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Abstract

Air pollution has been documented to contribute to severe respiratory diseases like asthma and 

chronic obstructive pulmonary disorder (COPD). Although these diseases demonstrate a shift in 

the lung microbiota towards Proteobacteria, the effects of traffic generated emissions on lung 

microbiota profiles have not been well-characterized. Thus, we investigated the hypothesis that 

exposure to traffic-generated emissions can alter lung microbiota and immune defenses. Since a 

large population of the Western world consumes a diet rich in fats, we sought to investigate the 

synergistic effects of mixed vehicle emissions and high-fat diet consumption. We exposed 3-

month-old male C57Bl/6 mice placed either on regular chow (LF) or a high-fat (HF: 45% kcal fat) 

diet to mixed emissions (ME: 30 μg PM/m3 gasoline engine emissions + 70 μg PM/m3 diesel 

engine emissions) or filtered air (FA) for 6 h/d, 7 d/wk for 30 days. Levels of pulmonary 

immunoglobulins IgA, IgG, and IgM were analyzed by ELISA, and lung microbial profiling was 

done using qPCR and Illumina 16 S sequencing. We observed a significant decrease in lung IgA in 

the ME-exposed animals, compared to the FA-exposed animals, both fed a HF diet. Our results 
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also revealed a significant decrease in lung IgG in the ME-exposed animals both on the LF diet 

and HF diet, in comparison to the FA-exposed animals. We also observed an expansion of 

Enterobacteriaceae belonging to the Proteobacteria phylum in the ME-exposed groups on the HF 

diet. Collectively, we show that the combined effects of ME and HF diet result in decreased 

immune surveillance and lung bacterial dysbiosis, which is of significance in lung diseases.
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1. Introduction

The lungs are among the first organs to be exposed to the harmful effects of inhaled air 

pollution. Air pollutants including particulate matter (PM), polycyclic aromatic 

hydrocarbons, gaseous mixtures of nitrogen dioxide, carbon monoxide, and volatile organic 

compounds have all been implicated in causing severe lung damage (Marino et al., 2015; 

Moorthy et al., 2015; Xing et al., 2016). Exposure to air pollutants is associated with the 

exacerbation of several respiratory diseases such as asthma, bronchitis, and chronic 

obstructive pulmonary disorder (COPD) (Andersen et al., 2011; Faustini et al., 2013). Air 

pollution exposures result in around 7 million premature deaths in a year, of which 43% are 

deaths due to COPD, and 26% due to respiratory infections (WHO Global Health 

Observatory, 2016). The incidence of the occurrence of these diseases is also higher in 

heavily polluted regions suggesting that air pollutants play a role in either development or 

exacerbation of underlying lung conditions (Kim et al., 2018). Air pollutants have been 

documented to affect immune response at the mucosal surfaces by altering immunoglobulin 

production and releasing inflammatory mediators (Hiraiwa and van Eeden, 2013; Li et al., 

2017). Although there has been a lot of interest in the immunological consequences of air 

pollution, we are only beginning to explore the impact of these pollutants on the newly 

identified lung microbiome.

Lungs were historically considered to be sterile, but recent advances in sampling techniques 

and 16 S rRNA sequencing have demonstrated that the lower respiratory tract is replete with 

a wide variety of microorganisms– both in health and disease (Dickson et al., 2016). The 

healthy lung microbiome is variable due to the dynamic responses of inhalation, exhalation, 

mucociliary clearance, host-immune responses, etc., that occur continuously within the 

lungs. Despite these fluxes, most of the bacteria in the healthy lungs belong to 4 major 

phyla: Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria (Mathieu et al., 2018). 

The commensal microbial diversity is crucial in maintaining several homeostatic functions 

such as immune system development and regulation. With advances in lung microbiome 

studies, we now understand that these microorganisms are not mere bystanders, but they 

play a significant role in modulating the immune environment on the lungs. Studies in germ-

free mice have demonstrated that IgA production is significantly reduced within their airway 

lumen, making them vulnerable to antigen challenges (Ruane et al., 2016). In the absence of 

microbial stimulation in germ-free mice, they were also found to have decreased mucus 

production, which severely impedes their mucociliary defense mechanism (Yun et al., 2014).
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In disease states, it is observed that the diversity of commensal bacteria is often affected 

when certain bacteria with selective advantages proliferate and outcompete the others. In 

many inflammatory diseases of the lung, a shift in the microbiota profile towards 

