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TO THE EDITOR
Convolutional neural networks (CNNs)
are a class of deep-learning systems that
are highly effective for classifying and
analyzing image data (Krizhevsky et al.,
2012). For skin cancer diagnosis, it has
been claimed that CNNs can perform at
a level of accuracy approaching that of a
dermatologist (Brinker et al., 2019;
Esteva et al., 2017). As a consequence,

there is an impetus to apply these ap-
proaches in a clinical setting. However,
the misclassification of skin cancer as a
benign skin lesion can have serious
clinical consequences, and it is there-
fore imperative that we have a full un-
derstanding of potential failure modes
for CNN classifiers.

There is an increasing realization that
in comparison with the human visual

system, there are limitations of the
CNN architecture in the ability to
generalize from training images to
novel data (Sabour et al., 2017). In
keeping with this observation, CNNs
can be misled into incorrect classifica-
tions by artificially perturbing natural-
world images. For example, a subtle
perturbation to an input image of a
panda that is imperceptible to the hu-
man visual system is sufficient to cause
misclassification as a gibbon
(Goodfellow et al., 2015). This type of
manipulation of an input image with
the goal of deceiving the network into
an incorrect classification is called an

Abbreviation: CNN, convolutional neural network
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adversarial attack. Adversarial attacks
are of interest for understanding the
functional basis of neural networks and
highlighting the important differences
to the human visual system. In this let-
ter, we report two, to our knowledge,
previously unreported classes of rela-
tively simple adversarial attacks that
could arise inadvertently in a clinical
setting: (i) alterations in color balance
and (ii) alterations in rotation and/or
translation of the input image that
lead to misclassification of melanoma
as a benign nevus. We additionally
show that systematic alterations in im-
age color balance and rotation affect
the overall accuracy of a CNN
classifier.

We first implemented a CNN classi-
fier for melanoma versus benign mela-
nocytic nevi. In line with previous work
(Esteva et al., 2017), we fine-tuned a
pretrained CNN (Inception, version 3)
on a dataset of skin lesion images
compiled by the International Skin Im-
aging Collaboration Challenge dataset
2018 (NCF Codella unpublished data,
2018; M Combalia, unpublished data,
2019; Tschandl et al., 2018)
(Supplementary Materials and
Methods). Sensitivity, specificity, and
area under the curve were comparable
or superior to other published models
(Supplementary Table S1).

To facilitate a comparison with pre-
vious studies of adversarial attack on

medical imaging systems (SG Finlay-
son, unpublished data, 2019; X Ma,
unpublished data, 2020), we began by
implementing the fast gradient sign
method attack (Supplementary
Materials and Methods), which makes
subtle adjustments to the red, blue, and
green values for each pixel in the input
image according to the magnitude
(gradient) of that pixel’s effect on the
final classification with the goal of
switching the output of the classifier to
an incorrect classification (Goodfellow
et al., 2015). As previously published,
we found that adversarial attacks could
be created with a high degree of suc-
cess (Figure 1aeg). Next, we imple-
mented a three-pixel attack
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Figure 1. FGSM and three-pixel attacks on deep-learning systems for skin cancer diagnosis. (aeg) Attacks were implemented against a pretrained Inception,

version 3, network that was fine tuned for the differentiation of melanoma from benign melanocytic nevi. Adversarial attack with the FGSM. Examples of (a, c, e)

original and (b, d, f) perturbed images are shown. Green boxes indicate the confidence (i.e., the output of the network in favor of this class after softmax

transformation) of the network in predicting melanoma for the original images, and red boxes indicate the confidence in the prediction of a benign nevus for the

adversarial images. (g) Image illustrates the dependency of successful adversarial attacks on initial classification by the network. For each image in the validation

set, after the softmax transformation, the output of the final classification layer of the network is plotted for the original image (y-axis) versus the adversarial

image (x-axis). (hen) Adversarial attack through modification of three pixels within the input image. Examples of (h, j, l) original and (i, k, m) perturbed images

are shown along with the dependency of the successful adversarial attacks on the original classification by the (n) network plotted as in g. FGSM, fast gradient

sign method.
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(Figure 1hem; Supplementary
Materials and Methods), which mod-
ifies only three pixels within the input
image leaving all others unchanged.
We found that this method also led to
successful adversarial attacks; however,
in comparison with the fast gradient
sign method, there was a lower success
rate, and attacks were only successful
when the initial confidence of the
network in predicting melanoma was
lower for a particular image (Figure 1n).

