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Abstract
In the era of precision oncology, major strides are being 
made to use individual tumor information for clinical deci-
sion-making. Differing from traditional biopsy methods, the 
emerging practice of liquid biopsy provides a minimally in-
vasive way of obtaining tumor cells and derived molecules. 
Liquid biopsy provides a means to detect and monitor dis-
ease progression, recurrence, and treatment response in a 
noninvasive way, and to potentially complement classical 
biopsy. Uveal melanoma (UM) is a unique malignancy, with 
diagnosis heavily reliant on imaging, few repeat biopsies, 
and a high rate of metastasis, which occurs hematogenously 
and often many years after diagnosis. In this disease setting, 
a noninvasive biomarker to detect, monitor, and study the 
disease in real time could lead to better disease understand-
ing and patient care. While advances have been made in the 
detection of tumor-disseminated components, sensitivity 
and specificity remain important challenges. Ambiguity re-
mains in how to interpret current findings and in how liquid 
biopsy can have a place in clinical practice. Related publica-
tions in UM are few compared to other cancers, but with fur-
ther studies we may be able to uncover more about the biol-
ogy of disseminated molecules and the mechanisms in-
volved in the progression to metastasis.

© 2020 S. Karger AG, Basel

Introduction

Uveal melanoma (UM) is the most common intraocu-
lar malignancy in adults and the second most common 
form of melanoma. It has an incidence rate of 4.9 per mil-
lion in the US [1] and 3.75 per million in Canada [2]. In 
Europe, the incidence rate varies according to latitude, 
with < 2 per million in southern regions and > 8 per mil-
lion in northern countries like Norway and Denmark [3]. 
UM arises from melanocytes of the uveal tract in the eye, 
which is composed of the iris, ciliary body, and the cho-
roid, where 90% of the tumors are found [1].

Our understanding of the biology of UM has increased 
tremendously with the discovery of initiating mutations 
in GNAQ/11, which are found in > 80% of patients and 
code for the α-subunit of heterotrimeric G proteins [4, 5]. 
GNAQ/11 play a role in activating G protein signaling cas-
cade via IP3, DAG, and cAMP, which activates MAP ki-
nase/AKT signaling [5, 6]. Mutations in GNAQ or GNA11 
are often utilized as a marker of melanocytic tumor origin. 
While 15–20% of tumors do not possess a mutation in 
GNAQ or GNA11, many have a mutation in cysteinyl leu-
kotriene receptor 2 (CYSLTR2) or phospholipase C beta 4 
(PLCB4), which both also lead to activation of GNAQ sig-
naling [7, 8]. A mutually exclusive mutation in GNAQ, 
GNA11, CYSLTR2, and PLCB4 is found in almost all cases 
and thus thought to be an initiating event in UM [9].

Despite significant improvements in local treatments 
of primary tumors, the prognosis for UM patients re-
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mains unchanged, with up to 50% developing metastasis, 
which occurs primarily in the liver. With a lack of efficient 
treatment options, the average overall patient survival af-
ter diagnosis of metastatic UM is less than a year. The risk 
of developing metastasis in UM is traditionally estimated 
by clinical tumor features such as tumor thickness, diam-
eter, location, and extraocular extension, as well as histo-
pathology. Yet, genetic and molecular markers of the tu-
mor that have been identified in recent years are more 
reliable at predicting the prognosis of UM patients.

Although biopsies are less needed for the purpose of 
confirming the diagnosis (which can now be done with as-
sistance of various imaging techniques), obtaining a sample 
of primary tumor remains important for its prognostic val-
ue. In recent years, gene expression profiling of UM has 
been used for the prognostication of tumors through clas-
sification into class 1 or 2, which translate into low and high 
risk, respectively, for developing metastasis [10, 11]. Chro-
mosome 3 monosomy remains the strongest single cytoge-
netic factor to predict UM metastasis [12–14].

Alongside chromosome 3 monosomy, mutations as-
sociated with risk of metastasis have emerged in UM. 
BAP1, which encodes a nuclear ubiquitin carboxy-termi-
nal hydrolase with deubiquitinase activity, acts as a tumor 
suppressor gene in UM. Somatic mutation in BAP1, re-
sulting in loss of protein expression, is associated with 
increased risk of metastasis, and approximately 84% of 
metastatic UM patients maintain only the mutated allele 
of BAP1 [15]. Additionally, mutations in SF3B1 and  
EIF1AX may confer differing risk of UM metastasis. 
BAP1, SF3B1, and EIF1AX mutations are mutually exclu-
sive and are thought to be associated with early (BAP1), 
late (SF3B1), or no (EIF1AX) metastasis [16]. In tumors 
with wild-type SF3B1 but similar structural chromosom-
al aberrations, mutations in another gene of the spliceo-
some complex serine and arginine rich splicing factor 2 
(SRSF2), have been found [17]. Similarly to SF3B1, SRSF2 
has been associated with class 1B gene expression profil-
ing, disomy 3, and intermediate risk of metastasis [18]. 
Many additional gene mutations have been discovered 
that could occur sequentially after the canonical muta-
tions [16], although it has been hypothesized that the mu-
tations essential for malignancy occur an early time point 
and additional mutations are neutral to tumor evolution 
[19]. Certain genetic aberrations and their correlations 
with prognosis have been summarized into a 15-gene as-
say developed by Harbour and Chen [10], which has been 
validated for its prognostic efficiency.