Proteobacteria is observed (Hilty et al., 2010; Molyneaux et al., 2013), primarily because 

these microorganisms have unique abilities to thrive in inflammatory environments (Rizzatti 

et al., 2017). The human microbiome is understood to be influenced by several factors, 

including diet and environmental exposures (Tasnim et al., 2017). There are a few emerging 

studies that show inhaled air pollutants from both anthropogenic and natural sources can 

also induce alteration in the Firmicutes: Bacteroidetes ratio in the GI tract, which increases 

susceptibility to inflammation (Fitch et al., 2020; Mutlu et al., 2018).

A large percentage of the Western world consumes a diet rich in fats, which has contributed 

to the epidemic of obesity, characterized by low-grade inflammation (Duan et al., 2018). 

High-fat (HF) diet consumption alone has been documented to cause microbial shifts with 

an increase in Firmicutes in the gastrointestinal tract (Murphy et al., 2015). However, to 

date, the synergistic effects of traffic-generated air pollutant mixtures and HF diet on the 

lung microbiota have not been characterized. To address this gap in knowledge, we 

investigated the hypothesis that exposure to a mixture of gasoline and diesel emissions can 

alter the lung microbiota and immune defenses in wildtype mice placed on an HF diet. The 

interactions between environmental exposures, diet, microbiome, and the immune system 

are vital in understanding the development of diseases. In the following experiments, we 

exposed C57Bl/6 wildtype mice to a mixture of gasoline and diesel emissions and placed 

them on either a standard mouse chow or HF diet, and analyzed immunoglobulin levels and 

lung microbiota profiles.

2. Materials and methods

2.1. Animals and inhalational exposure

Three-month-old C57Bl/6 male mice (C57BL/6NTac, Taconic, Germantown, NY) were 

placed either on a standard mouse chow (LF, containing 12% fat, n = 12) or a high-fat (HF, n 

= 12) diet (TD88137 Custom Research Diet, Harlan Teklad, Madison, WI; 21.2% fat content 

by weight, 45% kcal from fat, 1.5 g/kg cholesterol content) for 30 days prior to exposures. 

Mice were then exposed to whole-body inhalation to either filtered air (FA, n = 6 per diet) or 

a mixture of gasoline and diesel engine exhaust (ME: 30 μg PM/m3 gasoline engine 

emissions + 70 μg PM/m3 diesel engine; n = 6 per diet) for 6 h/d, 7 d/wk, for 30 days. ME 

was created by combining exhaust from a 1996 GM gasoline engine and a Yanmar diesel 

generator system, and exposures chemistries and PM characterized, as previously reported 

(Lucero et al., 2017; Lund et al., 2011; McDonald et al., 2004, 2008; Mumaw et al., 2016; 

Oppenheim et al., 2013). Particle size distribution, composition, and mass concentration 

were determined, as previously described (Suwannasual et al., 2018). The particle mass size 

distribution had a median of 1 μm (range: < 0.5–20 μm), particle number size distribution for 

this exposure had a median size of approximately 60 nm; with total particle mass for the 

mixture measured at 102.5 ± 20.9 μg/m3 over the 30 d study. Particle mass concentration by 

gravimetric analysis of Teflon membrane filters at the inlet of the chamber and inside the 

exposure chamber was conducted once/wk throughout the exposure protocol. The FA 
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exposure consisted of HEPA-filtered ambient air. Mice were kept, 4 to a cage, in standard 

shoebox cages within AAALAC International-approved rodent housing facility (2 m3 

exposure chambers) for the entirety of the study, which maintained a constant temperature 

(20–24 °C) and humidity (30–60% relative humidity). Chow and water were provided ad 

libitum, except during daily exposures when chow was removed. All procedures were 

approved by the Animal Care and Use Committee at the Lovelace Respiratory Research 

Institute and conform to the Guide for the Care and Use of Laboratory Animals published by 

the US National Institutes of Health (NIH Publication No. 85-23, revised 1996).

Tissue Collection: Animals were sacrificed 14–16 h after their last exposure. Mice were 

anesthetized with Euthasol (0.1 ml per 30 g mouse) and euthanized by exsanguination. The 

lungs were dissected and immediately snap-frozen in liquid nitrogen.

