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Abstract

In breast cancer, undetected lymph node metastases can spread to distal parts of the body for 

which the 5-year survival rate is only 27%, making accurate nodal metastases diagnosis 

fundamental to reducing the burden of breast cancer, when it is still early enough to intervene with 

surgery and adjuvant therapies. Currently, breast cancer management entails a time consuming and 

costly sequence of steps to clinically diagnose axillary nodal metastases status. The purpose of this 

study is to determine whether preoperative, clinical DCE MRI of the primary tumor alone may be 

used to predict clinical node status with a deep learning model. If possible then many costly steps 

could be eliminated or reserved for only those with uncertain or probable nodal metastases. This 

research develops a data-driven approach that predicts lymph node metastasis through the 

judicious integration of clinical and imaging features from preoperative 4D dynamic contrast 

enhanced (DCE) MRI of 357 patients from 2 hospitals. Innovative deep learning classifiers are 

trained from scratch, including 2D, 3D, 4D and 4D deep convolutional neural networks (CNNs) 

that integrate multiple data types and predict the nodal metastasis differentiating nodal stage N0 

(non metastatic) against stages N1, N2 and N3. Appropriate methodologies for data preprocessing 

and network interpretation are presented, the later of which bolster radiologist confidence that the 

model has learned relevant features from the primary tumor. Rigorous nested 10-fold cross-

validation provides an unbiased estimate of model performance. The best model achieves a high 

sensitivity of 72% and an AUROC of 71% on held out test data. Results are strongly supportive of 

the potential of the combination of DCE MRI and machine learning to inform diagnostics that 

could substantially reduce breast cancer burden.

Keywords

Breast cancer; Nodal metastases; DCE MRI; Deep learning

Albert.Montillo@UTSouthwestern.edu. 

Electronic supplementary material The online version of this chapter (https://doi.org/10.1007/978-3-030-59713-9_32) contains 
supplementary material, which is available to authorized users.

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 
March 24.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2020 October ; 12262: 326–334. 
doi:10.1007/978-3-030-59713-9_32.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Breast cancer is the most common cancer among women in many countries including the 

USA and causes more premature deaths than any cancer other than lung cancer. Among 

women with undetected breast lymph node metastasis, the 5 year survival rate is only 27% 

[3]. The presence of lymph node metastasis is the single most important prognostic factor in 

breast cancer [1]. Beyond prognosis, the detection of nodal metastases is used for cancer 

staging and to determine the course of surgical treatment, and is an important index for 

postoperative chemotherapy and radiotherapy.

The management of breast cancer entails a time consuming sequence of costly steps to 

diagnose whether the patient has axillary nodal metastases. In many hospitals this process 

entails: (1) ultrasound (US) imaging of the axilla along with tumor diagnosis costing $750, 

(2) breast DCE MRI (if US is negative MRI may still be positive) at $3,500, (3) axillary US 

again to reidentify the sentinel node $750, (4) US guided biopsy at $1,500, (5) pathology 

evaluation of the biopsy specimen costing $1,200. The earlier steps, typically (1) and (2), are 

used towards the clinical diagnosis of the lymph node status, cNode, which has 4 levels:N0 

(no nodal metastasis), and increasing levels of nodal metastasis: N1, N2, and N3.

The purpose and clinical value of this study is to determine whether preoperative, clinical 

DCE MRI of the primary tumor may be used to predict node status with a deep learning 

model. If possible then steps 1,3 and 4 could be eliminated or reserved for only those 

patients with uncertain or probable metastases. Relying upon clinical MRI (1.5T) enables 

research results to have potential for direct clinical impact without costly upgrades to 3.0T. 

Furthermore, methods developed using the primary tumor will be applicable to most patients 

given the current standard protocol that images the tumor, while axillary nodes may not be in 

the field of view (FOV).

Dynamic contrast enhanced (DCE) MRI contains abundant information about the vascularity 

and structure of the tumor and is valuable to quantify cancer aggressiveness. Recently, 

preliminary results demonstrated that hand crafted tumoral features from 2D DCE MRI are 

can help predict nodal metastasis using classical machine learning SVM [6]. While 

promising these results relied upon research grade 3.0T MRI and were restricted to data 

from just 100 subjects acquired at one hospital. Furthermore validation performance is 

reported rather than more rigorous test set performance.