Although biopsy of the primary tumor can provide 
valuable prognostic information, biopsies of intraocular 

tumors are invasive procedures, with rare but severe com-
plications, including hemorrhage, retinal detachment, 
and cataract. Additionally, although it has been disproved 
empirically, some are still concerned about the possibility 
of intraocular biopsies provoking unwanted systemic tu-
mor cell dissemination. Furthermore, biopsies have been 
reported to show discordant profiles depending on where 
tissue is sampled [20]. As such, single biopsies may inad-
equately sample disease and provide only a snapshot of 
the tumor; repeated biopsy to monitor genomic changes 
and heterogeneity is simply not possible. Hence, an eas- 
ier and less invasive biopsy method to sample the ocular 
tumor is warranted in UM. This ideal method should  
(1) reflect both the status of the primary tumor and the 
risk or presence of metastasis, (2) monitor the molecular 
changes that occur as part of the natural history of disease 
and in response to therapy, (3) be easy to repeat, and  
(4) be well tolerated and minimally invasive.

Liquid Biopsy

Meeting all these criteria, liquid biopsy is now emerging 
as an alternative approach to analyze the molecular features 
of tumors in individual patients. Liquid biopsy involves the 
sampling of tumor-derived molecules in body fluids such 
as blood. There are various components for analysis in  
liquid biopsy, including circulating tumor cells (CTCs),  
circulating tumor DNA (ctDNA), cell-free microRNAs 
(miRNAs), as well as tumor-derived extracellular vesicles 
(EVs), that can be informative of genetic and molecular 
characteristics of the tumor (Fig. 1). Liquid biopsy provides 
a means to detect and monitor disease progression, recur-
rence, and response to treatment in a noninvasive way and 
to potentially complement classical biopsy. Detection of 
CTCs, ctDNA, and EVs like exosomes may contribute to 
early diagnosis and management. It is also a valuable tool 
for longitudinal assessment of the genetic heterogeneity of 
cancer: recurrent or metastatic lesions may exhibit a differ-
ent molecular profile than the primary lesion, and these 
changes may dictate the most effective treatment. While 
traditional biopsies are limited to obtaining only one por-
tion of the primary tumor and do not reflect the status of 
any unrecognized secondary or metastatic tumors, another 
major advantage of liquid biopsy lies in its potential to cap-
ture the heterogeneous nature of cancer.

Although most studies in liquid biopsy focus on blood, 
other body fluids can also be utilized for analysis, includ-
ing urine, cerebrospinal fluid, ascites, saliva, as well as 
aqueous and vitreous humor. The rationale of which 
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body fluid to use can depend on the type and anatomical 
location of the cancer being studied. For instance, saliva 
may be used for head and neck cancers, urine may be used 
for bladder cancers, and cerebrospinal fluid may be better 
suited for brain tumors [21]. In ocular diseases, the vitre-
ous and aqueous can also be important sources of mate-
rial. In UM, where there is an exclusively hematogenous 
dissemination of tumor cells, blood makes an ideal can-
didate for analysis and, due to the ease of its sampling, has 
been the most studied analyte. Moreover, aqueous humor 
is also under investigation by our group and others as a 
source of liquid biopsy analyte. Aqueous humor should 
be investigated because it could provide a more concen-
trated source of tumor-derived molecules. The aqueous 
is also currently under investigation as an important liq-
uid biopsy bioanalyte for retinoblastoma [22].

CTCs in Liquid Biopsy

Cells released from the primary tumor are believed to 
contribute to metastatic disease by acting as seeding cells 
that disseminate and eventually form colonies at meta-
static sites [23]. Over the past decade, many studies have 

focused on CTC counts and prognosis in cancer, and 
CTCs have been demonstrated to have strong prognostic 
value in breast, colorectal, and prostate cancer [23]. Con-
sidering the high risk of metastasis through hematoge-
nous dissemination, CTCs in the blood are of particular 
interest in UM.

CTC detection can be difficult given the rarity of CTCs 
in the circulation, with an estimated concentration in pe-
ripheral blood ranging from 1 to 10 CTCs per 10 mL of 
blood [24]. For this reason, enrichment steps to concen-
trate CTCs in the sample are necessary. Such methods can 
be biological, based on positive and/or negative selection 
for protein markers, or based on physical properties like 
size and electric charges. In UM, CTCs have been isolated 
using different technical approaches, based on either RT-
PCR, size filtration, or immunodetection [25–28]. How-
ever, the prognostic value of CTCs in UM remains un-
clear, and comparison between studies is difficult due to 
varying methodologies [29]. Moreover, the clinical use of 
CTCs is constrained by the difficulty in differentiating 
tumor-specific CTCs from other cell types in the circula-
tion (Table 1).

CTCs have a half-life in bloodstream of about 1–2.4 h 
[30]. They carry information from the tumor at the DNA, 

Tumor

Molecular and cellular
heterogeneity

CTCs:
Tumor cells
that detach

from the tumor
and enter into
the circulation

Circulating
nucleic acids:

Small fragments
of nucleic acids
released into
blood (e.g.,

ctDNA)
Insight into

tumor
heterogeneity

Extracellular
vesicles:

