 

scope, and mild reaction conditions that tolerate a wide range of functional groups and 

complex molecular structures. Detailed mechanistic studies suggest a non-chain radical 

reaction mechanism involving an excited Pd catalytic species and a 1,2-SCS via a concerted 

[2,3]-acyloxy rearrangement. Given the versatile reactivity of Pd catalysts in carbon-carbon 

and carbon-heteroatom bond forming reactions, we anticipate that our strategy will (i) offer 

a general, catalytic approach for the C-2 selective functionalization of carbohydrates to 

access a wide array of unexplored carbohydrate mimics, establish tools that tackle 

fundamental questions in glycobiology, and aid the discovery and development of new 

therapeutics; and (ii) guide the design and development of new synthetic strategies beyond 

carbohydrate chemistry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Development and exploitation of excited-state palladium-catalyzed 1,2-spin-center shift for 

selective C-2 functionalization of carbohydrates.
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Figure 2. 
Proposed catalytic cycle for the excited-state Pd-catalyzed C-2 functionalization of 

carbohydrates.
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Figure 3. 
Mechanistic studies of excited-state Pd-catalyzed C-2 functionalization of carbohydrates. 

See Supporting Information for experimental details. % of deuterium incorporation, C-2:C-1 

ratio, and reaction yields were determined by 1H-NMR using CH2Br2 as an internal 

standard.
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