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Abstract

Consistent survival of life-supporting pig heart xenograft recipients beyond 90 days was recently 

reported using genetically modified pigs and a clinically applicable drug treatment regimen. If this 

remarkable achievement proves reproducible, published benchmarks for clinical translation of 

cardiac xenografts appear to be within reach. Key mechanistic insights are summarized here that 

informed recent pig design and therapeutic choices, which together appear likely to enable early 

clinical translation.
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Over the 53 years since the first clinical attempt,1 cardiac allotransplantation, the transfer of 

a heart from 1 human to another, has evolved from a pioneering, newsworthy, and largely 

unsuccessful therapeutic adventure to become a standard-of-care treatment for end-stage 

heart failure. As a byproduct of this success, the scarcity of hearts from human donors has 

become the primary constraint to expanded application.

Xenotransplantation, or transplantation between different species, has the promise of an 

unlimited supply of readily available, safe, and optimally functioning organs. To date, 

clinical translation has been thwarted by a several obstinate barriers: vigorous innate and 

adaptive immune responses; interspecies incompatibilities in molecular interactions 

involving the complement and coagulation pathways, among others; and the risk of causing 

adventitious infection.2,3 Progress in the understanding of each of these barriers is reviewed 

here in the context of 3 recent breakthroughs that have culminated in consistent and 

prolonged life-supporting pig heart graft function and prolonged survival in baboon 

orthotopic heart xenograft recipients, which represent a clear path toward clinical trials.4,5

IMMUNE BARRIERS

The consensus on developing swine strains designed as organ donors for humans was 

informed by considerations framed in Table 1. For wild-type pig organs perfused ex vivo 

with human blood or transplanted into a baboon or macaque monkey, endothelial injury 

occurs within minutes, driven largely by preformed natural antibodies in primate blood.6 

More than 95% of human anti-pig antibodies are directed against 3 pig carbohydrates: Gal 1 

to 3αGal (≈80%–90%),7 Neu5Gc (≈5%–15%),8 and β4Gal (1%–5%).9 These carbohydrates 

are absent in humans and old-world primates (baboons, macaque monkeys) but are 

expressed on the cell membranes of intestinal bacteria, pigs, and many other species. 

Binding of preformed natural anticarbohydrate antibodies triggers complement and 
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coagulation cascade activation, endothelial activation and injury, and graft dysfunction 

(hyperacute rejection) within minutes or hours after perfusion of a pig organ with human 

blood or when transplanted into nonhuman primates (Figure 1 and Tables 2 and 3).10 

Complement activation and coagulation pathway dysregulation are observed even when anti-

pig antibody binding is minimized.2,3 In this context, a variety of phenomena, including 

organ xenograft dysfunction and recipient injury, evolve within days or weeks. Collectively 

called delayed xenograft rejection (DXR), these phenomena have been traced to molecular 

incompatibilities between species, particularly involving inefficient binding of human blood 

coagulation and complement pathway proteins to pig thromboregulatory (Figure 2) and 

complement regulatory molecules, respectively.

To prevent hyperacute rejection and DXR and to enable the use of pig organ xenografts in 

humans, 3 general genetic engineering strategies have been deployed to minimize antibody 

binding and to improve regulation of the complement and coagulation pathways across 

species. The first approach was enabled in the 1990s by advances in embryo microinjection 

and in vitro fertilization for large mammals, including pigs. Several groups demonstrated 

that surface expression of 1 of 3 human complement pathway regulatory proteins (hCPRPs), 

hCD46,11,12 hCD55,13,14 or hCD59,15 downmodulates complement-mediated cell injury and 

prolongs survival of pig cells and organs.12–19 Although hyperacute rejection was usually 

prevented, any single modification proved insufficient to prevent DXR with the 

immunosuppressive drugs conventionally used in allotransplantation15,16 or experimental 

immunosuppression based on costimulation pathway blockade.14,17–19 With a tolerogenic 

mixed-chimerism strategy, DXR was observed even in the absence of detectible elicited anti-

pig antibody15,17–19 and with demonstrable donor-specific cellular immune 

unresponsiveness,19 suggesting that either residual effects of anti-pig antibody or other 

cross-species incompatibilities—perhaps via mechanisms not conventionally considered 

immune—were causing DXR.