Small membrane-
derived vesicles

that contain
functional

biomolecules that
reflect their cell of

origin

Tissue biopsy

Fig. 1. Main types of liquid biopsy analytes. Schematic representation of tumor-derived molecules that can be 
found in liquid biopsy (circulating tumor cells, circulating nucleic acids, and extracellular vesicles). CTCs, circu-
lating tumor cells; ctDNA, circulating tumor DNA.
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RNA, and protein levels. In fact, the first groups to re-
search CTCs in UM took an indirect approach at detect-
ing CTC presence by measuring RNA transcripts of mel-
anoma-associated proteins with RT-PCR. The earliest re-
ports of CTCs in UM were published in the 1990s, with 
UM cells detected in the circulation through PCR. In 
1993, Tobal et al. [31] reported the feasibility of detecting 
as few as 10 CTCs in 5 mL of blood in 3 of 6 patients and 
indicated that a positive CTC result preceded overt meta-
static disease in 1 patient. Following this, Foss et al. [32] 
attempted to detect CTCs in 36 patients, but found none 
to be positive. Several groups have investigated the pres-
ence of mRNA of tyrosinase [33–36], an enzyme involved 
in the biosynthesis of melanin, which is not usually de-
tected in the blood of healthy subjects [35]. By testing 64 
UM samples, Keilholz et al. [37] simultaneously quan
tified RNA levels of tyrosinase, MelanA/MART1, and 
gp100 and found all three markers to be expressed in 
higher quantities and frequencies in stage IV UM patients 
compared to earlier-stage patients. However, the detec-
tion rates of CTCs based on this indirect method were 
highly variable, ranging from 0 to 97% [31, 32, 34–36].

Around the same time, other groups (Ulmer et al. [38], 
Suesskind et al. [39], and Eide et al. [40]) took a more di-
rect way of detecting CTCs through an immunomagnetic 
enrichment technique based on expression of melanoma-
associated chondroitin sulfate proteoglycan. Later groups 
have taken advantage of CellSearch, an FDA-approved 
CTC detection approach, to directly detect CTCs in UM 
[23]. Using the CellSearch system, cells are first enriched 
for CD146 using immunomagnetic isolation. Then UM 
CTCs are selected for expression of the high-molecular-
weight melanoma-associated antigen and stained for 
CD45 and CD34 to distinguish from leukocytes and en-
dothelial cells [23]. Using CellSearch, Bande et al. [41] 
detected CTCs in the blood of patients with primary non-
metastatic UM tumors and patients with nevus. In that 
study, 50% of the UM patients had more than 1 CTC de-
tected in their blood sample, while no CTCs were found 
in the nevus patients. Also using CellSearch in a prospec-
tive study, the detection rate and prognostic value of both 
CTCs and ctDNA were evaluated in 40 patients with met-
astatic UM [23]. The results showed that 12 patients 
(30%) had at least one CTC detected in blood and nega-
tively correlated CTCs with overall survival. However, 
CTC detection was not found to be an independent prog-
nostic factor. A main limitation of CTCs is reflected in 
this study, for as many as 70% of enrolled patients, all of 
whom were metastatic, had no detectable CTCs, high-
lighting an insufficient sensitivity of detection [23].

The relationship between CTC positivity and disease 
prognosis has also been reported by Mazzini et al. [27], 
utilizing a different detection method of size filtration. 
Single CTCs or clusters of cells were found in 17 of 31 UM 
patients, while no CTCs were detected in choroidal nevus 
patients. Patients with more than 10 CTCs per 10 mL 
blood were found to have significantly worse disease-free 
and overall survival. Finally, a very recent pilot study con-
ducted by Anand et al. [42] in 40 UM patients (including 
early-stage and metastatic patients) also reported a nega-
tive correlation between CTC positivity and patient out-
come. The study suggests the potential of CTC presence 
in early-stage UM to predict metastatic risk and confirms 
its association with poor disease outcome.

Many of these studies also explored the relationship 
between CTC presence and various clinical parameters 
such as larger basal diameter and tumor height. Bande et 
al. [41] showed no correlation with larger basal diameter 
and tumor height, but suggested a correlation with extra-
scleral extension, although the latter observation was 
based on 1 patient only. Similarly, Mazzini et al. [27] also 
failed to correlate CTC presence to clinical parameters of 
the tumor, such as larger basal diameter and tumor height 
as well as TNM. However when the CTC-positive sam-
ples were stratified according to CTC counts, the number 
of CTCs significantly correlated with larger basal diam-
eter and tumor height.

In contrast with other studies, Callejo et al. [36] re-
ported detectable CTCs in almost all 30 UM patients in 
their study. In that study, CTCs were identified at diag-
nosis and even after treatment, including enucleation. To 
further explore CTCs as prognostic for metastatic risk, 
another group showed that instead of merely considering 
the presence of CTCs, it would be more valuable prognos-
tically to analyze the detected CTCs for genomic aberra-
tions such as monosomy 3 [43].

Conflicting data from previous reports may be im-
proved with better detection efficiency for CTCs. For ex-
ample, a combination of two antibodies instead of a single 
one may be more efficient at detecting CTCs [26]. Inter-
estingly, with regards to the source of analysis sample, 
one study showed that arterial blood may be a better sam-
ple source than venous blood and may help achieve high-
er detection rates [44]. The authors infer that the differ-
ence could be attributed to increased degradation and 
fragmentation of CTCs following circulation in the pe-
ripheral venous system. As more studies are conducted 
that improve CTC detection, along with advances in tech-
niques, the clinical value of CTCs will become apparent. 
These cells contain information from the tumor of origin 
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and likely contribute actively to systemic disease. Detect-
ing and characterizing CTCs will allow us to exploit them 
as both biomarkers and therapeutic targets.

Circulating Tumor DNA

ctDNA are small fragments of DNA that are released 
by tumor cells and enter the circulation. Since blood, ir-
respective of health state, contains circulating free DNA 
(cfDNA) derived from the physiologic apoptosis of he-
matopoietic and other normal cells, evaluation of ctDNA 
is often done via detection of a tumor-specific mutation 
that distinguishes cfDNA from DNA of tumor origin 
(ctDNA). As such, malignancies with defined mutations 
are good candidates for assessing the value of ctDNA to 
monitor disease. The large amount of cfDNA in patients 
compared to ctDNA makes detection of ctDNA a major 

challenge for liquid biopsy. The challenge is made great- 
er when patients undergo cancer therapies such as ra
diotherapy or chemotherapy, which cause significant 
amounts of cfDNA to be released as a result of tissue dam-
age [30].