The nomenclature used are as follows: (a) LF FA: C57Bl/6 mice placed on LF diet and 

exposed to FA, (b) LF ME: C57Bl/6 mice placed on LF diet and exposed to ME, (c) HF FA: 

C57Bl/6 mice placed on HF diet and exposed to FA, (d) HF ME: C57Bl/6 mice placed on 

HF diet and exposed to ME.

2.2. ELISA

Lung tissues (n = 6 per group) were homogenized in a beat beater with sterile saline and the 

supernatants were used for Immunoglobulin ELISAs. The concentration of IgA (Fisher 

Scientific, EMIGA), IgG (Fisher Scientific, 88-50400-22), and IgM (Fisher Scientific, 

88-50470-22) were measured in 10-fold diluted lung tissue homogenates using ELISA 

according to the manufacturer’s recommendations. The samples were processed in 

triplicates, and values were determined from a known value standard curve, using a 

sigmoidal four-parameter logistic (4-PL) curve-fit.

2.3. qPCR

DNA from homogenized lung tissues (n = 6 per group) was extracted using ZR Fecal DNA 

miniprep (Zymo Research). qPCR was performed using SsoAdvanced Universal SYBR 

Green Supermix (Bio-Rad) and the CFX96 Real-Time system (Bio-Rad). For bacterial 16 S 

rRNA analysis, samples were normalized to Eubacteria utilizing known-concentration 

standards. Bacterial primers used are described in Table 1.

2.4. Illumina MiSeq sequencing

Genomic DNA was isolated using ZR Fecal DNA miniprep (Zymo Research) from lung 

homogenates (n = 6 per group). 16 S rRNA genes (variable region 4, V4) were amplified 

using a composite forward primer and a reverse primer with a unique 10-base barcode used 

to tag PCR products from respective samples, as described in Fan et al. (2015).

2.5. 16 S Bioinformatics and statistical analyses

Sequence reads obtained from the 16 S rRNA sequencing were analyzed by Mothur 

Software (version: 1.39.5) from the pipeline of MiSeq SOP (Schloss et al., 2009); standard 

procedure of this pipeline was followed. In this pipeline (https://rpubs.com/maddieSC/mo-

thur_SOP_May_2018), the paired-end reads, that is, the forward and the corresponding 
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reverse reads obtained from paired-end sequencing, were combined to form “contigs.” 

Furthermore, these sequence reads are from the V4 region (~ 250–300 bp) of the 16 S rRNA 

sequences; however, due to the PCR errors, sequence reads longer than 300 bp, and 

sequences with ambiguous base calls could be generated (Kozich et al., 2013). These low-

quality sequences were removed from further analysis. Next, following the standard protocol 

of Mothur, the duplicate sequence reads were merged as it is not computationally useful to 

align the same sequence multiple times. These processed sequences were then aligned to the 

reference database, SILVA, containing the 16 S rRNA gene sequences. The database was 

first customized to our regions of interest (V4 regions) using command pcr.seqs; this was 

performed for the improvement of overall alignment. Following the alignment, any 

sequences that did not align to V4 region sequences in the customized database were 

removed. After the alignment, parts of sequences overhanging at both ends were removed. 

Gap characters (“−”) inserted during the alignment were removed. Further, these sequences 

were de-noised via a pre-clustering step (sequences were sorted based on the abundance and 

clustered based on their nucleotide difference less than 2) and removal of chimeras. These 

sequences were clustered based on species-level (97% or more) similarity to form 

Operational Taxonomic Units (OTUs), hence giving the absolute abundance matrix. Once 

the OTUs were established, taxonomic identity was assigned to each OTU. We used the 

Greengenes database for the taxonomic classification as the usage of this database is known 

to provide lower taxonomic level assignments and leaves fewer sequences unclassified. 

Additionally, a consensus confidence threshold was set at the 80% classification cut-off 

(default in Mothur) to specify the taxonomic identities. Finally, normalized taxonomic 

abundance for OTUs in each sample was obtained by dividing the abundance values by the 

total number of sequences in the sample, using the “normalized.shared” function. 

Normalized values were then approximated to the nearest integer. Note that the samples with 

very low sequence count (< 3) were eliminated from the further statistical analysis.

These data were further used as the input for the downstream statistical analyses performed. 