Although the methods described
previously can deceive a CNN into
misclassifying melanoma as a benign
nevus, it is highly improbable that these
complex image perturbations would
arise by chance in a clinical context.
We therefore wondered whether it
would be possible to craft additional
classes of adversarial attacks with
greater clinical relevance. Deep-
learning systems for skin cancer diag-
nosis are typically trained with images
obtained using epiluminescence skin
surface microscopy (dermoscopy). The
color balance of these images is influ-
enced by skin pigmentation, dermo-
scopic illumination, and image capture
and processing. To explore whether al-
terations in the overall image color
balance could influence the accuracy
of skin cancer lesion classification by a
CNN, we employed a differential evo-
lution algorithm to search for subtle
perturbations of global color balance
that could lead to misclassification
(Figure 2a). Differential evolution is a
population-based optimization method
that does not require information about
the internal state of the neural network
(Supplementary Materials and
Methods). Remarkably, for numerous
melanoma images, there existed subtle
alterations in the red, blue, and green
color balance that resulted in misclas-
sification as a benign nevus
(Figure 2bei). These adversarial attacks
were successful even when the initial
confidence of the network in the diag-
nosis of melanoma was high (Figure 2j).
To understand whether this could be
mitigated by exposing the network to
variation in color balance during
training, we retrained the network with
each training image subjected to
random color variation in each training
batch (Supplementary Materials and
Methods). This resulted in a 33%
decrease in the number of successful

attacks from 15.35% (120 of 782 test
images) to 10.23% (80 of 782 test im-
ages); however, it did not eliminate
them. To assess further the effects of
color-balance alterations, we systemat-
ically introduced minor changes to the
color balance of all images in the test
data set (Supplementary Figure S1).
Even barely perceptible perturbations
of image color balance had a large
impact on the rate of missed melanoma
diagnosis (Supplementary Figure S1);
for example, subtracting 10 units from
the green channel (maximum 255) led
to a 235% increase in false negatives
(from 68 to 160 cases).

Because there is no correct orienta-
tion for a dermoscopic image and there
is some variability in lesion positioning
within an image, we investigated
whether perturbations involving rota-
tion or translation would affect diag-
nostic accuracy. We employed a similar
differential evolution-based optimiza-
tion method, allowing arbitrary combi-
nations of rotation (up to 360�) and
translation (up to 50 pixels; input image
size of 299 � 299 pixels) in both hori-
zontal and vertical orientations
(Figure 2k, Supplementary Materials
and Methods). We found that for a
large proportion (45.6%) of tested im-
ages, simple rotation and translation
deceived the network into classifying
melanoma as a benign nevus
(Figure 2les). As for the color-balance
attack, successful adversarial examples
could be achieved even when the
initial confidence of the network in
favor of melanoma was high (Figure 2t).
This reduction in accuracy occurred
despite data augmentation with a
random rotation of images during the
training of the network. We also
examined the consequences of sys-
tematic rotation of the test images by
either 45� or 180�. We found that 45�

rotation and 180� rotation both
increased the incidence of missed
melanoma diagnosis (false negative
rate) by 11% (from 68 to 76;
Supplementary Figure S1).

To ensure that the attacks described
above represent a general vulnerability
of CNNs rather than a specific weakness
of the network that we tested, we
retrained our model with a different split
of train and/or test data and showed that
this did not prevent adversarial attacks
(Supplementary Table S2). Next, we

obtained a pretrained model that has
been extensively characterized in a
previous publication (Han et al., 2018).
Using our differential evolution-based
attacks with test images of melanoma
that were released along with this
publication, we showed that this alter-
native CNN architecture was also
vulnerable to the attacks that we have
described (Supplementary Table S1;
Supplementary Materials and Methods).

