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Abstract. Prostate cancer (PCa) is characterized as being
histologically and molecularly heterogeneous; however,
this is not only incorrect among individuals, but also at the
multiple foci level, which originates in the prostate gland
itself. The reasons for such heterogeneity have not been fully
elucidated; however, understanding these may be crucial in
determining the course of the disease. PCa is characterized
by a complex network of chromosomal rearrangements, which
simultaneously deregulate multiple genes; this could explain
the appearance of exclusive events associated with molecular
subtypes, which have been extensively investigated to establish
clinical management and the development of therapies targeted
to this type of cancer. From a clinical aspect, the prognosis of
the patient has focused on the characteristics of the index lesion
(the largest focus in PCa); however, a significant percentage of
patients (11%) also exhibit an aggressive secondary foci, which
may determine the prognosis of the disease, and could be the
determining factor of why, in different studies, the classification
of the subtypes does not have an association with prognosis.
Due to the aforementioned reasons, the analysis of molecular
subtypes in several foci, from the same individual could assist
in determining the association between clinical evolution
and management of patients with PCa. Castration-resistant
PCa (CRPC) has the worst prognosis and develops following
androgen ablation therapy. Currently, there are two models to
explain the development of CRPC: i) The selection model and
i) the adaptation model; both of which, have been found to
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include alterations described in the molecular subtypes, such
as Enhancer of zeste 2 polycomb repressive complex 2 subunit
overexpression, isocitrate dehydrogenase (NAPD*)1 and
forkhead box Al mutations, suggesting that the presence of
specific molecular alterations could predict the development of
CRPC. This type of analysis could lead to a biological under-
standing of PCa, to develop personalized medicine strategies,
which could improve the response to treatment thus, avoiding
the development of resistance. Therefore, the present review
discusses the primary molecular factors, to which variable
heterogeneity in PCa progress has been attributed.
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. Introduction

According to the report by the International Agency for
Research on Cancer of 2018 (1), prostate cancer (PCa) has
the second highest estimated age-standardized incidence
rate worldwide (29.3 per 100,000) and is the sixth cause of
cancer-associated death in men (7.6 per 100,000). The problem
with the management of PCa is due to the difficulty in strati-
fying between indolent and aggressive cases. Although <5%
of patients exhibit advanced disease, up to 40% of patients
will eventually develop metastatic disease despite local
therapy (2,3). Other patients with PCa undergo hormonal
therapy treatment, radical prostatectomy (RP) or radiotherapy,
so, numerous cases of PCa only require expectant manage-
ment; thus, in these patients, an overtreatment may result in
significant morbidity.

High Grade Prostatic Intraepithelial Neoplasia (HGPIN)
is a prostate preneoplastic lesion, which may develop towards
an invasive PCa (25 to 30%) during a process, which may
take over 10 years (4), according to a study conducted at
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Johns Hopkins University School of Medicine, in patients
of Baltimore (Maryland, United States of America). Both,
HGPIN and PCa are multifocal, and HGPIN foci coexist in
adjacent areas of PCa sharing chromosome deletions and
interstitial translocations that originate the TMPRSS2-ERG
fusion gene and genetic alterations, such as hypermethylation
of the m-class glutathione S-transferase (GSTP1) promoter,
which suggests a common origin (5). The heterogeneous
and multifocality nature of the disease makes it difficult to
understand prostate carcinogenesis (6). Currently, there is no
adequate method to differentiate patients with poor prognosis
of PCa from those with indolent disease, who should only have
a controlled follow-up. The primary method of determining the
suitable treatment option for a patient with PCa is based on the
Gleason classification (5), an assessment of its morphological
heterogeneity, which is associated with prognosis. Pathologists
can classify each focus of PCa using Gleason patterns (GP)
ranging from 1 to 5, and assigning a Gleason score (GS); or
using the updated Gleason grade group, which includes the
two most representative GPs in the tumor (7,8). Despite the
association between Gleason classification and tumor behavior
(the degree of differentiation of the neoplastic cells) the asso-
ciation between morphological heterogeneity and molecular
heterogeneity has not been elucidated (9).