Alpha diversity quantifying the diversity of microbial species within a sample was estimated 

using the Chao1 index (for species richness) and Shannon index (for species diversity; the 

more the richness of the species and the more the species evenly distributed in a sample, the 

greater the Shannon diversity) (Chao, 1984; Chazdon et al., 1998; Shannon and Weaver, 

n.d.). Beta diversity representing the diversity in microbial species between different 

samples was calculated in the form of UniFrac weighted and unweighted principal 

coordinate analysis (PCoA) plot (Lozupone and Knight, 2005). Unweighted UniFrac is a 

qualitative measure that estimates the distance between two microbial communities based on 

the fraction of the branch length in a phylogenetic tree leading to descendant taxa in 

exclusively one or the other community (Lozupone et al., 2007). Weighted UniFrac, an 

extension of the unweighted Unifrac, also takes into account the relative abundance of taxa 

represented in the communities. Alpha diversity analysis was performed and the UniFrac 

(weighted and unweighted) PCoA plots were generated in the R environment using the 

Phyloseq package. The diversity estimators including AMOVA and ANOVA were 

implemented with mothur.
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2.6. Statistics

Data were analyzed by two-way ANOVA with a Sidak-Holm multiple pairwise comparison 

post-hoc test using GraphPad Prism 7 for Fig. 1 and Fig. 2A-D. Data are expressed as mean 

± SEM, and a p < 0.05 was considered statistically significant.

3. Results

3.1. Exposure to ME alters immunoglobulin levels within the lungs of C57Bl/6 wildtype 
mice

Although IgA is the predominant immunoglobulin in mucosal secretions, IgG and IgM are 

also locally present within the lungs and aid in the exclusion of invading antigens. To 

investigate whether exposure to inhaled vehicle emissions can alter airway defenses, we 

quantified the levels of IgA, IgG, and IgM within lung homogenates by ELISA. When 

compared to LF FA and LF ME groups, we observed IgA to significantly increase in the HF 

FA group (Fig. 1A, p < 0.001). Interestingly, when compared to the HF FA, we observed a 

significant decrease in IgA in the HF ME group (Fig. 1A, p < 0.001). The respective F 

values for IgA levels are: exposure = 17.020, diet = 6.021, exposure x diet interaction = 

12.27. We also observed a significant decrease in IgG in the LF ME and HF ME groups 

(Fig. 1B, p = 0.023, F = 9.140 for exposure), compared to the LF FA group. IgM levels were 

found to be unaltered across all groups (Fig. 1C).

3.2. Exposure to ME results in an increased abundance of Proteobacteria in C57Bl/6 mice 
on the HF diet

To determine whether the bacterial abundance within the lungs was altered with our 

exposures, we quantified the total bacterial load using qPCR. We obtained a total of 6 log 

copies/ml of bacterial DNA (Fig. 2A). However, there were no statistical differences 

observed in the total bacterial abundance across all groups. There were also no significant 

alterations observed within Firmicutes and Bacteroidetes between the groups (Fig. 2B, C). 

Interestingly, we observed that the abundance of Proteobacteria was significantly elevated 

only in the HF ME groups (Fig. 2D, p = 0.031). The respective F values for Proteobacteria 

are: exposure = 2.499, diet = 3.492, exposure x diet interaction = 1.165. Actinobacteria was 

barely detected by qPCR (data not shown). When we measured the percentages of the 

individual phyla, contributing to the total bacterial abundance, for each of the study groups, 

we observed that the overall percentage of Proteobacteria was much higher in the lungs of 

the HF ME group (Fig. 2E).

3.3. Exposure to ME results in the increased relative abundance of Enterobacteriaceae in 
C57Bl/6 mice on the HF diet

To confirm the expansion of Proteobacteria observed by qPCR, we performed Illumina 

MiSeq sequencing analysis of the 16 S rRNA region. We observed a similar increase in 

abundance in the Proteobacteria phylum in the HF ME groups alone (Fig. 3A). Although we 

observed Proteobacteria in the LF ME groups in the absolute abundance file, they had very 

low reads and were removed during the normalization of this dataset. Further classification 

revealed that most of the bacteria within the Proteobacteria phylum belonged to the 
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Enterobacteriaceae family (Fig. 3B, C). Interestingly, we observed that Lactobacillus 

predominantly present in both the LF and HF control groups was absent in the ME exposed 

groups (Fig. 3B, D). We found that bacterial alterations are occurring within the Firmicutes 

phyla as well. Clostridia were found to be expanding in the ME exposed groups on both LF 

and HF diets (Fig. 3D). Although most of these bacteria within the Clostridia class belong to 

the Lachnospiraceae family, only the LF ME group showed the presence of Clostridium 
species (Fig. 3C).