Mutations found in cfDNA from patient plasma likely 
embody both primary tumor and metastatic sites, making 
it representative of systemic disease. Evidence suggests 
that the half-life of cfDNA in the circulation is between 
16 min and several hours [45, 46], allowing it to provide 
information about tumor heterogeneity and subclonal 
changes in real time [47, 48]. Further work is needed to 
elucidate the exact mechanism of ctDNA release from 
cells, but it is currently believed that the majority of  
ctDNA in blood results from apoptosis [49], with necrosis 
and active release mechanisms also accounting for a pro-
portion of ctDNA. It is still unclear whether ctDNA has 
biological roles on other cells, but studies have shown 

Table 2. Previous studies analyzing the value of ctDNA in UM

Title Reference Patient number Major findings

Pyrophosphorolysis-activated polymerization 
detects circulating tumor DNA in metastatic 
uveal melanoma

Madic et al. [51], 2012 metastatic UM patients 
(n = 21)

ctDNA detected in 20 of 21 patients (range 
1.3–2,125 copies/mL of plasma); ctDNA levels 
correlated with tumor burden; sensitivity: 
1 ctDNA copy per reaction; specificity: 
104 copies of normal DNA were not detected

Ultradeep sequencing detects GNAQ and 
GNA11 mutations in cell-free DNA from 
plasma of patients with uveal melanoma

Metz et al. [52], 2013 metastatic UM patients 
(n = 28; amplicon sequencing 
performed on 22 patients)

ctDNA detected in 9 of 22 patients; no 
association between primary tumor 
characteristics (tumor height, largest basal 
diameter) and ctDNA detection; specificity: 
0.1% false-positive results in healthy blood

Detection rate and prognostic value of 
circulating tumor cells and circulating tumor 
DNA in metastatic uveal melanoma

Bidard et al. [23], 2014 metastatic UM patients 
(n = 40; 26 with ctDNA 
measurements)

ctDNA detected in 22 of 26 patients (range 
4–11,421 copies/mL); ctDNA levels associated 
with presence of miliary hepatic metastasis, 
metastasis volume, PFS, and OS; multivariate 
analyses showed ctDNA to be a better 
prognostic marker than CTCs; sensitivity: 
<1 copy/mL; no false-positives in healthy 
controls (n = 20)

Circulating tumor DNA changes for early 
monitoring of anti-PD1 immunotherapy: 
a proof-of-concept study

Cabel et al. [53], 2017 metastatic UM patients 
(n = 3; 15 patients in total)

patients with undetectable ctDNA by week 8 
of treatment had a significantly better PFS and 
OS than patients with persistently detectable 
ctDNA; ctDNA levels could be valuable in 
assessing response to anti-PD1 therapy; 
sensitivity: >0.1% mutant copies in normal 
DNA

Outlier response to anti-PD1 in uveal 
melanoma reveals germline MBD4 mutations 
in hypermutated tumors

Rodrigues et al. [97], 
2018

metastatic UM patients 
(n = 42)

one patient responded to pembrolizumab 
treatment; therapeutic response was measured 
by ctDNA levels and imaging, which showed 
consistent results

ctDNA, circulating tumor DNA; OS, overall survival; PFS, progression-free survival; UM, uveal melanoma.
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ctDNA uptake by host cells, and in vitro cells have been 
reported to be transformed by cfDNA from cancer pa-
tients [30]. The quantity of ctDNA found in the blood has 
been correlated to tumor burden and cell turnover [50]. 
Recent studies have shown a concordance rate of 80% 
(mutations) between tissue and ctDNA in liquid biopsies. 
Thus, liquid biopsy serves as a reliable proxy for conven-
tional tissue biopsy. In 2016, the FDA approved the first 
ctDNA test for EGFR mutations in non-small-cell lung 
cancer patients (cobas® Mutation Test version 2), high-
lighting the clinical utility of ctDNA (Table 2).

GNAQ and GNA11 are two genes of particular interest 
in the detection of UM ctDNA, since mutations in these 
genes can be exploited to differentiate tumor-derived 
DNA from cfDNA. Bidard et al. [23] investigated the lev-
el of ctDNA in metastatic UM patients based on point 
mutations in GNAQ and GNA11 using the bidirectional 
pyrophosphorolysis-activated polymerization (Bi-PAP) 
technique. ctDNA was found in 22 of 26 patients, and  
a correlation was made between higher levels of ctDNA 
and hepatic miliary metastases, tumor volume, and CTC 
count. ctDNA was also shown to be an independent prog-
nostic factor for progression-free and overall survival. 
Also using Bi-PAP and similar techniques, Madic et al. 
[51] showed the potential of using ctDNA to detect pa-
tients with minimal metastatic mass and enable early ad-
juvant therapy intervention.

Using a different technique, ultradeep amplicon se-
quencing, Metz et al. [52] similarly looked to detect 
GNAQ and GNA11 mutations in ctDNA and found posi-
tive results in 9 of 22 patients, with no correlations to 
clinical parameters. The advantage of this approach over 
Bi-PAP is not needing prior knowledge of the specific 
mutational information.