To reduce anti-pig antibody binding to the xenograft, the 3 principal carbohydrate antigen 

targets have each been successfully removed from pigs by gene knockout (KO) (Figure 3): 

first of the Gal 1 to 3α galactosyl transferase gene (GalTKO)20,21 and more recently of 

cytidine monophospho-N-acetylneuraminic acid hydroxylase22 and β4 galactosyl 

transferase.23 The pig gene KO process was greatly facilitated first by transcription 

activator-like effector nuclease–directed mutagenesis or zinc finger nucleases and more 

recently by CRISPR-Cas9–based germline gene editing technology. Pigs with KO of all 3 

genes, or triple knockouts (TKOs), have recently been produced by multiple groups.24–27 

Organs from pigs with GalTKO, alone18,28 or with complement regulatory gene 

modifications,29,30 and TKO organs31 do not usually exhibit hyperacute rejection; they 

typically survive for days or weeks in immunosuppressed primates before exhibiting DXR.
18,29–31

Exceptionally, TKO kidney grafts survivals of >1 year have been reported in rhesus 

macaques preselected for very low levels of anti-pig antibodies and using experimental 

costimulation-based immunosuppression.32 If reproducible with an immunosuppressive 

regimen conventionally used for allotransplantation, this notable accomplishment could 

justify first-in-human xenograft trials. However, TKO kidney xenografts exhibit DXR and 
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fail within days or weeks in recipients with anti-pig antibody levels that would not be 

associated with adverse early outcomes for clinical kidney allografts.33 Because the majority 

of humans would not meet this group’s definition of a negative cross-match, even if 

successful, this strategy would have a limited impact on the organ donor shortage.

PHYSIOLOGICAL BARRIERS

Meanwhile, several molecular incompatibilities between pig thromboregulatory molecules 

and human blood proteins have been described that are physiologically consequential.2,34–36 

At the all-important human blood-porcine endothelial interface, porcine thromboregulatory 

molecules such as thrombomodulin (TBM), endothelial protein C receptor (EPCR), and 

thrombinactivatable fibrinolysis inhibitor interact inefficiently with various human 

coagulation pathway molecules. For example, ineffective binding of activated human protein 

C to porcine TBM interferes with neutralization of human thrombin, promoting 

physiologically inappropriate intravascular clot propagation. In addition, dysregulated 

adenosine metabolism consequent to low surface expression of CD39 on porcine ECs 

contributes to vasoconstriction and prothrombotic effects on platelets and endothelial cells 

(Figure 2). Dysregulated coagulation results from both physiologically inappropriate clot 

initiation and propagation combined with inefficient thromboregulation. 

Thrombodysregulation within the organ xenograft (thrombotic microangiopathy) and in the 

recipient’s circulation (consumptive coagulopathy) is likely caused, or amplified, by anti-pig 

antibody and associated complement cascade activation.2,34,36,37 Thrombodysregulation is 

sufficient to cause DXR despite intense immunosuppression15,16 in immunologically 

tolerized recipients of GalTKO organs19 and in recipients of GalTKO.hCPRP organs.36–38

Consequently, multiple groups have produced pigs that express ≥1 human coagulation 

pathway regulatory genes on the GalTKO.hCPRP background.36–39 Expression of human 

TBM (hTBM) by a GalTKO.hCD46 heart led to the first recent breakthrough when we 

showed that expression of hTBM was necessary and sufficient to prevent consumptive 

coagulopathy in the baboon and thrombotic microangiopathy in a GalTKO.hCD46 

heterotopic pig heart xenograft.40 Non–life-supporting heterotopic heart xenografts 

continued to function with preserved myocardial histology for >2 years as long as 

immunosuppression with anti-CD40 monoclonal antibody–based costimulation pathway 

blockade was maintained. Aside from anti-CD40, all the other components of the 

immunosuppressive regimen—induction T-cell depletion with antithymocyte globulin, B-

cell depletion with anti-CD20 antibody, tapered-dose steroids, and long-term treatment with 

mycophenolate mofetil—are routinely used clinically in allotransplantation. These results 

demonstrate that the previously intractable barrier of DXR was overcome for the first time.