3.4. Bacterial diversity is altered with exposure to ME in C57Bl/6 mice

To investigate exposure mediated shifts in lung microbial diversity, we performed α-

diversity and β-diversity calculations. The α-diversity was estimated using the Shannon 

(diversity) index (Fig. 4A) and Chao1 (richness) index (Fig. 4B), both of which showed a 

decrease in the bacterial diversity in the HF ME group. However, these results were not 

statistically significant by ANOVA due to the low abundance of these microorganisms. We 

observed significant differences in β-diversity in lung microbiota profiles in the exposed and 

control groups. Fig. 5A is an unweighted PCoA plot constructed using unweighted UniFrac 

distances representing the total variance in bacterial communities. Each dot is representative 

of the lung microbiome of one animal in each of the four groups. Although we had six 

animals in each group, we were unable to obtain reads for all the samples due to the low 

abundance of microorganisms within the lungs. Despite these challenges, we still observe a 

clear separation between the ME exposed and FA control groups. Both the unweighted and 

weighted PCoA plots show LF FA and HF FA samples are dispersed away from the LF ME 

and HF ME groups (Fig. 5A, B). Analysis of Molecular Variance (AMOVA) was performed 

to assess the variations among different groups. AMOVA showed UniFrac distances with a 

significant p-value of 0.006 between LF FA and LF ME and a p-value of 0.007 between the 

LF FA and HF ME groups (Table 2). A significant variation was also observed between the 

control groups on LF or HF diets (Table 2, p = 0.014).

4. Discussion

Recent studies point to an increase in the incidence of lung diseases in heavily polluted 

regions, with mounting evidence implicating air pollution to be a primary risk factor for 

increased hospitalizations of individuals with respiratory diseases, such as asthma and 

COPD (Kurt et al., 2016; Moore et al., 2016; Raji et al., 2020). Many of these lung diseases 

have been associated with an increase in bacteria belonging to the Proteobacteria phylum 

(Dickson et al., 2013; Rizzatti et al., 2017). However, to date, an association between air 

pollution-mediated lung microbial alterations or their effects on the onset or progression of 

lung diseases has not been made. In this study, we report for the first time to our knowledge 

that exposure to a mixture of gasoline and diesel emissions in combination with the HF diet 

affects immune defenses and causes lung bacterial dysbiosis with an expansion of 

Proteobacteria. Both the gaseous and the PM component of traffic generated air pollutants 

were incorporated in our study to determine the overall impacts of vehicle derived 

pollutants. We utilized the HF diet component alongside our exposures since the standard 

Western diet that constitutes > 30% fat is present in much of the human population. Using 
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this model, we sought to analyze the synergistic effects of inhaled air pollutants and the HF 

diet.

The results obtained indicate that exposures to mixed emissions cause a decrease or 

degradation of immunoglobulins that play crucial roles in protecting the airways. ME-

exposure resulted in decreased pulmonary IgG in both the LF and HF-diet animals, while 

pulmonary IgA was only decreased with ME exposure within the HF-diet group and was not 

statistically different from the LF FA or LF ME groups. In addition to viral neutralization, 

IgA functions to prevent bacterial adherence on the surface of airway epithelial cells, 

thereby preventing unwarranted activation of immune responses (Mantis and Forbes, 2010). 

It is possible that with concurrent consumption of a HF diet, ME exposure mediates a 

reduction in pulmonary IgA that promotes decreased immune surveillance leading to an 

unwarranted bacterial outgrowth of Proteobacteria within the lungs of those animals. The 

decrease in IgA may be associated with degradation caused by toxic proteases released by 

neutrophils that rapidly infiltrate the airway lumen when exposed to pollutants (Pilette et al., 

2003). Importantly, IgA was found to be significantly elevated in the HF FA groups. An 

increase in intestinal IgA in response to HF diets has been documented (Kunisawa et al., 