Deep learning has been shown to find useful patterns for image analysis [4]. It has been used 

to detect breast cancer with near expert radiologist accuracy [7]. However to the best of our 

knowledge, deep learning has not been used to predict axillary nodal metastasis from DCE 

MRI.

The strengths and contributions of this work are four-fold: (1) A 4D CNN model is proposed 

that automatically learns to fuse information from 4D DCE MRI (3D over time) and non-

imaging clinical information. (2) The model relies exclusively on the primary tumor and 

does not require nodes to be within the FOV nor high field strength imaging which may not 

be available. (3) The model achieves a promising 72% accuracy while using rigorous nested 

cross-fold validation and while training and testing upon an extensive dataset of 357 subjects 
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from two hospital sites using two distinct image acquisition protocols and hardware. (4) 

Saliency mapping demonstrates that the proposed model correctly learns to utilize primary 

tumor voxels when identifying both metastatic and non-metastatic subjects.

2 Materials and Methods

2.1 Materials

Clinical 1.5T DCE MRI was obtained from 357 breast cancer patients, whose characteristics 

are summarized in Table 1. Data for each subject includes a single precontrast and four serial 

dynamic image volumes acquired at a temporal resolution of 90s/phase obtained before and 

immediately after intravenous bolus infusion of a contrast agent. 221 subjects were obtained 

from Parkland Hospital, Dallas, Texas where dynamic VIBRANT sagittal images were 

acquired with a GE Optima MR450w 1.5T scanner using 0.1 mmol/kg gadopentetate 

dimeglumine contrast medium. The remaining 136 subjects came from UT Southwestern 
Medical Center, Dallas, Texas where dynamic FSPGR (THRIVE) axial images are acquired 

with a Philips Intera 1.5T scanner using 0.1 mmol/kg Gadavist contrast medium. 

Additionally, four clinical features were obtained including age (yrs), estrogen receptor 

status (ER), human epidermal growth factor receptor-2 (HER2), and a marker for 

proliferation (Ki-67). Clinical node status (cNode) ground truth was determined by one of 

13 board-certified radiologists, fellowship-trained in breast imaging and breast MRI, who 

assess the 4D DCE MRI and ultrasound imaging information, clinical measures, clinical 

history available at the time of the image reading.

2.2 Methods

Each subject has five 3D MRI volumes which are denoted as time1, time2, time3, time4, 

time5. Board certified radiologists traced the boundary of the primary tumor of each subject 

on the time3 volume. Then a 3D cuboidal bounding box encompassing the tumor region of 

interest (ROI) and peri-tumoral area was defined and used to crop each subject data to 

consistently-sized 3D volumes. Three difference images were then defined for each subject 

by subtracting voxelwise the cropped time3-time1, time4-time1 and time5-time1. These 

difference volumes are used to train the deep learning model and the processing steps are 

illustrated in Fig. 1. Next the intensities for the difference images from each hospital are 

harmonized by: (1) clipping the values of the lowest and highest 0.5% intensities, and (2) 

computing the mean and standard deviation of the intensities per hospital and transforming 

the intensities to have zero mean and unit variance.

The data is partitioned using nested, stratified group 10-fold cross-validation with the test 

data held out and not used during training nor validation. This ensured a subject’s data 

appears in only 1 fold and each fold has the same ratio of patients from each hospital, and 

the same ratio of negative (cNode = N0) and positive (N1, N2, N3) labels. Data is 

augmented 27× by small random translation and rotation of the cropping volume.

In this work, we develop two-category classifiers to predict whether or not there is lymph 

node metastasis. Our classifiers are predominantly CNNs [2] because they automatically 

learn a hierarchy of intensity features from difference volumes. For brevity we explain the 
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most complex 4D hybrid CNN model that we build which takes as input a set of difference 

volumes and the clinical data. The remaining models (e.g. 2D CNN, 3D CNN) are simpler 

and their architectural details can be found in the supplemental file. The 4D hybrid CNN 

model consist of four 4D convolutional layers and three fully connected layers. Each 

convolutional layer is followed by max-pooling. Then the output of the convolutional layers 

are concatenated with the clinical features to form the final classifier and all layers use batch 

normalization [5], except the last which outputs the metastasis diagnosis. Figure 2 visualizes 

the model architecture and how the data dimensions change in each layer.