As mentioned before, one of the anticipated utilities 
of liquid biopsy is to monitor treatment response, which 
would allow clinicians to modify treatment according to 
this biomarker. This clinical utility was validated in a 
proof-of-principle study that monitored ctDNA levels 
during anti-PD1 immunotherapy in patients with non-
small-cell lung cancer, microsatellite-unstable colorectal 
cancer, and UM [53]. ctDNA was detected in 10 of 15 
patients at baseline measurement (of whom 2 were UM 
patients). After 8 weeks, a change in ctDNA level corre-
lated significantly with change in tumor size, and ctDNA 
detection at week 8 was prognostic of progression-free 
survival. Such results need to be validated in a larger pa-
tient cohort, especially since only 3 UM patients were 
included. Of the 3 UM patients included, 1 had unde- 
tectable ctDNA levels throughout the study, while the 

other 2 patients showed mild changes in ctDNA levels at 
week 8.

Our group focused on using digital droplet PCR, a 
highly sensitive technique, to detect ctDNA for mutations 
in GNAQ, GNA11, PLCB4, and CYSLTR2. In our study of 
40 patients with UM, patients with nevus, and healthy in-
dividuals, we saw a strong correlation between plasma-
based ctDNA detection and disease, with highest levels 
seen in patients with UM. In our nevus cohort, only pa-
tients with risk factors had detectable levels of ctDNA 
(unpublished data). Interestingly, using an animal model, 
we also showed an enrichment for ctDNA in the blood as 
well as aqueous humor of animals, which supports the 
exploration of these analytes as potentially valuable liquid 
biopsy (unpublished data).

ctDNA is a powerful biomarker because of its specific-
ity in identifying tumor-derived nucleic acids. With ad-
vances in the sensitivity of detection technologies such as 
sequencing and digital PCR, ctDNA has the potential to 
be used for monitoring treatment response and disease 
course.

Circulating miRNA

miRNAs are small noncoding RNAs of around 22 nu-
cleotides [54]. They function as regulators of gene expres-
sion that impact many important biological processes, in-
cluding cancer development. miRNAs found in the circu-
lation are termed circulating cell-free miRNA, and have 
a relatively long half-life [55]. In liquid biopsy, there are 
currently three major techniques for their detection: 
quantitative RT-PCR, microarray analyses, and deep se-
quencing [54] (Table 3).

A previous study found that 32 miRNAs are differen-
tially expressed in UM patients compared to healthy con-
trols [55]. The study compared miRNA profiles from vit-
reous humor, vitreous humor-derived exosomes, as well 
as serum from 6 UM patients and 6 control participants. 
miR-146a, which is thought to play an important role in 
the survival of melanocytes in UM, was found to be up-
regulated in the serum of UM patients. The significance 
of miR-146a as a serum marker was subsequently con-
firmed by another group [56]. Recently, a panel of six 
miRNAs – miR-16, miR-145, miR-146a, miR-204, miR-
211, and miR-363-3p – was reported to distinguish be-
tween patients with UM and uveal nevi [57]. Immune 
regulatory miRNAs were also studied, measured in 6 UM 
patients from the time of diagnosis up until development 
of metastasis. Plasma levels of miR-20a, miR-125b, miR-



Liquid Biopsy in Uveal Melanoma 9Ocul Oncol Pathol 2021;7:1–16
DOI: 10.1159/000508613

146a, miR-155, miR-181a, and miR-233 were all higher in 
UM patients compared to healthy controls, and upon de-
velopment of metastasis, all miRNAs with the exception 
of miR-181a had increased compared to the time of diag-
nosis [58].

Extracellular Vesicles

Emitted by both normal and cancer cells, EVs are 
nanoparticles with a lipid bilayer membrane and range 
from 50 nm to several micrometers in size. EVs are high-
ly heterogeneous and can be categorized mainly into mi-
crovesicles, apoptotic bodies, and exosomes based on 
size, shape, and origin [59, 60]. The process of EV emis-
sion from cells is conserved throughout evolution from 
prokaryotes to eukaryotes [61, 62]. They can transport 
cargo such as RNA, DNA, and proteins and act as a mes-
senger between cells, playing a vital role in intercellular 

communication [63]. However, the underlying mecha-
nism involved in EV formation, delivery of cargo inside 
EVs, and ultimately emission is still not clear.

Tumor-derived EVs have been implicated in promot-
ing cancer cell proliferation, migration, invasion, and dis-
ease progression [64–67]. EVs have been shown to play a 
major role in mediating metastasis, ranging from onco-
genic reprogramming of recipient cells to formation of 
the premetastatic niche through uptake by normal cells 
and subsequent priming of the microenvironment for 
colonization by CTCs [68–71]. Indeed, evidence has 
emerged suggesting that EVs released by cancer cells can 
transfer their oncogenic properties to recipient cells, 
which constitutes a novel mechanism of cancer dissemi-
nation [72, 73]. The contents of EVs are thus informative 
of their originating tumor, making them promising can-
didates for liquid biopsy analysis. Double-stranded DNA 
cargo could reflect specific mutations of the originating 
tumor. The lipid bilayer also conveniently protects the 

Table 3. Previous studies analyzing the value of miRNAs in UM

Title Reference Patient number Major findings

Circulating immune cell and 
microRNA in patients with uveal 
melanoma developing metastatic 
disease

Achberger et al. [58], 
2014

UM patients 
(n = 6)

plasma levels of miR-20a, miR-125b, 
miR-146a, miR-155, miR-181a, and miR-233 
higher in UM patients compared to healthy 
controls; upon development of metastasis, all 
miRs with the exception of miR-181a 
increased from the time of diagnosis

miRNA profiling in vitreous humor, 
vitreal exosomes and serum from 
uveal melanoma patients: 
pathological and diagnostic 
implications

Ragusa et al. [55], 2015 UM patients 
(n = 6)