2014); however, diet outcomes on IgA expression in the lung are not as well characterized. It 

is plausible that a gut-lung axis mediated response may contribute to alterations in IgA 

expression in the lungs of mice on the HF diet (Enaud et al., 2020). A decrease in IgG in ME 

exposed groups on both LF and HF diet suggests that the decrease is exposure mediated. A 

previous study of ambient particulate matter exposure on Sprague–Dawley rats increased 

secretory IgA levels but decreased IgG (Li et al., 2017). A decrease in salivary IgA has been 

observed in children living in polluted regions (Mehrbani et al., 2016). These discrepancies 

observed between different studies can be explained by several reasons, including different 

study models, variations in the components of exposed particulates and gaseous emissions, 

as well as the duration and intensity of exposures. Both immune suppression and initiation 

of pronounced inflammation have been observed in response to different particulates in air 

pollution, all of which have detrimental consequences on the host.

In response to air pollutant exposures, immune cells have been documented to generate 

reactive oxygen and nitrogen species (ROS, RNS) to mediate the challenge, and it is a well-

understood mechanism of air-pollution mediated toxicity (Laskin et al., 2010; Lodovici and 

Bigagli, 2011). Although inflammation was traditionally understood to expel potential 

antigens, recent evidence suggests that specific microbial communities can exploit 

byproducts of inflammation to proliferate and worsen inflammatory responses (Scales et al., 

2016). For example, macrophages and neutrophils release ROS in the form of O2
‐  and RNS 

in the form of NO3
‐  as antimicrobial effectors that decompose to generate nitrates in the 

process of eliminating antigens. These nitrates can be utilized selectively by bacteria 

belonging to the Proteobacteria phylum for anaerobic respiration and growth (Winter and 

Bäumler, 2014). We suspect that air pollution-induced oxidative stress, along with the 

degradation of IgA, may be responsible for the observed increase in Proteobacteria in the HF 

ME group of study animals. Baseline inflammation may be higher in the HF ME groups as 

the HF diet alone are reported to increase inflammation; however, this was not assessed in 

the current study (Duan et al., 2018).
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The bacterial composition was found to be altered in the HF FA groups with an abundance 

of Firmicutes. HF diet has been shown to increase Firmicutes in the gastrointestinal tract. 

Thus, a possible gut-lung interplay may contribute to an increased predominance of 

Firmicutes within the HF FA groups (Zhang and Yang, 2016). Beneficial bacteria such as 

Lactobacillus that has anti-inflammatory properties (Mortaz et al., 2013) were found to 

decrease in the ME exposed groups. This was accompanied by an increase in Clostridia in 

the ME exposed groups, with LF ME groups exhibiting an increase in the Clostridium 
species. Many bacteria in the Clostridia class are beneficial commensals, but Clostridium 
species and their outgrowth have been associated with having pathogenic outcomes in 

several lung diseases (Palmacci et al., 2009; Shu et al., 2008). Actinobacteria was also found 

to be elevated only in the LF ME group by sequencing. However, we are unaware if an 

increase in Actinobacteria has pathogenic outcomes within the lungs. The roles of these 

commensal lung bacteria are not well-known, considering our rudimentary knowledge of the 

lung microbiome.

The shifts observed in the Firmicutes and Proteobacteria phylum may be causing the 

reduced bacterial diversity observed in our results in the HF ME groups as there is an 

outgrowth of bacteria with selective advantages. Although not statistically significant, the 

Shannon diversity index shows reduced bacterial diversity in the HF ME group. The Chao1 

index that measures richness of the microbial profile also revealed a decrease in the 

abundance of bacteria in the HF ME groups, suggesting opportunistic pathogens may be 

replacing commensals. The PCoA plots show a distinct separation of each group, reinstating 

our observations that exposures cause shifts in the microbial profile.

We also notice the expansion of Enterobacteriaceae within the Proteobacteria phylum. 

Bacteria belonging to the Proteobacteria phylum have been associated with many mucosal 

diseases (Yang and Jobin, 2014). It is plausible that the expansion of these bacteria could 

potentially enhance the inflammatory response, possibly due to a lack of IgA responses to 

safeguard against unwarranted bacterial adherence. In the absence of IgA, Proteobacteria 

can proliferate and adhere to epithelial linings and induce inflammatory signaling by 

activating Toll-like receptors (Tana et al., 2003). Thus, with decreasing IgA observed in the 

lungs of the HF ME-exposed animals in our study, there could be unwarranted expansion 

and adherence of Proteobacteria on epithelial linings that could enhance inflammation 

(Huffnagle et al., 2017).