The output of the model can be summarized in Eq. (1)

pk = f Xk, Ck
(1)

where xk is the set of 3D difference images for the kth patient, ck is their clinical data, and 2-

dimensional p is the predicted probabilities that the model f() assigns to the two output 

categories. The threshold is >= 0.5 for positive prediction and < 0.5 for negative prediction.

Since the dataset has moderate imbalance (62% of subjects are non-metastatic) and we 

would like the model to focus more on positive than negative cases, we apply a weighted 

cost function where the cost for positive cases is twice that of the negative cases:

E = 1
N ∑

k = 1

N
∑

c = 1

2
pck − lck

2 . wc (2)

where E is the cost function, N is the number of subjects, lk and pk are the label and 

prediction of the kth patient respectively, and w is the weight assigned according to class 

label where: w1 = 1 and w2 = 2. This MSE cost function works well on classification tasks 

when using a softmax output [10]. Model fitting is trained from scratch and model weights 

are learned with the Adam [9] optimizer using: an adaptive learning rate initialized to 0.001, 

beta1 = 0.9, beta2 = 0.999, and a batch size of 36. Models are implemented in Tensorflow 

and trained on a Linux workstation with 2 NVIDIA V100s GPUs.

3 Results

Five types of input feature sets were tested: clinical features alone, 2D images alone, 3D 

images alone, 4D images (3D + time), and 4D with clinical features. Results are summarized 

in Table 2. With clinical data only, an XGBoost classifier [11] attained a performance just 

above chance accuracy with an AUC = 0.55. Dense feedforward neural networks did not 

perform better. The relative importance of the 4 clinical features computed as f scores, are 

shown in Fig. 3. Ki67 and HER2 are top ranked and have approximately equal importance 

while age and ER status are less important. Using 2D difference images and a deep 2D 

CNN, performance improved to an AUC = 0.61. Using the additional context of 3D 
difference images performance further improved to AUC = 0.66. Each 3D difference image 

is input independently, however group stratification is used so that a subject’s data appears 

in either train, validation or test. Subsequently, all three 3D difference images of a patient 

(time3-time1, 4–1, and 5–1) are concatenated forming an input 4D tensor to the 4D CNN. 
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This produced the best results including an AUC = 0.67 and, when combined with clinical 

data an AUC of 0.71 and true positive rate of 0.72. This compares favorably with the results 

of a related study [13] in which texture features were manually specified.

4 Discussion

The results (Table 2) suggest the more data the model has the better its performance. This 

makes sense: 4D provides spatiotemporal context that 3D and 2D lack, while clinical 

features provide biomolecular information not accessible through MRI. To reveal which 

regions the top model learned as important Grad-CAM [8] was used to generate saliency 

maps. The most important voxels to predict metastasis free (Fig. 4a) or high probability of 

metastasis (Fig. 4b) are the primary tumor and its surround. More distal voxels are less 

important. That healthy breast tissue and non-breast tissue are of less value, makes sense 

biologically, and since the algorithm was not explicitly provided the non-linear tumor 

boundary this saliency map results suggests the model learned the segmentation on its own. 

Additional benefits are observed when adding clinical data to the 4D model including 

improving both the AUC and the true negative rate (TNR), while simultaneously reducing 

the variance across folds (Table 3), which further increases confidence in these performance 

estimates.

Our approach has some room for further improvement. Our reported AUC is 0.72 is very 

promising, but still needs improvement. We expect to improve the AUC to at least 0.8 to 

facilitate clinical adoption, while 0.9 is a long term target. There are several steps that can 

lead us there. Differences between hospital data is currently mitigated through 

preprocessing, however adversarial domain adaption could directly learn a model agnostic to 

these differences and may improve performance. Second, unsupervised pretraining on 

external data could improve performance. Third, other data combination methods beyond 

concatenation could be beneficial. Fourth, our preprocessing assumes no motion between 

MRI time frames, however patient movement can occur and could impede model 

performance. In the future we will apply motion correction to suppress any difference image 

artifact.