Längin et al4 then evaluated the GalTKO.hCD46. hTBM heart phenotype and the 

Mohiuddin immunomodulatory regimen in a life-supporting orthotopic heart model. Critical 

to their breakthrough results, they showed that perfusing the explanted pig heart on an ex 

vivo device until just before revascularization consistently prevented initial xenograft 

dysfunction for GalTKO. hCD46.hTBM hearts in baboons. With minimization of xenograft 

ischemia, 9 consecutive orthotopic GalTKO. hCD46.hTBM heart xenograft recipients were 

successfully weaned from cardiopulmonary bypass with transient low-dose inotrope 
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requirements, in contrast with high perioperative inotrope requirements and prevalent early 

mortality without ex vivo perfusion. Using either of 2 costimulation pathway blocking 

regimens adopted from Mohiuddin, they confirmed our observation that DXR was 

consistently prevented. However, of the first 4 of these 9 consecutive recipients, 3 died 

within 6 weeks of complications of massive myocardial hypertrophy, which was associated 

with increased expression of the mammalian target of rapamycin in the heart xenograft. In 

the subsequent 5 animals, a mammalian target of rapamycin inhibitor, temsirolimus, 

combined with an aggressive antihypertensive regimen prevented cardiac hypertrophy. One 

recipient died of a late technical complication; the other 4 survived to elective euthanasia at 

3 (n=2) or 6 (n=2) months. Graft hypertrophy was observed by echocardiography in the 2 

longest survivors after temsirolimus was stopped 3 weeks before euthanasia, supporting their 

hypothesis that mammalian target of rapamycin inhibition was pivotal to preventing 

xenograft hypertrophy. This result closely approximates the preclinical trial outcomes that an 

International Society for Heart and Lung Transplantation expert panel proposed in 2000 as a 

reasonable basis for initiating a clinical heart xenotransplantation trial.41

INFECTIOUS DISEASE BARRIERS

The third recent breakthrough was reported in 2016 when CRISPR-based gene editing was 

successfully used to simultaneously edit and functionally disable all 62 copies of the pig 

genes encoding for porcine endogenous retrovirus (PERV), first in cell lines and then to 

generate viable, fertile pigs.42 In the late 1990s, demonstration that PERV could 

productively infect specific permissive human cell lines43 raised the specter that pig-to-

human xenografts might cause infection in the xenograft recipient and risk pandemic viral 

infection.44 Concerns about the spread of pig-derived pathogens to the community reflected, 

at that time, the spread of HIV, an exogenous retrovirus, and experience with swine serving 

as an intermediate host for human pathogens (influenza virus). Along with the immune 

barriers, infectious disease concerns and related regulatory barriers contributed to collapse of 

enthusiasm for xenotransplantation, and corporate investment evaporated in the early 2000s. 

Recent pandemic infection by another unrelated exogenous virus (severe acute respiratory 

syndrome coronavirus 2, likely from bats and Malayan Pangolin species) might raise similar 

questions. Studies of PERV have demonstrated that human infection was generally, but not 

exclusively, the result of viral recombination between 2 PERV strains (A and C) that 

produced a strain more capable of replication in specific human cell lines. Multiple 

innovative strategies were developed to inhibit PERV transmission (eg, using 

nontransmitting swine lacking PERV A or C, antiviral therapies with silencing or shRNAs). 

Given the general lack of transmission of PERV to normal human cells, it seems less likely 

that PERV will prove clinically important; should infection occur, antiretroviral drugs 

developed to treat HIV exhibit potent in vitro activity against PERV replication.45,46 

However, the availability of PERV-deleted swine for clinical studies and the use of CRISPR-

based technology to engineer further immunological modifications helped reawaken interest 

in the xenotransplant field by providing proof of principle that, if necessary, PERV could be 

eliminated from pig strains intended for clinical use. Although all species harbor 

coronaviruses, severe acute respiratory syndrome coronavirus 2 does not appear to have been 

derived from swine. Lists of potential human pathogens from swine allow routine testing 
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and exclusion of these organisms from breeding colonies.46 In addition, molecular 

surveillance strategies can now be applied (eg, whole-genome sequencing on blood samples) 

that should allow routine detection of asymptomatic infections caused by PERV or any novel 

human pathogens from swine (xenozoonosis) and the microbiological investigation of the 

common infectious syndromes (eg, fever and neutropenia or pneumonia) of 

immunosuppressed transplant recipients.46–48 Together, these developments justify 

confidence that pig xenografts are likely to prove safe and that protocols including 

surveillance of donor herds, recipients, and their close contacts will define any remaining 

infectious risks for the informed xenograft recipient, their social contacts, and society at 

large.