Finally, having established that CNN
architectures are vulnerable to pertur-
bations in image color balance and
rotation, wewished to establishwhether
the humanvisual systemwas susceptible
to similar perturbations. To test whether
similar image perturbations affected the
ability of dermatologists to correctly di-
agnose skin cancer, we tested four der-
matologists (two consultants and two
experienced residents) with a set of 204
images, half of which were unmodified
and half were adversarial images, which
had defeated the CNN. In contrast to the
CNN, we observed no statistically sig-
nificant differences in accuracy for hu-
man dermatologists (Supplementary
Figure S2) when tested with adversarial
versus unaltered images.

In summary, we have shown that
CNNs for the diagnosis of melanoma
are susceptible to two, to our knowl-
edge, previously unreported forms of
relatively simple and clinically relevant
adversarial attack: (i) subtle alterations
in color balance and (ii) rotation and/or
translation of the input image. Alter-
ations such as these mimic variations
and inconsistencies in images and im-
age capture methods in clinical set-
tings, which are currently not
standardized. It is possible that variance
in these factors may explain degrada-
tion in classification accuracy when
CNNs are tested on imaging data that
were not represented in the training
data (Narla et al., 2018). Interestingly, a
recent prospective real-world study of
CNN accuracy in skin cancer diagnosis
found substantial differences in classi-
fication according to whether the image
was taken with an iPhone, Samsung
phone, or digital single-lens reflex,
which may, at least in part, be
explained by variations in color bal-
ance (Phillips et al., 2019). Another
recent publication reported that the
presence of blue marker ink in dermo-
scopic images also has a negative
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Figure 2. Clinically relevant adversarial attacks on deep-learning systems for skin cancer diagnosis. Attacks were implemented against a pretrained Inception,

version 3, network that was fine tuned for the differentiation of melanoma from benign melanocytic nevi. (aej) Differential evolution-based adversarial attack

through the modification of global color balance. (a) A schematic illustration of the differential evolution algorithm in addition to examples of (b, d, f, h) original

and (c, e, g, i) perturbed images are shown. Green boxes indicate the confidence (i.e., the output of the network in favor of this class after softmax

transformation) of the network in predicting melanoma for the original images, and red boxes indicate the confidence in the prediction of a benign nevus for the

adversarial images. (j) Image illustrates the dependency of the successful adversarial attacks on initial classification by the network. For each image in the

validation set, after the softmax transformation, the output of the final classification layer of the network is plotted for the original image (y-axis) versus the

adversarial image (x-axis). (ket) Differential evolution-based adversarial attack through the modification of image translation and rotation. (k) A schematic

illustration of the differential evolution algorithm in addition to examples of (l, n, p, r) original and (m, o, q, s) perturbed images are shown along with the

dependency of the successful adversarial attacks on the original classification by the (t) network plotted as in j. RGB, red green blue.
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impact on CNN classification accuracy
(Winkler et al., 2019). These studies
demonstrate the importance of investi-
gating failure modalities and testing
CNNs rigorously to ensure that they are
robust before unsupervised clinical
deployment. Limitations of our study
include the evaluation of a limited
number of CNN network architectures
and models, and it will be interesting to
evaluate a wider range in the future.

Almost all recent successful applica-
tions of CNNs to medical imaging data
have fine-tuned pretrained, off-the-shelf
CNNs (Esteva et al., 2017; Gulshan
et al., 2016). There is an increasing
awareness that there are limitations of
CNN architectures—which were origi-
nally developed for the classification of
natural images—in the ability to
generalize to novel data, and this has
stimulated the development of novel
network architectures (Sabour et al.,
2017). It will be essential to ensure
that CNN skin cancer classifiers are
robust to alterations in image color
balance and translation and/or rotation.
In addition, it will be important to
explore strategies (in addition to
random variation in color balance jitter
and rotation during the training process
as described in this letter) to mitigate
these classes of adversarial attacks; this
could include the retraining of models
with generated adversarial images.
Finally, it is essential to verify that other
applications of artificial intelligence in
medical imaging are robust to similar
perturbations both through adversarial
challenges as described earlier and
standardization of image acquisition in
the clinical setting.

Data availability statement

Deep-learning models and adversarial
attacks were implemented in PyTorch
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