32 miRNAs found to be differentially 
expressed in UM patients compared to healthy 
controls; vitreous humor circulating miRNA 
profile only partially overlaps that in serum; 
miR-146a was found to be upregulated in 
serum of UM patients, a potential circulating 
marker

Increased levels of miRNA-146a in 
serum and histologic samples of 
patients with uveal melanoma

Russo et al. [56], 2016 UM patients 
(n = 14)

SAM analysis showed 8 serum miRNAs to 
be differentially expressed between patients 
and controls; when singularly validated 
with TaqMan assays, only significant 
overexpression of miRNA-146a was found

A panel of circulating microRNAs 
detects uveal melanoma with high 
precision

Stark et al. [57], 2019 uveal nevus 
(n = 10); localized 
UM (n = 50); 
metastatic UM 
(n = 5)

6 miRNAs (miR-16, miR-145, miR-146a, 
miR-204, miR-211, and miR-363-3p) were 
differentially expressed between uveal nevi 
compared to localized or metastatic UM; 
miR-211 had the ability to distinguish 
metastatic from localized UM; the 6 miRNAs 
together had 93% sensitivity and 100% 
specificity in identifying UM

miRNA, microRNA; UM, uveal melanoma.
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RNA and miRNA contents from degrading due to RNase 
catalytic actions [74]. There are some advantages of using 
EVs as a liquid biopsy target. Compared to using CTCs as 
targets, there are currently more isolation protocols al-
ready developed for harvesting EVs, including commer-
cially available kits. Additionally, EVs express specific 
markers that allow for identification. Markers like HSP70 
and Alix allow their separation from other subcellular 
vesicles, while they also express markers that allow iden-
tification of their originating cells as well as target cells 
[74]. An immunoaffinity-based isolation protocol has 
been developed to distinguish melanoma-derived exo-
somes in patient plasma, based on the chondroitin sul-
phate peptidoglycan 4 (CSPG4) tumor antigen [75]. Fi-
nally, EVs are relatively stable while in circulation [74] 
(Table 4).

Recent studies on EVs in UM have focused on blood 
exosomes, which are small EVs (30–100 nm) secreted by 
cells that contain functional biomolecules that reflect 
their cell of origin. Using plasma from liver perfusates 
from metastatic UM patients, Eldh et al. [76] reported 
tumor-originated exosomes in the hepatic circulation, 
and although comparison with healthy controls failed 
due to insufficient exosome level in healthy blood, it was 

shown that they contain a different miRNA profile com-
pared to other tumor cell lines. In particular, a cluster of 
six miRNAs (miR-370, miR-210, miR-320a, miR-124, 
miR-107, and miR-486-5p) is shared between UM pa-
tients and likely indicates a melanoma origin. A higher 
overall concentration of exosomes in systemic blood, 
measured by total exosomal protein, was also found in 
metastatic UM patients (median 75.6 µg/mL plasma) 
compared to healthy controls (median 13.8 µg/mL plas-
ma) [76]. Exosomes produced by metastatic melanoma 
cells have been reported to contribute to premetastatic 
niche formation, preparing the environment for coloni-
zation by CTCs [77]. In a study on the use of oncosup-
pressor-mutated cell-based liquid biopsy tests for cancer 
screening, EVs from cancer patients of many tumor types, 
including choroidal melanoma, were capable of trans-
forming oncosuppressor-mutated cells to form tumors in 
vivo, suggesting the horizontal transfer of malignant 
traits [78]. In-depth studies on UM-derived exosomes are 
limited, and characterization of EVs in this disease setting 
is lacking. It would be relevant to further evaluate mecha-
nisms to inhibit the synthesis and uptake of tumor exo-
somes as an additional alternative to prevent melanoma 
progression and develop new adjuvant therapies.

Table 4. Previous studies analyzing the value of extracellular vesicles in UM

Title Reference Patient number Major findings

MicroRNA in exosomes isolated 
directly from the liver circulation in 
patients with metastatic uveal 
melanoma

Eldh et al. [76], 
2014

metastatic UM patients 
(n = 12)

metastatic UM releases exosomes into the 
liver circulation; patients have more 
circulating exosomes in systemic circulation 
compared to healthy controls; miRNA 
profiles of exosomes are similar between 
patients, but different compared with the cell 
line controls

miRNA profiling in vitreous humor, 
vitreal exosomes and serum from 
uveal melanoma patients: 
pathological and diagnostic 
implications

Ragusa et al. [55], 
2015

UM patients (n = 6) 90% of miRNAs were common between 
vitreous humor and vitreal exosomes; the 
major source of miRNA in vitreous humor 
could be from exosomes

Immunoaffinity-based isolation of 
melanoma cell-derived exosomes 
from plasma of patients with 
melanoma

Sharma et al. [75], 
2018

ocular melanoma (n = 2) immunoaffinity-based isolation protocol 
based on antibody for CSPG4 could isolate 
melanoma-derived exosomes in patient 
plasma with good reproducibility

Oncosuppressor-mutated cells 
as a liquid biopsy test for cancer-
screening

Abdouh et al. [78], 
2019

dysplastic melanocytic 
nevus (n = 1); choroidal 
melanoma (n = 1)

exosomes from cancer patient sera were able 
to transform OMCs; suggested that OMCs 
could be used as a biological liquid biopsy 
test for early cancer screening

miRNA, microRNA; OMCs, oncosuppressor-mutated cells; UM, uveal melanoma.
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Other Biomarkers