Molecular studies of PCa have revealed numerous recurrent
DNA alterations associated with deregulating genes involved
in the development of the prostate, such as the deletions and
interstitial translocations that originate the TMPRSS2-ERG
fusion gene, chromatin modification, cell cycle regulation
and androgen signaling (10,11). Over the last decade (12),
the investigation into PCa has focused on identifying the
exclusive molecular events in the development of PCa, which
could represent early and divergent events and could direct
the course of the disease (13); thus, it is crucial to elucidate
the carcinogenesis of PCa and utilize the information in the
treatment of patients.

The present review will describe an updated review of
intratumoral heterogeneity in multifocal PCa, to understand
the carcinogenic process and its implication in the manage-
ment of the disease; as the vast majority of molecular studies
in PCa performed are single focused, and do not take into
account molecular heterogeneity, which could contribute to
limiting the use of molecular subtypes in the prognosis and
treatment of the disease.

2. Molecular heterogeneity of PCa

The origin of PCa could be defined by the occurrence of
chromosomal rearrangements that simultaneously, and
in a coordinated manner, cause the inactivation of tumor
suppressor genes (TSG) and the creation of oncogenic fusions,
which would support a model of punctuated development
in PCa (11,14). This could in turn be associated with the
appearance of canonical alterations, and with the molecular
subtypes involved in a broad genomic and transcriptomic
diversity within and among intraprostatic PCa foci. Several
studies have shown potential for their utilization as prognostic
biomarker signatures (15-17). Recently published data from
The Cancer Genome Atlas (TCGA) (17) supports the divi-
sion of the major molecular subclasses of localized PCa into

erythroblast transformation specific (ETS)-rearrangement
PCa [PCa with rearrangements and overexpression of ETS
transcription factor ERG (ERG), ETS variant transcription
factor (ETV)-1, -4, or other ETS family transcription factors],
SPOP-mutated and CHDI1-deleted [speckle type BTB/POZ
protein (SPOP)/chromodomain helicase DNA binding protein
1] altered cancers (17), and several smaller categories, such
as FOXA1 or IDH1deletion, which have been described in
Table I. The use of molecular classifiers to personalize treat-
ment shows promise; however, it is still in its infancy and
additional validation and optimization are required to ensure
it can be used in a clinical setting.

Multiple complex chromosomal rearrangement, as a cause
of molecular alterations in PCa. There are several molecular
alterations in the PCa, such as copy number changes, gene
fusions, single nucleotide mutations and polymorphisms, meth-
ylation, microRNAs and long non-coding RNAs, one of the
most characteristic involves multiple complex chromosomal
rearrangement processes (Fig. 1A), which has been reported
in 63% of PCa cases (18). These rearrangements can be clas-
sified as chromothripsis or chromoplexy (Fig. 1B and C),
and some coordinated structured rearrangements may have
intermediate chromothripsis and chromoplexy properties (11),
for instance both chromothripsis and chromoplexy display
random breakage and fusion of genomic segments with low
copy numbers, most likely mediated by non-homologous
end-joining.

In addition, Dzamba et al (18) used the CouGaR statistical
method, in 63% of PCa, and in 27% of bladder cancers, which
is in contrast with other types of cancer such as rectal, breast
and thyroid cancer, where these types of alterations have not
been identified. The CouGaR method is a novel method for
predicting the overall genomic configuration resulting from
characterizing the genomic structure of amplified complex
genomic rearrangements, leveraging both depth of coverage
(DOC) and discordant pair-end mapping techniques, to
identify multiple chromosomal rearrangements. The results
of Dzamba et al are noteworthy, as it has been reported that
bladder and PCa may both develop in the same patient (19).

