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Abstract

Currently, the diagnosis of Autism Spectrum Disorder (ASD) is dependent upon a subjective, 

time-consuming evaluation of behavioral tests by an expert clinician. Non-invasive functional MRI 

(fMRI) characterizes brain connectivity and may be used to inform diagnoses and democratize 

medicine. However, successful construction of predictive models, such as deep learning models, 

from fMRI requires addressing key choices about the model’s architecture, including the number 

of layers and number of neurons per layer. Meanwhile, deriving functional connectivity (FC) 

features from fMRI requires choosing an atlas with an appropriate level of granularity. Once an 

accurate diagnostic model has been built, it is vital to determine which features are predictive of 

ASD and if similar features are learned across atlas granularity levels. Identifying new important 

features extends our understanding of the biological underpinnings of ASD, while identifying 

features that corroborate past findings and extend across atlas levels instills model confidence. To 

identify aptly suited architectural configurations, probability distributions of the configurations of 

high versus low performing models are compared. To determine the effect of atlas granularity, 

connectivity features are derived from atlases with 3 levels of granularity and important features 

are ranked with permutation feature importance. Results show the highest performing models use 

between 2–4 hidden layers and 16–64 neurons per layer, granularity dependent. Connectivity 

features identified as important across all 3 atlas granularity levels include FC to the 

supplementary motor gyrus and language association cortex, regions whose abnormal 

development are associated with deficits in social and sensory processing common in ASD. 

Importantly, the cerebellum, often not included in functional analyses, is also identified as a region 

whose abnormal connectivity is highly predictive of ASD. Results of this study identify important 

regions to include in future studies of ASD, help assist in the selection of network architectures, 

and help identify appropriate levels of granularity to facilitate the development of accurate 

diagnostic models of ASD.

Index Terms—

Interpretable deep learning; hyper parameter optimization; functional neuroimaging; fMRI; 
Autism

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a common developmental disorder affecting 1 in 160 

children annually and is characterized by abnormal neurological development[1]. Diagnosis 

of ASD currently consists of an extensive battery of behavioral tests which are evaluated by 
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experts. These experts are not available at many clinics, hence accurate ASD diagnosis is 

less available than desired. Consequently there is growing interest in the development of an 

accurate, objective, fast, and reproducible diagnostic approach. One such approach uses 

functional MRI (fMRI) and structural MRI (sMRI) which can measure anatomical and 

functional alterations manifest in ASD[2, 3]. This approach is particularly promising when 

the imaging is used as the input to train a machine learning model to predict whether the 

subject has ASD or is a typically developing subject (e.g. a healthy control). Prior work has 

shown that such models can achieve between 70.4% and 80.4% area under the ROC curve 

(AUROC) [2, 3, 4, 5].

This work extracts information from the deep learning hyperparameter optimization, 

allowing us to identify configurations that lead to high performance and whether search 

ranges were adequate to isolate local performance maxima. This work also determines the 

most important FC features used by each model through permutation feature importance and 

compares these to regions known to be affected by ASD, which would help grow confidence 

that the models have learned appropriately. Finally, this work compares the discovered 

features across three levels of brain-atlas granularity. Features learned in common across 

models trained from different granularities can further corroborate their importance, and 

potentially identify novel features warranting further investigation.

2. METHODS

2.1. Materials

We trained models from 915 subjects from the IMPAC database[4]. This included 418 

subjects diagnosed as ASD and 497 identified as Healthy Controls (HC). The dataset 

includes one set of structural features (e.g. volumes and thickness of cortical regions) 

derived from structural MRI and several sets of functional features (inter regional 

connectivity) derived from resting-state fMRI (rs-fMRI). To derive the functional features, 

each subject was parcellated using one of 7 different atlases and the mean regional time 

signal was computed. Connectivity between these time courses was computed between pairs 

of regions using the tangent-space embedding metric[6].

2.2. Construction of DL models to predict ASD vs HC

We conducted an extensive evaluation of 12 different machine learning (ML) models 

including 6 nonlinear ML classifiers, 3 linear ML classifiers, and 3 deep learning classifiers. 

To train the models, the subjects were initially randomly split 80%/20% into train and test 

partitions. The test data was held aside and not used until the final model evaluation.

2.3. Architecture optimization, model and atlas selection

To fairly evaluate the models and avoid biasing the results, 50 points in hyperparameter 

space were randomly chosen for each model and each of these 50 models were trained 

across 3 cross-validation folds from the 80% training set. The highest performing models 

were selected by mean AUROC across the cross-validation folds. For further details see [5]. 