THE PATH TO CLINICAL APPLICATION

What are the residual barriers to clinical translation? Reproducibility of the Längin group’s 

orthotopic heart results and demonstration of some longer-term recipient survivals would 

improve confidence that clinical translation is timely. However, evaluating whether pig heart 

xenograft survival will prove durable in humans will ultimately require a leap of faith on the 

part of patients, investigators, and regulatory authorities because the predictive value of the 

baboon model has never been tested. Meanwhile, current preclinical research seeks to better 

understand whether xeno-heart initial xenograft dysfunction is an immunological or 

biochemical phenomenon and, in either case, whether it might be addressed by additional 

genetic modifications to the pig. To that end, at least 4 groups have created pigs with 

multiple additional genetic modifications in various logical combinations. Revivicor pigs 

have up to 9 genetic modifications, typically including TKO, multiple human complement 

regulatory (hCD46, hCD55) and thromboregulatory molecules (hTBM, hEPCR, hCD39, and 

hTFPI), and molecules to inhibit phagocytosis (hCD47) or natural killer cell activation 

(HLA-E) (Figure 3).30,36,39 Tector’s group33 is testing whether TKO pigs that additionally 

lack swine histocompatibility antigens may exhibit reduced immunogenicity and thus enable 

use of conventional rather than experimental immunosuppressive drugs. Qihan Bio/eGenesis 

has used cutting-edge CRISPR.Cas9 gene editing techniques to create PERVKO pig 

versions with up to 12 additional xeno-targeted genetic modifications: TKO with expression 

of human complement regulatory (hCD46, hCD55, hCD59) and thromboregulatory 

molecules (hTBM, hCD39, hTFPI), as well as molecules to trigger protective self-

recognition pathways (HLA-E, with β2μ; hCD47).26 Testing of cells and organs from pigs 

with various combinations of these genetic modifications is currently in progress by multiple 

groups.

As described in the World Health Organization’s guidance documents,49 a proposed first-in-

human xenotransplantation trial will require protocol review and approval by both 

institutional and national regulatory bodies, as well as implementation of an infection 

monitoring program for trial subjects and their close contacts sufficient to safeguard public 

health. On the basis of the currently available evidence, regulatory authorities might 

determine that the Längin regimen—combining complex pig genetics with a previously 

unapproved anti-CD40/CD154 antibody and multiple off-label uses of drugs approved for 

other indications—is clinically acceptable for a first-in-human heart xenograft trial in 

carefully chosen candidates (Table 4). Indeed, the US Food and Drug Administration has 
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publicly accepted the principle that a clinical xenotransplantation trial proposal would be 

reviewed, and could be approved, if the pig genotype design is based on established 

mechanisms and pharmacological choices and treatment strategies are supported by 

preclinical safety and efficacy data.50,51 On the other hand, a regulatory authority or 

institutional review board might request additional preclinical studies to justify the use of 

particular regimen components. In that case, the regulatory approval path would be 

simplified if pigs with extended genetic modifications are protected from initial xenograft 

dysfunction or allow substitution of conventional immunosuppression for as-yet-unapproved 

costimulation blocking approaches. In our estimation, such a transparent, thorough, and 

evidence-driven oversight process is more likely to delay than to prevent the initiation of a 

clinical trial of heart xenotransplantation. Such a public, transparent process will ultimately 

be essential to justify society’s confidence that the best interests of both study participants 

and the general public have been fully considered and fairly accounted. In that context, even 

an initial failure that informs later success would be viewed as a justifiable risk.

CONCLUSIONS

Consistent orthotopic heart xenograft recipient survival to 180 days represents a major 

advance toward the International Society for Heart and Lung Transplantation’s benchmark 

for clinical trial justification.41 Striking recent progress to avoid thrombotic 

microangiopathy and consumptive coagulopathy has derived from addressing the 

pathophysiology of these phenomena, primarily by genetic engineering of the pig to reduce 

graft antigenicity (GalTKO) and to correct molecular incompatibilities in cross-species 

regulation of complement (hCD46) and coagulation pathway (hTBM) activation. This triple-

transgenic pig phenotype appears to be sufficient to protect the heart xenograft from residual 

effects associated with preformed natural antibody, whereas emergence of elicited antibody 