It has been found that the breaking points of DNA rear-
rangements are more likely to occur near specific DNA
sequences, where the androgen receptor (AR) binds as a
transcription factor, known as androgen response elements
(ARE), compared with that in other randomly predicted
locations, that is anywhere else in the genome (20,21). This
finding suggests that AR-ARE complexes may be predis-
posed to genomic rearrangements through transcriptional
stress, since androgen signaling promotes co-recruitment of
androgen receptor and topoisomerase II § (TOP2f) to sites
of TMPRSS2-ERG genomic breakpoints, triggering recom-
binogenic TOP2B-mediated DNA double-strand breaks. For
example, it has been found that transmembrane serine protease
2 (TMPRSS2)-ERG fusion is induced by the interaction of
androgens with AR (14,22).

In the development of PCa, chromothripsis is relatively
rare and occurs as one clonal early event; in contrast, chro-
moplexy is a common and sequential event, which is detected
at clonal or sub-clonal level (14,18,23). In a study performed
using 57 patients with PCa, Baca et al (11) identified over 5,000
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Figure 1. Muliple chromosomal rearrangements in prostate cancer. (A) Mechanisms for the formation of multiple chromosomal rearrangements. DNA ds breaks
can be repaired by DNA- breakage, deletion or fusion. Loss of DNA at sites of ds breaks may result in simple deletions (top) or ‘deletion bridges’ (middle)
which span breakpoints from distinct fusions. Adjacent breakpoints or deletion bridges may provide evidence for mulitple rearrangements. Concerted repair
with minimal loss of DNA results in fusion breakpoints which map to adjacent positions (indicated by the punctuated arrows). (B) Chromoplexy. Multiple
breakpoints, including several chromosomes (C) Chromothripsis. Hundreds of breaking points grouped in one or two chromosomes. DS, double strand.

somatic rearrangements associated with this type of chromo-
somal rearrangements. Several cancer genes were repeatedly
deleted or rearranged by chromoplexy, including PTEN, NK3
homeobox 1, cyclin dependent kinase inhibitor 1B, tumor
protein p53 (TP53), and RB transcriptional corepressor 1.
These multiple complex chromosomal rearrangements are one
of the primary reasons for the high molecular heterogeneity
in PCa.

Molecular subtypes in PCa. Over the last decade, several
studies have focused on determining the excluding molecular
events in the development of PCa, which are able to establish
different subtypes, and are associated with the prognosis
of the disease, and have the potential to be developed into
targeted therapies (11,16,17,24). Therefore, the current status
of PCa subtypes, will be subsequently discussed, using TCGA
study (17) as a reference for the majority of the comparisons,
the prognostic involvement, and the therapies of inhibitors of
target oncogenes associated with subtypes, such as EZH2 or
ERG (Table I), which have been used or are currently in the
experimental phase, in this way some treatments that apply to
cases that are ETS(+) will not work for those that are ETS(-),
such as blocking function of ERG regulating co-factors, such
as PARP1 (25-27) (Table I). Table I summarizes the main
clinical-pathological characteristics of the subtypes and
treatments that have been investigated as a development of
personalized medicine (13,17,24-26,28-63).

ETS(+) subtypes. The ETS family of transcription factors
consists of phosphorylated proteins with DNA-binding
domains (ETS domain) that act as either activators or repres-
sors of transcription. The family consists of 30 identified genes,
28 of which are found in the human genome. Previous studies
have found that between 50 and 70% of patients with PCa
overexpress ETS, following gene fusion, which causes ETS
to be controlled by ARE (12). Due to the prevalence of these

types of rearrangements, efforts to molecularly characterize
PCa begin by separating the cases which have gene fusion
from those that do not, termed ETS(+) and ETS(-), respectively
in numerous studies (20,38,64). TCGA study (17) has charac-
terized four different ETS(+) subtypes, depending on the type
of ETS involved in the fusion: ERG, ETV1, ETV4 and Fli-1
proto-oncogene, ETS transcription factor ERG is the most
frequently overexpressed ETS. TMPRSS2 the most frequent
fusion gene in all ETS fusions; however, fusions with other
androgen-regulated genes have also been described, including
solute carrier family 45 member 3 and N-myc downstream
regulated 1 (65).