Currently, liver function tests (LFTs) are convention-
ally used for detecting and monitoring UM metastasis to 
the liver. LFTs assess levels of various liver enzymes in-
cluding alanine aminotransferase, aspartate amino-
transferase, alkaline phosphatase, gamma-glutamyl 
transpeptidase, lactic dehydrogenase, and bilirubin. 
However, LFTs often have low sensitivity and only de-
tect metastases at later stages of the disease. As a result, 
attention has been given to tumor serum markers, many 
of which were first utilized in the context of cutaneous 
melanoma, such as calcium-binding protein B (S100β) 
and melanoma inhibitory activity (MIA) protein. S100β, 
MIA, osteopontin, and tissue polypeptide-specific anti-
gen have been shown to have prognostic potential in 
predicting liver metastasis [79, 80]. In one study, while 
up to 96% of studied patients showed elevated levels of 
serum tumor markers at the time of metastasis diagno-
sis, only 52% showed elevated levels of LFT enzymes 
[81], indicating that serum tumor markers may have 
higher prognostic potential compared to LFT. Another 
group recently developed a 7-plex immunoassay for se-
rum UM markers that expanded to include CEACAM-1, 
MIC-1, SPON1, POSTN, and HSP27 in addition to os-
teopontin and MIA [82].

Other serum markers include DJ-1, a 189-amino-acid 
protein that has been identified as an oncogene and has 
been shown to be a promising biomarker for the detection 
of metastatic UM [83]. Another emerging target is tu-
mor-educated platelets, which are platelets that have been 
influenced by tumor cells through the uptake of trans-
ferred tumor-originating biomolecules such as RNAs 
[54]. mRNA sequencing of tumor-educated platelets in 
other cancer types has been shown to identify malignan-
cies with extremely high accuracy [84]. Further studies 
are needed to assess their significance in UM.

Aqueous and Vitreous Humor in Liquid Biopsy

Although not as minimally invasive as blood samples, 
ocular fluids like the aqueous and vitreous humor can 
also be sampled for intraocular diseases. In retinoblasto-
ma, ctDNA in the aqueous humor has been explored as a 
potential biomarker [22]. Aqueous humor samples from 
26 retinoblastoma patients were evaluated for somatic 
chromosomal copy number alterations, and 6p gain in 
aqueous humor ctDNA was found to correlate with poor-
er clinical outcome [85].

In UM, aqueous and vitreous have also been sampled 
from patients in various contexts, although far less so 
than blood samples. Sakuma et al. [86] described a case of 
choroidal melanoma where diagnosis made after a modi-
fied Shorr stain on a sample of vitreous humor revealed 
cancer cells associated with melanin granules. The aque-
ous and vitreous have also been investigated as a source 
of other biomarkers. High levels of S-100 protein were 
found in both vitreous and aqueous humors in patients 
with ocular melanoma [87]. Levels of vascular endothe-
lial growth factor (VEGF) were also observed in the aque-
ous humor of UM patients, with aqueous VEGF-A con-
centration correlating with largest basal tumor diameter 
and tumor height [88, 89]. Additionally, the level of solu-
ble HLA in aqueous humor was found to be an unfavor-
able prognostic factor that correlates with larger tumors 
and worse survival [90].

EVs have also been detected in ocular fluids. In a study 
by Ragusa et al. [55], 32 miRNAs were found to be differ-
entially expressed in UM patients compared to healthy 
controls, and in particular, miR-146a, miR-21, and miR-
34a were significantly upregulated in both the vitreous 
humor and vitreal exosomes, while miR-618 was down-
regulated in the vitreous humor and upregulated in  
vitreal exosomes. It was concluded that since 90% of  
miRNAs were common between the vitreous humor and 
vitreal exosomes, exosomes are likely a major source of 
miRNA in the vitreous humor.

Clinical Utility of Liquid Biopsy

Screening and Early Detection
Tumor-originating biomarkers such as CTCs and  

ctDNA have potential for early tumor detection. Evi-
dence suggests that many patients have disseminated tu-
mor cells at the time of diagnosis. Indeed, it has been es-
timated that at the point of primary UM tumor treatment, 
CTCs and micrometastases may have already been pres-
ent for 2–3 years [91]. However, designing a clinically 
useful liquid biopsy-based screening test with high 
enough specificity and sensitivity remains an obstacle. 
Our group recently showed a correlation between posi-
tive plasma ctDNA and choroidal nevus with risk factors 
for growth and malignancy, suggesting that ctDNA may 
help diagnose small melanomas (unpublished data).

Predicting Prognosis and Metastatic Risk
Given the lack of effective systemic therapies available 

for metastatic disease, doubt exists as to the clinical util-
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ity of prognostic indicators for UM patients. Despite this, 
identifying patients who are at high risk of metastasis 
would allow closer monitoring of disease progression. 
Moreover, albeit limited, there are data suggesting that 
systemic therapies can prolong survival [92, 93], and it is 
probable that early initiation of treatment at the micro-
metastasis stage will translate to better response due to 
lower disease burden. Moreover, surgical intervention 
can, in certain instances, be an option when metastatic 
disease is limited to few foci. With many clinical trials 
underway and our growing understanding of UM biolo-
gy, more effective systemic therapies are likely to emerge, 
which will make determining metastatic risk clinically 
relevant.

Interestingly, the 2010 TNM classification system has 
already included CTC count in its criteria, denoted by 
“i+” [30]. However, it has not been widely used due to 
very low CTC counts in early tumor stages, limiting its 
clinical value [30].

Monitoring Cancer Evolution
Tumors are in constant evolution throughout the dis-

ease course as both part of their natural history and in 
response to selective pressure from treatment. New muta-
tions and mechanisms of resistance can emerge as a result 
of clonal selection. A safe and noninvasive method of 
monitoring cancer evolution that can be done repeatedly 
is needed, and liquid biopsy is an ideal way of tracking 
such changes. Through analysis of ctDNA, for example, 
mutations that arise in patients can be monitored and 
used to design more personalized treatment plans that 
take into account any emergent drug-resistant clones 
[30].