5 Conclusions

This work demonstrates that a deep 4D CNN has the potential to learn to predict axillary 

nodal metastases with high accuracy through the judicious fusion of spatiotemporal features 

of the primary tumor visible in DCE MRI, and that this further improves with the addition of 

clinical measures. Such high precision non-invasive methods that utilize standard clinical 

MRI (1.5T) and do not require complete imaging of the axillary nodes would fit well with 

clinical practices and could with further refinement, help patients avoid the costs associated 

with unnecessary lymph node surgery. The proposed method was tested on an extensive 

dataset of 357 subjects from 2 hospitals with distinct imaging protocols. Saliency mapping 

demonstrated that the model used tumor voxels to predict nodal metastasis which agrees 

with the expectation that aggressive tumors that spread to the nodes have appearance distinct 

from less invasive tumors. Such diagnostic methods hold the potential to streamline time 

consuming and costly steps currently used to clinically diagnose nodal metastases, improve 
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doctor efficiency, and help select safe and effective treatments that reduce postoperative 

complications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Preprocessing the volumetric DCE MRI. (a) primary tumor is radiologist delineated at time3 

in each slice (green contour), (b) MRI is cropped to a cuboidal volume around tumor, (c) 

sagittal view showing breast at time1, (d) tumor is enhanced by computing difference 

images, shown here: time3-time1.
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Fig. 2. 
The 4D CNN model architecture. The model consists of 4 convolutional layers (red 

pyramids) followed by 3 fully connected layers (horz. arrows). Input and feature maps are 

4D tensors; to visualize them they are rendered as 3D volumes by omitting one dimension, 

e.g. the input layer (left) is 50 × 50× 50 ×3 but rendered as 50 × 50 × 3. Four clinical 

features are concatenated with the 4 outputs of last conv. layer, creating an 8-vector as input 

to the dense layers. One-hot encoded output layer predicts probability of nodal metastasis 

and no metastasis. Illustration generated using [12].

Nguyen et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Relative importance of each clinical feature. Features with higher scores are more valuable 

for predicting metastasis.
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Fig. 4. 
Important voxels revealed through saliency mapping. Saliency mapping with Grad-CAM 

(left column) demonstrates that the primary active tumor voxels in MRI (right column) are 

those most valuable for predicting boht (a) non-metastatic cancer, and (b) axillary metastatic 

cancer.
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Table 1.

Demographics and disease characteristic of subjects included in this analysis.

Variable Age cNode status Tumor stage

Category 21–30 31–40 41–50 51–60 61–70 71–80 81–90 N0 N1 N2 N3 T1 T2 T3 T4

Percentage 2 16 34 23 19 5 1 62 28 4 6 30 44 19 7

Number of 
patients 7 57 121 82 68 18 4 221 101 13 22 107 157 68 25
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Table 2.

Comparative performance across input feature sets on the held out test set. Increasing prediction performance 

was observed across the five sets of inputs evaluated including: only clinical features, 2D images, 3D images, 

4D images (3D + time), and 4D with clinical features.

Clinical only 2D image 3D image 4D image 4D img & clinical

AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

0.55 0.24 0.61 0.35 0.66 0.84 0.67 0.72 0.71 0.72
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Table 3.

Comparison prediction accuracy and stability across feature sets. Both accuracy and stability increases when 

clinical features are added to the 4D CNN.

Fold

4D image 4D & clinical

AUC TPR TNR AUC TPR TNR

0 0.61 0.71 0.45 0.77 0.71 0.73

1 0.78 0.79 0.68 0.85 0.71 0.76

2 0.71 0.93 0.23 0.83 0.86 0.64

3 0.82 0.71 0.77 0.67 1.00 0.00

4 0.37 1.00 0.00 0.58 0.29 0.87

5 0.65 0.64 0.59 0.62 0.71 0.55

6 0.82 1.00 0.00 0.8 0.83 0.61

7 0.62 0.38 0.64 0.54 0.62 0.41

8 0.75 0.62 0.82 0.8 0.92 0.48

9 0.55 0.46 0.55 0.56 0.54 0.52

mean 0.67 0.72 0.47 0.71 0.72 0.56

std 0.14 0.21 0.3 0.11 0.21 0.24
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