The TMPRSS2-ERG gene fusion causes ERG overex-
pression, which initiates a cascade of events that continues
with Enhancer of zeste 2 polycomb repressive complex 2
subunit (EZH2) overexpression and decreased NKX3-1
expression (Fig. 2) (20,28). EZH2 is a methyltransferase
from the polycomb group, involved in tissue-specific differ-
entiation by histone methylation (H3K27), while NKX3-1 is
an androgen-regulated, prostate-specific gene, which encodes
a critical transcription factor during prostate development by
downregulating epithelial cell growth, and is considered a
TSG (20,28,66).

Other common molecular alterations in PCa are dele-
tions and point mutations of PTEN, leading to activation of
Akt, which can subsequently lead to over-activation of AR
signaling; and in the presence of TMPRSS2-ERG gene fusion,
it can increase the activation of a cascade involving ERG,
EZH?2 and NKX3-1 (Fig. 2) (20,31,33).

ETS(-) subtypes. ETS(-) are PCa subtypes with a canonic altera-
tion, which is different to that in the ETS fusion genes. Whereas
rearrangements occurring in ETS(+) tumors display features
of chromoplexy, ETS(-) tumors display a higher frequency of
chromothripsis (11). Among the ETS(-) subtypes, different
studies have found the existence of a highly-expressed EZH2
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Figure 2. EZH2 overexpression in prostate cancer. The following steps are involved: 1. ERG-dependent mechanisms. Upregulation of the PI3K/Akt signaling
pathway by PTEN mutations increases AR signaling and contributes to ERG overexpression in ETS(+) tumors. TMPRSS2-ERG fusion leads to overexpres-
sion of ERG, leading to overexpression of the EZH2 protein. 2. MYC oncogene binds to the E-box of the EZH2 promoter and induces its expression. 3.
Post-transcriptional regulation of EZH2 by miRNAs. miR101, miR26a and miR26b reduces the translation of EZH2. Genomic loss of miR-101 and over-
expression of MYC, which represses the transcription of miR-26a and miR-26b, increases EZH2 translation. 4. EZH2 is involved in gene silencing of TSG,
NKX3-1. miR, microRNA; TSG, tumor suppressor gene; EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; ERG, ETS transcription factor
ERG; AR, androgen receptor; TMPRSS2, transmembrane serine protease 2; EBS, ETS binding site; NKX3-1, NK3 homeobox 1; ARE, androgen response

elements.

subtype, which is independent of ERG expression (38,39). The
overexpression of EZH?2 has been described as well; it is caused
by nuclear phosphoprotein MYC, which is involved in the cell
cycle progression, apoptosis and cellular transformation. MYC
oncogene also represses transcription of microRNA (miR)-26a
and miR-26b, which are targets of EZH2, thus contributing to
overexpression of EZH2 (36,38). In addition, the genomic or
functional loss of miR-101, a TSG whose targets include the
EZH?2 gene, causes the overexpression of this gene (37) (Fig. 2).

Since epigenetic abnormalities driven by MYC over-
expression have been associated with a poorer prognosis of
PCa (progression-free survival after radical prostatectomy),
therapies targeting these abnormalities may favor patients with
EZH?2 overexpression (25-27) (Table I). Furthermore, TCGA
describes 3 ETS(-) subtypes, characterized by mutations in
genes, including SPOP, overexpression of serine protease
inhibitor Kazal type 1 (SPINK1), forkhead box Al (FOXA1)
or isocitrate dehydrogenase (NAPD*)1 (IDHI) (17) (Table I).
Previous studies have reported an overexpression of SPINK,
as an independent subtype (66,67); however, its overexpres-
sion was associated with the mutated SPOP subtype in TCGA
study (17). In 2018, Wu et al (63) reported a novel subtype,
characterized by the inactivation of cyclin dependent kinase
12, which could benefit from immune checkpoint inhibition
therapy (Table I).