against pig proteins or other antigens and amplification of preexisting antibody are 

effectively controlled by anti-CD40/CD154–based costimulation pathway blockade. A role 

for more extensive genetic modifications to reduce or potentially eliminate various 

components of the other regimens has not yet been explored, but preliminary results suggest 

that more complicated genetics may not be necessary for a heart xenograft to provide a safe, 

effective alternative to an allograft.4,31

Barnard’s1 pioneering heart allotransplantation efforts yielded only occasional long-term 

survivors, and the procedure was quickly abandoned by many institutions. Persistent, 

thoughtful clinical experimentation in brave patients, led by many early medical and surgical 

teams, systematically addressed the many problems encountered,52–56 and gradually yielded 

incremental progress until the advent of calcineurin-based immunosuppression enabled 

consistent success at a few pioneering centers57 and then safe dissemination. Similarly, the 

first clinical heart xenotransplantation trials will necessarily venture into uncharted territory 

and may reveal obstacles not predicted by the preclinical models. From the remarkable 

advances described here, we predict that clinical heart xenotransplantation trials will soon 

begin as the appropriate next step toward cardiac xenotransplantation finally realizing its full 

therapeutic potential.
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Figure 1. Mechanisms participating in porcine endothelial injury by human blood.
Preformed human anti-pig antibodies bind to porcine endothelium, triggering complement 

binding and Fc-receptor–mediated ligation of platelets and leukocytes and upregulation of 

adhesion molecules on both adherent formed blood elements and inflamed endothelium. 

Complement cascade activation (orange symbols), nonphysiological adhesion of human 

platelets to porcine endothelium, and absence of nonself signals (illustrated for natural killer 

cells) contribute to a prothrombotic, proinflammatory milieu that leads to loss of vascular 

barrier function and organ failure. GP indicates glycoprotein; ICAM, intercellular adhesion 

molecule; IL-6, interleukin-6; PMN, polymorphonuclear; PSGL-1, P-selectin glycoprotein 

ligand 1; TNF, tumor necrosis factor; and vWF, von Willebrand factor.
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Figure 2. Dysregulated coagulation with porcine endothelium exposed to human blood.
Relative to physiological regulation of thrombosis (left), porcine endothelium exposed to 

human blood is activated by binding of anti-pig antibodies, creating a prothrombotic 

environment (middle). Physiologically inappropriate amplification of blood clotting is 

contributed to by ineffective neutralization of human thrombin by porcine thrombomodulin, 

inefficient conversion of protein C (PC) to activated PC (aPC) by thrombin-thrombomodulin 

complex, and low-affinity binding of human aPC to porcine endothelial protein C receptor 

(EPCR), which in turn leads to inefficient thrombin degradation and reduced cytoprotective 

signaling through endothelial cell proteinase-activated receptor 1 (PAR-1). These molecular 

incompatibilities between species are addressed by expression of human thromboregulatory 

proteins, including human thrombomodulin and human EPCR (right), as well as human 

tissue factor pathway inhibitor (not illustrated). WT indicates wild-type.
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Figure 3. Genetic modifications designed to address xenograft injury mechanisms.
Examples of genetic modifications designed to prevent known xenograft injury (top) include 

Gal α1–3Gal (Gal) and 2 other carbohydrate (CHO) gene knockouts (TKO), and expression 

of human complement pathway regulatory proteins (hCPRPs), coagulation pathway 

regulatory proteins (eg, thrombomodulin [hTBM] and endothelial protein C receptor 

[hEPCR]), and self-recognition receptors (hCD47; human leukocyte antigen-E [HLA-E]; 

bottom). Absence of carbohydrate antigens (CHO TKO) and expression of human 

complement and coagulation pathway regulatory molecules reduce endothelial activation 

and injury and promote endothelial cytoprotective mechanisms. Expression of self-

recognition receptors inhibits (red negative symbols, bottom) pathogenic mechanisms 

mediated by monocytes and natural killer (NK) cells that contribute to cross-species injury 

(green positive symbols, top). In addition to the pathways illustrated, hCD39, human tissue 

factor pathway inhibitor, hemoxygenase-1, and A20 are among the human genes included in 

some of the various multigene pig constructs that are currently under preclinical evaluation. 

aPC indicates activated protein C; PAR-1, proteinase-activated receptor 1; and SIRPα, signal 

regulatory protein-α.
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Table 2.