Our best models achieved 75.4–80.4% ASD vs HC diagnosis accuracy using the BASC atlas 

[7] as opposed to 4 other atlases tested at 3 levels of granularity. This atlas’ coarsest 

Mellema et al. Page 2

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resolution contains 64 ROIs (Fig. 1A), its medium-grained granularity has 122 ROIs (Fig. 

1B), while its fine-grained granularity has 197 ROIs(1C). Some of the highest, recently 

reported ASD vs. Control classification accuracies include those of Parisot[2] who reports 

70.4% accuracy and Meenakshi[3] who reports 73.3% accuracy. In the present study, the 

DenseFFwd models trained on each BASC atlas are the subject of analysis and interrogation 

because they performed well compared to these leading published results.

2.4. High performing architectural configurations

Hyperparameter searches generate a wealth of information. To gain insights from this 

information, kernel density estimates were computed for the models with the top 20% of 

performance and for the models with the lowest 20% of performance. This allows 

identification of architectural configurations that tend to produce high performing models 

and configurations that tend to produce low performing models. In addition, this analysis 

can indicate whether hyperparameter search ranges were adequate.

2.5. Computation of feature importance

The importance of each feature for each model was computing using permutation feature 

importance (PFI)[8]. In this approach, for a given trained model, each feature is permuted 

individually. Its feature importance, I, is calculated as the z-score normalized mean decrease 

in AUROC: I = Pb − Pa, between the performance before feature permutation (Pb) minus the 

performance after feature permutation (Pa). PFI was chosen because it can be applied 

uniformly to different model and feature types. To aid in the comparison of IMPAC 

connectivity features to the literature which often reports results in Brodmann areas (BA), 

the centroid of each ROI for each atlas was calculated and matched to the corresponding BA 

for cross-study comparison. The ROI-ROI connection can then be re-written as the closest 

BA-BA connection.

3. RESULTS

Performance of a diagnostic predictive model can depend substantially on the choice of 

architectural configuration. In order to understand whether this is applies here, kernel 

density estimates were computed to estimate the probability distribution functions of the 

configurations of the top performing (top 20%) configurations and bottom performing 

(bottom 20%) configurations (Fig. 2). Quantitatively, high performing DenseFFwd models 

tended to use 1–2 hidden layers with 64 neurons per layer versus 3–4 layers with 256 

neurons for the low performing models when using the coarse atlas (Fig. 2A), 2 layers with 

16–32 neurons vs. 3 layers with 128 neurons for the medium-grained atlas (Fig. 2B), and 3–

4 layers with 16 neurons vs. 2 layers with 256 neurons for the fine-grained atlas (Fig. 2C). 

As the peaks of the high (blue) and low (orange) performing models are not proximal, this 

suggests that configuration impacts performance substantially (AUROC varied by 20% 

between high and low performing models). Also, we observe that the configurations of the 

top performing models, i.e. at the peaks in the blue surfaces, occur near the centers of the 

search ranges and not near the edges of the search space. This suggests that the search 

ranges have adequate coverage to discover good configurations.
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The top 15 features ranked by their feature importance for each atlas granularity are shown 

in Fig. 3. The feature importance for the connectivity features are reported as the number of 

standard deviations from the mean calculated feature importance (z-score). The most 

important features for the ASD vs HC prediction for the model trained with 64 ROIs is 

shown in Fig. 3A, whereas Fig. 3B and Fig. 3C show the most important features for the 

models trained from 122 and 197 ROIs respectively. Color-coded functional labeling of 

features is shown to facilitate qualitative comparison. Motor, sensory, and language areas 

appear throughout the top features, while no structural features cCortical thickness, volume, 

etc.) were among the top 15 most important discriminative features.

The three most important features for the DenseFFwd model trained from 64 ROIs were 

within the left language association cortex, within the left cerebellum, and between the left 

posterior cerebellum and right frontal cortex. For the model trained using the medium-

grained atlas (122 ROIs), the top 3 features were between motor regions and the prefrontal 

cortex, and two within motor cortex alone. For the fine-grained atlas (197 ROIs), the top 

three features were between motor regions and the prefrontal cortex, within the insula, and 

between motor regions.

The anatomical location of features with a z-score≥6 are shown in Fig. 4. There is 

substantial overlap in the features with high importance across all levels of granularity 

tested.

4. DISCUSSION

Our hyperparameter search analysis revealed that the highest performing models used 

between 2 and 4 hidden layers with 16–64 neurons per layer, with the optimal number of 

layers increasing with granularity and the optimal number of neurons/layer decreasing with 

increasing granularity.