In TCGA study, 26% of PCa cases could not be clas-
sified into any of the identified subtypes (17). There were
three major groups of prostate cancers in the study, one with
mostly unaltered genomes (referred to as quiet), a second
group encompassing 50% of all tumors with an intermediate
level of SCNAs, and a third group with a high burden of arm
level genomic gains and losses (17). These PCa were clini-
cally and genomically heterogeneous; low-pass and high-pass
whole-genome sequencing (WGS) on 100 and 19 tumor/normal
pairs, some of had numerous somatic copy number altera-
tions (SCNA) and a high GS, which is an indicator of poor
prognosis; 33% of them were genomically similar to the SPOP
and FOXA1 subtypes, others were enriched for mutations of
TP53, KDM6A, and KMT2D (lysine methyltransferase 2D)
or specific SCNAs spanning MYC and CCNDI (cyclin DI)
and other cases had a low GS (GS 6) with fewer genomic
alterations (38% in the ‘quiet’ class vs. 8% in the class with
the greatest burden of alterations), such as SCNA and DNA
methylation patterns similar to those in normal tissue (17).

Table I organizes the different subtypes with their clinical
significance and the treatment options that are being addressed
for the future development of personalized medicine; however,
this classification has not been clear or reproducible in
numerous cases, nor has the response of patients to the treat-
ments either, as ~75% of PCa are multifocal, and more than
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Figure 3. Models proposed for the origin of castration resistant PCa. (A) Selection model. Most luminal cells undergo apoptosis, following androgen ablation,
while basal cells proliferate and neuroendocrine cells are resistant to castration. (B) Adaptation model. Following androgen ablation, androgen-dependent PCa
cells acquire novel alterations which allow them become androgen-independent. However, it is also possible that both models, independently or cooperatively,
contribute to CRPC growth in a patient, forming a selection and adaptation joint model. The orange line indicates the basal membrane. The grey cells with a
black X represent cells that have undergone apoptosis. AR, androgen receptor; IDH]1, isocitrate dehydrogenase (NAPD*)1; PCa, prostate cancer.

one subtypes can coexist in the same patient with multifocal
PCa (6,68).

Intratumoral molecular heterogeneity. The Gleason clas-
sification, using histological methods, that heterogeneity
in multifocal PCa can be recognized, which is higher when
analyzed from a molecular point of view (6,69). This intra-
tumoral heterogeneity makes it difficult to associate specific
molecularalterations,detected in a single focus, with the clinical
behavior of a patient with multifocal PCa (6,69). In molecular
studies, the pattern of the index tumor is typically obtained to
assign molecular alterations and subtypes; however, other foci
are not taken into account (6). The index tumor is the largest
tumor focus, which in most cases (89%) can be associated with
significant pathological parameters, such as the highest GS,
the largest tumor volume and extraprostatic extension (70);
however, this is not always the case (69). Numerous studies
have found that a single clone is responsible for the dispersal of
all metastatic foci (13,71,72); which suggests that identifying
the ‘deadly’ clone is of utmost importance, and should not
necessarily start from the index tumor.

Due to the heterogeneity caused by multifocality in PCa,
it is necessary to perform studies, that analyze the molecular
alterations in various foci, which would allow the identifica-
tion of the impact of different molecular subtypes in the
same patient (4,64). Some studies using the TMPRSS2-ERG
fusion (73,74), PTEN deletion (75), SPINK1, ERG (67), and
whole genome sequencing (6,75-77) have found a markedly

interfocal discordance, which was consistent with the concept
that multiple foci of PCa have a multiclonal origins (6).
Wei et al (6) also found this heterogeneity when using commer-
cial PCa diagnostic kits (Decipher, Prolaris and Oncotype
DX), which are based on the expression of various genes,
including immune response genes like testis-specific basic
protein and PBX homeobox 1 of Decipher, cell cycle-related
genes CDC20 (Cell Division Cycle 2), CDKN3 (Cyclin
Dependent Kinase Inhibitor 3), CDC2 (cell division control
protein 2 homolog) of Prolaris, genes of androgen signaling
AZGP1 (Alpha-2-Glycoprotein 1) and FAM13C (Family With
Sequence Similarity 13 Member C) of Oncotype DX. These
results suggest that applying a single subtype of the molecular
taxonomy of PCa proposed by TCGA to a patient, i.e., studying
a single focus, is an over simplified and incorrect view of the
molecular landscape of PCa.