Mechanistic Barriers to Pig-to-Human Heart Xenografting

Phenomenon Kinetics Mechanisms

Hyperacute rejection Minutes to hours Preformed antibody, complement, clot formation

Initial xenograft dysfunction Minutes to hours Immunological? Physiological?

Acute humoral rejection Days Preformed antibody rebound, elicited antibody

Weeks Elicited immunity, dysregulated coagulation

DXR indicates delayed xenograft rejection.

Genetic modifications to swine and mechanism-directed graft and recipient treatments have successfully prevented each of the phenomena 
encountered in pig-to-primate heart xenotransplantation models as described in the text. We expect that preclinical results in a life-supporting pig-

to-baboon model4 predict safe clinical translation.

Chronic rejection will be observed in long-surviving organ xenografts if the immune response to the donor cannot be safely constrained by genetic 
modifications to the graft combined with immunomodulatory drug treatments. For organ xenografts, the source pig is genetically defined and 
known in advance, and the transplantation procedure can be timed to take advantage of recipient pretreatments designed to favor graft acceptance. 
Consequently, induction of cross-species tolerance—long-term graft acceptance without ongoing immunosuppressive treatment—is likely to be 
feasible, potentially offering advantages relative to conventional allotransplantation from deceased human donors. Patient selection criteria and 

clinical trial design considerations for the initial pilot studies in humans have been reviewed recently.10

Circulation. Author manuscript; available in PMC 2021 October 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pierson et al. Page 18

Table 3.

Glossary of Heart Transplantation Procedures and Applications for Xenotransplantation

Procedural Definitions

Technique Description Utility

Heterotopic Vascularized, extra-anatomic Evaluate biology and histology

 Abdomen or neck location Evaluate immunosuppression

 Right thorax, auxiliary parallel circuit Provide partial hemodynamic support

Orthotopic Replace native heart Evaluate full hemodynamic support

The heterotopic (“other place,” not placed in its normal anatomic position) heart transplantation model was originally developed in rodents and 
later adapted to large animal models for preclinical allotransplantation and xenotransplantation research. The coronary arterial circulation to the 
unloaded, nonworking heart graft is supported by the recipient’s circulation, with coronary sinus blood returned via the donor pulmonary artery to 
the recipient inferior vena cava, effectively creating a parasitic arteriovenous shunt. The heterotopic technique permits efficient study of xenograft 
injury mechanisms and immunosuppressive drug efficacy. The auxiliary chest piggy-back heterotopic technique supports recipient circulation by 
pumping blood in parallel with and supplemental to the retained native heart and was used by Barnard in his first 2 clinical cases. Because of the 
operative complexity and a high incidence of pulmonary and thromboembolic complications, current clinical use is limited to patients with elevated 
pulmonary vascular resistance. Replacing the native heart with the graft, the orthotopic (“same place”) technique pioneered by Lower and 
Shumway is used in most clinical circumstances. Orthotopic transplantation allows rigorous preclinical evaluation of heart xenograft performance 
and the best available prediction of the clinical efficacy and safety of candidate therapeutic strategies.
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Table 4.

Initial Patient Selection Criteria for a Pig Heart Xenograft Trial*

High immunological risk for heart allograft failure

 Broadly reactive, high-titer antibody against HLA antigens

 History of early onset and rapid progression of cardiac allograft vasculopathy after prior heart transplantation

Obstacles to VAD implantation

 Structural

  Aortic valve insufficiency

  Ascending aortic aneurysmal disease

  Aortic or mitral mechanical valve prosthesis

  Congenital or acquired ventricular septal defect

  Congenital or acquired single-ventricle physiology

 Physiological

  Restrictive or hypertrophic cardiomyopathy

  Declining reversibility of PVR elevation

Severe biventricular failure with impending end-organ failure

 Biventricular assist or total artificial heart candidate

HLA indicates human leukocyte antigen; PVR, pulmonary vascular resistance; and VAD, ventricular assist device.

*
Patients often exhibit multiple relative or absolute contraindications to receiving a heart allograft or mechanical support therapeutic options. 

Patients with these characteristics face a high likelihood of adverse outcomes or are not offered currently available therapies and would be 
appropriate to consider as candidates for an initial clinical trial of heart xenotransplantation.
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