Several regions were consistently found to have altered FC across the 3 accurate models we 

examined. When considering the top 15 most important features for each model, 

supplementary motor regions (BA 6) were involved in 11 FC features across all three 

models, the posterior cerebellum is involved in 8 FC features, and language association 
cortex (BA 39) and secondary visual cortex (BA 19) are involved in 6 FC features across all 

three models. Similarly, the left anterior cerebellum is involved in 5 FC features, and 

Brodmann areas 54, 49, 48, 18, and 10 are all involved in 4 FC features across the three 

models. Additionally, we observe that many of the nodes implicated at a coarser resolution 

are also important at finer granularities (Fig. 4). For example, the FC from the 

supplementary motor area to the cerebellum and itself are important in the coarse atlas, 

while the supplementary motor FC to the putamen, cerebellum, hippocampus, and prefrontal 

cortex, and sensory cortex are important in the fine grained atlas. Some of the differences in 

important edges across granularity may be explained by movement of the apparent regional 

centroid when a region is fine-grained. However, it also may be that these patterns of 

connectivity emerge only at specific scales. Further investigation into features variable 

across resolutions is warranted. That some features recurr at multiple resolutions bolsters 
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confidence in their importance and suggests that even higher granularity may be warranted 

to further elucidate biological underpinnings.

Many of the features identified here are in agreement with alterations reported previously 

including the significantly altered DMN connectivity, [9, 10, 11], connectivity in visual 

areas[12, 11], [12, 13, 14], motor and supplementary motor connectivity[13], connectivity in 

somatosensory association areas[15, 14], and connectivity in the prefrontal cortex[15, 9, 10] 

in individuals with ASD.

Importantly, our analysis also indicates that the FC with the cerebellum, including both the 

anterior and posterior aspects, are important diagnostic predictors. Moreover, these 

cerebellar features are important across all levels of granularity examined (from the BASC 

atlas at 64,122, and 197 ROIs). These consistent discriminatory connections lie between the 

cerebellum and motor areas as well as between the cerebellum and frontal cortex, regions 

that pertain to sensory processing and social behavior, well known to be altered in ASD. The 

altered FC between the cerebellum and frontal and sensorimotor cortices as a marker of 

ASD has received little attention in the literature, as the cerebellum is often not included in 

functional analyses. We suggest that these connections are areas worthy of further 

investigation and research.

There are several limitations in this study. First, this dataset only provides us a binary 

diagnosis and, as ASD is well-known to be a spectrum disorder, a dataset with finer 

gradiations of diagnosis would be expected to provide a more precise diagnostic model. 

Second, other methods than PFI should be applied to the models, such as layer-wise 

relevance propagation, to further explore the learned abstractions.

5. CONCLUSION

In conclusion, this work has characterized the architectural configurations that lead to high 

performing Deep Learning diagnostic models for ASD across 3 levels of granularity. This 

work has also identified the most important features using permutation feature importance 

analysis. The feature analysis identified new regions such as the anterior and posterior 

cerebellum with diagnostic importance and identified features in agreement with 

neuroanatomical regions previously implicated in ASD. That these regions were overlapping 

across 3 levels of regional granularity bolsters confidence that the models have discovered 

true discriminative features that may generalize well to new datasets and the clinic. We look 

forward to extending this work with further development to include additional regions such 

as the brainstem, further testing, and clinical translation.
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Fig. 1. 
Brain parcellations (BASC [7]) with varying granularity. (A) Coarse-grained with 64 ROIs, 

(B) medium-grained with 122 ROIs, (C) Fine-grained with 197 ROIs
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Fig. 2. 
Kernel Density Estimates from the hyperparameter search reveals the density of top 

performing configurations (top 20%) shown in blue, and low performing configurations 

(bottom 20%) in orange. Densities of DenseFeedFwd configurations using the coarse BASC 

atlas (A), medium atlas (B), and fine atlas (C). Peaks of blue surfaces are marked with *.
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Fig. 3. 
Important features for learned by highly accurate models for ASD diagnosis at each level of 

atlas granularity with coarse-grained atlas (A), medium-grained (B), and fine-grained (C). 

Each feature is the functional connectivity between two brain regions and is given a distinct 

color based on the function of these regions. Connections between sensorimotor ROIs are 

shown in blue, while connections between language ROIs are in red. Connections between 

regions that are neither motor nor language are in yellow. A connection between language 

(red) and motor (blue) ROIs is shown with an intermediate hue (i.e. purple) and similarly for 

other region function combinations.
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Fig. 4. 
Neuroanatomical locations of the most important functional connectivity features and their 

relative importance. Features for the DenseFFwd model using the BASC atlas with coarse 

(A), medium (B), and fine (C) granularities. Features with z score ≥6 are shown while their 

color indicates the number of standard deviations they are from the mean feature 

importance.
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