3. Molecular progression to castrate-resistant prostate
cancer

As aforementioned, the origins of PCa begins as a
pre-neoplastic lesion which progresses to localized cancer, and
can subsequently metastasize. Elimination of androgens using
surgical or chemical castration, in numerous cases, results in
control of PCa (78,79). However, when relapse occurs despite
treatment, PCa has progressed to an androgen-independent
form of cancer or CRPC, which is considered the most aggres-
sive form of PCa (80).
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Most of the molecular alterations in PCa have been
described from HGPIN (or associated with HGPIN). However,
there are studies, which have found associations between some
of these alterations with different stages of PCa progression.
ETS fusions and FOXA1 mutations frequently occur in
HGPIN (14,23). Overexpression of SPINK1 (~10-25%) and
SPOP (~11%), TP53 (~25%),IDH1 (~1%), MAP3K7 and CHD1
(~10-20%) mutations (11,13,17,23,49,81) are more frequent in
localized PCa, while the highest and lowest expression levels
of EZH2 and NKX3-1, respectively, together with PTEN
deletion, have been found in metastatic CRPC (11,23,82).
Monoallelic loss of PTEN is present in up to 60% of local-
ized prostate cancers and complete loss of PTEN in prostate
cancer is linked to metastasis and androgen-independent
progression (86). Alteration of the AR signaling pathway
compared with that in other pathways in CRPC suggest that
AR signaling continues being the ‘master regulator’ for PCa
progression (45,55,84), including AR copy number gain (24%
of CRPCs) or AR point mutation (20% of CRPCs). These
results assist to define the sequence of the molecular events
in the development of PCa, from the origins of the disease
through to its progression into metastasis, resistance to treat-
ment and death.

There are 3 types of cells which interact in PCa to survive
androgen ablation treatment: Androgen-dependent, androgen
producing, and androgen-independent cells (85). The interac-
tion among them determines whether CRPC will develop
or not. The pathway which leads from the development of
androgen-dependent to androgen-independent cells is still
unknown. However, there are two models which have been
used to explain this process. Some studies suggest that there
is a collection of androgen-independent preexisting cells
following therapy (selection model) (86,87); in contrast, other
studies postulate that cells acquire novel alterations which
allow them to survive in the absence of androgens (adaptation
model) (88) for developing CRPC (Fig. 3).

Selection model. In this model, primary PCa consists of a
heterogeneous mix of luminal, neuroendocrine and stem cells.
When the patient undergoes androgen ablation treatment, most
of the androgen-dependent cells undergo apoptosis, while
androgen-independent cells persist and survive due to their
low androgen requirement (Fig. 3) (86,87,89).

The vast majority of PCa are luminally differentiated
adenocarcinomas with the presence of neuroendocrine
cells, and respond to hormonal therapy (90); however, there
are some tumors, which consist of aggressive and highly
proliferating neuroendocrine cells only, for example small
cell neuroendocrine PCa, which do not respond to hormone
therapy, therefore platinum-based chemotherapy (phase II
trial) is used (90,91). These malignant neuroendocrine cells,
which share their origin with normal prostatic neuroendocrine
cells (93), express epidermal growth factor receptor (EGFR)
and receptor tyrosine-protein kinase erbB-2; for these reasons,
they are classified as androgen-independent cells (94), and
their abundance is considered a promising prognostic marker
for the development of CRPC (95).

A previous study compared global transcriptomic profiles
of normal basal and luminal epithelial lineages from samples
of patients with PCa and PCa cell lines (87). It was found that

PCa cells exhibited a gene expression profile similar to that
found in a luminal cell and aggressive and neuroendocrine
PCa were similar to basal cells (87).