Monitoring Therapeutic Response and Minimal 
Residual Disease
Studies have shown the validity of using CTC quanti-

fication to assess therapeutic effects in some cancers, in-
cluding metastatic breast, colorectal, and prostate cancer 
[94–96]. Following therapeutic intervention, patients can 
be analyzed for persisting high levels of CTCs or ctDNA 
as an indication of minimal residual disease and any need 
to adjust treatment. Such studies in the context of sys-
temic UM therapies are lacking. Nevertheless, Suesskind 
et al. [39] did explore CTC levels in UM patients before 
and after various primary tumor therapies and found no 
significant difference in the number of blood CTCs. This 
provides evidence against the concern of primary therapy 
causing further tumor cell dissemination into the blood-
stream. Although UM patients generally do not respond 

to immune checkpoint therapies such as anti-PD1, an 
outlier response was reported for a patient who respond-
ed unusually well, presumably due to a hypermutated tu-
mor status. The study used ctDNA to monitor therapeu-
tic response, which correlated well with imaging results 
[97].

Stratification for Therapeutic Intervention

In the era of targeted treatment, patient stratification 
is pivotal to determine the most effective therapy. New 
clinical trials are being conducted in UM that target spe-
cific molecular profiles of tumors. Liquid biopsy could 
potentially help stratify patients according to the genetic 
and molecular characteristics of their tumor. In fact, in 
2016, the FDA approved the first ctDNA analysis test to 
detect EGFR mutations in lung cancer patients who could 
be eligible for EGFR-targeted therapy [98], indicating that 
such approaches are clinically useful through liquid bi-
opsy analysis.

Discussion

Liquid biopsy has already been incorporated into clin-
ical practice for certain cancers, yet insufficient detection 
sensitivity and consistency limit its current widespread 
utility. Liquid biopsy in UM remains a developing but 
exciting field, and more studies are warranted. Common 
challenges encountered by previous studies include limi-
tation of detection sensitivity and small patient sample 
size. Recent advances in technology have already brought 
significant progress to the field. For example, ultrasensi-
tive technologies such as digital PCR now allow for con-
sistent detection of ctDNA in the circulation. New ap-
proaches, better markers of disseminated cells and mol-
ecules, and commercially available extraction kits are 
making liquid biopsy studies more consistent and valu-
able. Thus, it is reasonable to expect more accurate detec-
tion in the near future with further technological devel-
opments. Moreover, despite the rarity of UM, multicen-
tric studies will help overcome limitations in sample size.

Studies on CTCs make up the majority of the current 
published literature on liquid biopsy in UM, but ctDNA 
is quickly attracting growing interest. While CTCs and 
ctDNA may appear as two competing targets for liquid 
biopsy, these two biomarkers provide different and com-
plementary information regarding the tumor [30]. Bi-
dard et al. [23] compared the prognostic value of CTC 
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and ctDNA and concluded that only ctDNA was an inde-
pendent prognostic factor for survival. However, the two 
markers were shown to correlate with each other, as re-
ported in other cancers as well [23].

There is inconsistency in the detection rate of CTCs in 
published studies of UM. Particularly for RT-PCR-based 
studies, they showed insufficient accuracy and reproduc-
ibility, and thus proved not yet ready for clinical use in 
guiding treatment decisions [28]. While there is some 
controversy on whether the presence or absence of CTCs 
is informative regarding a patient’s metastatic risk, a bet-
ter correlation is likely to be found if we also consider the 
molecular traits of CTCs detected rather than only the 
total count. Studies to date on CTCs in UM generally 
showed that CTCs can be detected in UM patients from 
a very early time point. Knowing that not all UM patients 
will develop metastasis, it is proposed that the presence of 
CTCs may be needed but not sufficient for metastasis. 
Studying and characterizing CTCs could provide insight 
to the specific events that result in successful seeding of 
disseminated cells into clinically evident metastatic tu-
mors. Thus, gene expression profiling of CTCs may be an 
important direction of research in the future, and liquid 
biopsy would be an attractive noninvasive way of collect-
ing CTC samples even after primary tumor treatment. 
Moreover, understanding the role of tumor cell-derived 
EVs will likely shed considerable light on the communi-
cation that mediates metastasis. While few studies exist in 
EVs in UM, this field is growing rapidly, assisted by new 
EV isolation, detection, characterization, and visualiza-
tion tools.

Importantly, liquid biopsy provides us not only with 
biomarkers of disease, but also with tumor-derived mol-
ecules that can be exploited noninvasively to better un-
derstand the disease. While CTCs, ctDNA, and EVs may 

be clinically valuable as biomarkers, these disseminated 
molecules are likely to play important active roles in driv-
ing systemic disease. CTCs may travel to and seed site 
specifically in distant organs, making understanding their 
molecular characteristics pivotal. Moreover, these cells 
release nucleic acids into the circulation, such as miRNAs 
and ctDNA, and these molecules can provide real-time 
insight into genomic alterations behind disseminated dis-
ease. Finally, EVs may be actively contributing to prepar-
ing organs such as the liver for colonization, and thus are 
an important new focus of therapeutics. While the bio-
logical mechanisms leading to metastasis in UM remain 
largely unknown, future efforts in clarifying this process 
may be key to the development of new effective adjuvant 
therapies. Such new insight may help explain why despite 
primary control, patients can develop metastasis, and fur-
ther demonstrate that to improve patient survival, a sys-
temic approach is needed to target tumor-derived mole-
cules.
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