With this study, we hope to shed light on the effects that air pollutants can have on the lungs 

and how they may exacerbate lung diseases; however, there are a few limitations to note. 

First, the concentration of ME used in the current study (100 μg/m3 PM) would be 

considered a high environmental exposure scenario. However, this PM concentration is 

within (or below) the range of PM observed in near roadway, occupational, and heavily 

populated urban area exposure scenarios (Costa et al., 2017; IQAir, 2021; Pronk et al., 

2009). Moreover, a high degree of variability is observed across all the groups, which we 

believe is characteristic of the lung microbiome profile owing to dynamic responses within 

the lungs. The microbial composition is constantly renewing, and our observations at a 

certain time point within a group may not necessarily be identical at another time point. 

These exposures were done for a total of 30 days, and the reported findings are taken from 
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only the one-time point, which is a limitation to this study. We were unable to detect bacteria 

in many of our samples by 16 S sequencing that affected our n-value. However, the qPCR 

results from the same samples helped to confirm the expansion of Proteobacteria. We were 

also unable to confirm inflammation and generation of ROS-RNS with this study due to the 

lack of available tissues; however, subsequent studies are currently underway to investigate 

these mechanisms.

5. Conclusion

Considering the increasing number of lung disorders that occur in urban populations 

exposed to high air pollution levels, we sought to determine whether traffic-generated air 

pollutants can affect lung immunoglobulin levels and microbiota with or without concurrent 

consumption of an HF diet. Our study demonstrates that high-fat diet and/or exposure to 

traffic-generated air pollution can affect pulmonary immunoglobulin levels and alter the lung 

microbial profile. Understanding the lung microbiota shifts in response to the environment 

and diet as a possible contributor(s) to the pathophysiology of lung diseases is paramount to 

identifying mechanistic pathways involved in air-pollutant mediated effects on pulmonary 

disorders and overall human health.
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Abbreviations:

4-PL Four-parameter logistic

AMOVA Analysis of molecular variance

COPD Chronic obstructive pulmonary disorder

ELISA Enzyme linked immunosorbent assay

FA Filtered air

HF diet High-fat diet

IgA Immunoglobulin A

IgG Immunoglobulin G

IgM Immunoglobulin M
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LF Regular chow

ME Mixture of gasoline and diesel engine exhaust

OTUs Operational Taxonomic Units

PCoA Principal coordinate analysis

PM Particulate matter

qPCR Quantitative PCR

RNS Reactive nitrogen species

ROS Reactive oxygen species
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Fig. 1. 
A decrease in lung IgG and IgA is observed in mice exposed to ME and HF diet. ELISA of 

(A) IgA, (B) IgG, and (C) IgM in lung tissue homogenates of C57Bl/6 mice placed either on 

regular chow (LF) or a high-fat (HF) diet and exposed to either filtered air (FA) or whole-

body inhalation to a mixture of gasoline and diesel engine exhaust (ME: 30 μg PM/m3 

gasoline engine emissions + 70 μg PM/m3 diesel engine) for 6 h/d, 7 d/wk for a period of 30 

days. Data are depicted as the mean ± SEM with *p < 0.05 compared to LF FA, †p < 0.05 

compared to HF FA, ‡p < 0.05 compared to LF ME by two way ANOVA.
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Fig. 2. 
Exposure to ME results in an increase in the abundance of Proteobacteria. qPCR of lung 

tissue homogenates for (A) total bacteria (Eubacteria) and phyla - (B) Firmicutes, (C) 

Bacteroidetes, (D) Proteobacteria, (E) pie charts representing all major phyla in C57Bl/6 

mice placed either on regular chow (LF) or a high-fat (HF) diet and exposed to either filtered 

air (FA) or whole-body inhalation to a mixture of gasoline and diesel engine exhaust (ME: 