In addition to cell type, in a few cases, point mutations in
AR can cause cells, which were originally androgen-depen-
dent, to become androgen-independent cells, and can be
resistant to therapy, that is, those pre-existing mutations
in the localized disease confer a selective advantage with
threapy-resistant cells (84,95-97). The S646F mutation within
AR, in the hinge region, has been associated with a short
response to endocrine therapy, due to a markedly increased
transcriptional activity on ARE-containing promoters (95).
In addition, AR gene copies (two to four copies), due to
polysomy of the X-chromosome, are present in a subgroup of
localized PCa, and these specimens may have an advantage in
low concentrations of androgens due to therapy (96), since the
additional AR copies may be a factor leading to a poor clinical
outcome of antiandrogen therapy as there is a compensatory
mechanism allowing activation of the AR post-castration.
Furthermore, that study concluded that high stage primary
prostate cancer may be associated with increased frequencies
of aneuploidies of the X chromosome resulting in an increased
AR gene copies number.

Adaptation model. The adaptation model suggests that resis-
tance to castration is the result of the acquisition of genetic
and/or epigenetic alterations in response to therapy, which
allows cells that were previously dependent on androgens
to proliferate at low concentrations of androgens due to
therapy (97). Adaptations to androgen ablation treatment
include the occurrence of mutations with a copy number
gain of the AR gene, changes in the expression of AR
co-regulation molecules (48,84,98), and deregulation of key
molecules in proliferation (99), such as Akt overexpres-
sion (29).

The evidence supports the selection model (100-102);
however, it is difficult to establish either of these models as the
definitive or exclusive mechanism. It is also possible that both
models independently or cooperatively contribute to the devel-
opment of CRPC (85,100). Some cells could be independent
of androgens and be selected, or they can also gain adaptive
advantages to proliferate at low concentrations of androgens;
or there could be cells selected for their independence from
androgens, and others that adapt and proliferate at low concen-
trations of androgens (100).

The aforementioned neuroendocrine PCa from small cells
may arise de novo, which would support the selection model;
however, these generally occur as recurrent tumors in men
who have received hormone therapy for prostatic adenocarci-
noma, suggesting that the neuroendocrine phenotype is driven
by the hostile environment created by hormone therapy, or
the adaptation model, and such tumors are composed of
pure neuroendocrine cells that are highly proliferative and
aggressive (88,90,103), due mutation in P53 (104) (allele
of a missense transition converting G to A at position 747,
changing negatively charged aspartic acid to hydrophilic
amino acid asparagine at amino acid 184) and the inactiva-
tion of the interleukin-8-C-X-C motif chemokine receptor 2
signaling pathway (90,104). Differential epigenetic markers
between the neuroendocrine and non-neuroendocrine CRPC
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support a key role of the epigenome in the emergence and/or
maintenance of neuroendocrine CRPC (105).

With the widespread use of novel drugs targeting the
androgenic axis, such as abiraterone acetate and enzalu-
tamide, there has been a rapid increase in the incidence of
small cell neuroendocrine carcinoma (91,105), on the basis of
autopsy series and other studies this type of PCa may repre-
sent approximately 25% of late stage of PCa (106), which will
become a major challenge in the treatment of these patients.
The clarification of the determining factors that lead to CRPC
will be key to understanding the carcinogenesis process and
guiding the clinical management of each patient.

4. Conclusions

The use of molecular subtypes in PCa to personalize treatment
is promising; however, it is necessary to consider multifocality.
The lack of an association between subtype and prognosis in
PCa may be due to the fact that only the index tumor is investi-
gated. It is important to analyze the subtypes in multiple foci, to
elucidate the development of PCa, which could include different
molecular subtypes; during the development of tumor foci, these
would be selected according to their adaptive advantages, such
as resistance to castration and the ability to metastasize.

The presence or absence of a specific alteration in any
of the foci may be associated with the potential of PCa to
progress to CRPC or to be the target for the development of
targeted therapy, which does not necessarily have to be found
in the index lesion.
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