Table 3.
Comparison prediction accuracy and stability across feature sets. Both accuracy and stability increases when clinical features are added to the 4D CNN.
Fold | 4D image | 4D & clinical | ||||
---|---|---|---|---|---|---|
AUC | TPR | TNR | AUC | TPR | TNR | |
0 | 0.61 | 0.71 | 0.45 | 0.77 | 0.71 | 0.73 |
1 | 0.78 | 0.79 | 0.68 | 0.85 | 0.71 | 0.76 |
2 | 0.71 | 0.93 | 0.23 | 0.83 | 0.86 | 0.64 |
3 | 0.82 | 0.71 | 0.77 | 0.67 | 1.00 | 0.00 |
4 | 0.37 | 1.00 | 0.00 | 0.58 | 0.29 | 0.87 |
5 | 0.65 | 0.64 | 0.59 | 0.62 | 0.71 | 0.55 |
6 | 0.82 | 1.00 | 0.00 | 0.8 | 0.83 | 0.61 |
7 | 0.62 | 0.38 | 0.64 | 0.54 | 0.62 | 0.41 |
8 | 0.75 | 0.62 | 0.82 | 0.8 | 0.92 | 0.48 |
9 | 0.55 | 0.46 | 0.55 | 0.56 | 0.54 | 0.52 |
mean | 0.67 | 0.72 | 0.47 | 0.71 | 0.72 | 0.56 |
std | 0.14 | 0.21 | 0.3 | 0.11 | 0.21 | 0.24 |