30 μg PM/m3 gasoline engine emissions + 70 μg PM/m3 diesel engine) for 6 h/d, 7 d/wk for 

a period of 30 days. *p < 0.05 compared to LF FA by two way ANOVA.
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Fig. 3. 
Exposure to ME and HF diet increases the relative abundance of Enterobacteriaceae 

belonging to the Proteobacteria phylum. 16 S Illumina sequencing of the lung bacterial DNA 

at the (A) phylum and (C) genus level, (B) heatmap showing the relative abundance at the 

family level and (D) relative abundance of major bacteria in the Firmicutes phlya in lung 

tissues of C57Bl/6 mice placed either on regular chow (LF) or a high-fat (HF) diet and 

exposed to either filtered air (FA) or whole-body inhalation to a mixture of gasoline and 

diesel engine exhaust (ME: 30 μg PM/m3 gasoline engine emissions + 70 μg PM/m3 diesel 

engine) for 6 h/d, 7 d/wk for a period of 30 days.
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Fig. 4. 
Bacterial alpha diversity analysis of exposure and diet groups. Alpha diversity analysis using 

(A) Shannon index (diversity) and (B) Chao1 index (richness) compared in C57Bl/6 mice 

placed either on regular chow (LF) or a high-fat (HF) diet and exposed to either filtered air 

(FA) or whole-body inhalation to a mixture of gasoline and diesel engine exhaust (ME: 30 

μg PM/m3 gasoline engine emissions + 70 μg PM/m3 diesel engine) for 6 h/d, 7 d/wk for a 

period of 30 days.
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Fig. 5. 
Differential clustering of bacterial groups is observed with ME exposures. β-diversity 

calculations using (A) unweighted and (B) weighted analyses. Each circle is representative 

of one animal in each of the groups of C57Bl/6 mice placed either on regular chow (LF) or a 

high-fat (HF) diet and exposed to either filtered air (FA) or whole-body inhalation to a 

mixture of gasoline and diesel engine exhaust (ME: 30 μg PM/m3 gasoline engine emissions 

+ 70 μg PM/m3 diesel engine) for 6 h/d, 7 d/wk for a period of 30 days.
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Table 1

Primer sequences used for qPCR analysis.

Primer Sequence Tm

Eubacteria FP 5′-ACTCCTACGGGAGGCAGCAGT-3′ 68.4 °C

Eubacteria RP 5′-ATTACCGCGGCTGCTGGC-3′ 70.7 °C

Enterobacteriaceae FP 5′-GTGCCAGCMGCCGCGGTAA-3′ 76.3 °C

Enterobacteriaceae RP 5′-GCCTCAAGGGCACAACCTCCAAG-3′ 73.6 °C

Bacteroidetes FP 5′-GGTTCTGAGAGGAGGTCCC-3′ 62.7 °C

Bacteroidetes RP 5′-GCTGCCTCCCGTAGGAGT-3′ 64.4 °C

Firmicutes FP 5′-GGAGYATGTGGTTTAATTCGAAGCA-3′ 63.9 °C

Firmicutes RP 5′-AGCTGACGACAACCATGCAC-3′ 66.5 °C

Actinobacteria FP 5′-CGCGGCCTATCAGCTTGTTG-3′ 69.9 °C

Actinobacteria RP 5′-CCGTACTCCCCAGGCGGGG-3′ 74.9 °C

FP, forward primer; RP, reverse primer; Tm, melting temperature.
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Table 2

AMOVA analysis of microbiota profiles from lungs of C57Bl/6 mice exposed via inhalation to mixed 

emissions.

Exposure groups Sum Sq Df Mean Sq P-value

LF FA vs. LF ME 0.006

Among groups 0.970628 1 0.970628

Within groups 3.84797 10 0.384797

Total 4.81859 11

HF FA vs. HF ME 0.106

Among groups 0.58214 1 0.58214

Within groups 2.72784 6 0.45464

Total 3.30998 7

LF FA vs. HF ME 0.007

Among groups 0.778862 1 0.778862

Within groups 3.14873 9 0.349858

Total 3.92759 10

HF FA vs. LF FA 0.014

Among groups 0.766791 1 0.766791

Within groups 2.42088 7 0.345841

Total 3.18767 8

HF FA vs. LF ME 0.504

Among groups 0.510557 1 0.510557

Within groups 3.42708 7 0.489583

Total 3.93764 8

HF ME vs. LF ME 0.088

Among groups 0.603311 1 0.603311

Within groups 4.15492 9 0.461658

Total 4.75824 10

FA, filtered air; ME, mixed vehicle emissions; LF, standard mouse chow; HF, high-fat diet; Df, degrees of freedom; Sum Sq, sum of squares; Mean 
Sq, mean of squares.
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