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BACKGROUND: Humans are exposed to mixtures of toxicants that can impact several biological pathways. We investigated the associations between
multiple classes of toxicants and an extensive panel of biomarkers indicative of lipid metabolism, inflammation, oxidative stress, and angiogenesis.
METHODS:We conducted a cross-sectional study of 173 participants (median 26 wk gestation) from the LIFECODES birth cohort. We measured ex-
posure analytes of multiple toxicant classes [metals, phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs)] in urine samples. We also
measured endogenous biomarkers (eicosanoids, cytokines, angiogenic markers, and oxidative stress markers) in either plasma or urine. We estimated
pair-wise associations between exposure analytes and endogenous biomarkers using multiple linear regression after adjusting for covariates. We used
adaptive elastic net regression, hierarchical Bayesian kernel machine regression, and sparse-group LASSO regression to evaluate toxicant mixtures
associated with individual endogenous biomarkers.

RESULTS: After false-discovery adjustment (q<0:2), single-pollutant models yielded 19 endogenous biomarker signals associated with phthalates,
13 with phenols, 17 with PAHs, and 18 with trace metals. Notably, adaptive elastic net revealed that phthalate metabolites were selected for several
positive signals with the cyclooxygenase (n=7), cytochrome p450 (n=7), and lipoxygenase (n=8) pathways. Conversely, the toxicant classes that
exhibited the greatest number of negative signals overall in adaptive elastic net were phenols (n=20) and metals (n=21).

DISCUSSION: This study characterizes cross-sectional endogenous biomarker signatures associated with individual and mixtures of prenatal toxicant
exposures. These results can help inform the prioritization of specific pairs or clusters of endogenous biomarkers and exposure analytes for investigat-
ing health outcomes. https://doi.org/10.1289/EHP7396

Introduction
Observational studies are leveraging increasingly high-dimensional
data sets, both in terms of data collected on exogenous environ-
mental toxicants and endogenous biomarkers. Historically, stud-
ies have characterized single-pollutant associations between
individual chemicals or select classes of toxicants [e.g., phtha-
lates, phenols, parabens, polycyclic aromatic hydrocarbons, or
metals], health outcomes, and biomarkers of intermediate effects
(e.g., biomarkers of inflammation, oxidative stress, or lipid me-
tabolism) (Dominici et al. 2010; Patel 2017). The advantages of
single-pollutant analyses are that results are directly applicable
for policy intervention through environmental regulations. This
is particularly relevant for toxicants that do not share similar
point sources of pollution. For example, phthalate exposure
occurs commonly through the manufacture of consumer products

(Schettler 2006), and although they may have biologically inter-
active effects with human exposure to PAHs, the latter class of
chemicals enter our environment predominantly through com-
bustion and air contamination (Alegbeleye et al. 2017).

Although there is utility in evaluating individual associations
and interpreting their relationship within a narrow physiological
scope, there is also a critical need to conduct exhaustive estimation
of exposure-wide associations with endogenous biomarkers simul-
taneously. From a policy perspective, this approach can inform risk
assessment by allowing robust and efficient identification of multi-
ple biological targets associated with exposures to various classes of
chemicals (Drakvik et al. 2020). Multipollutant approaches also
allow for the evaluation of the potential additive or synergistic
effects that result from interactions between chemicals (Stafoggia
et al. 2017; Sun et al. 2013). Furthermore, in a complex mixture of
toxicants, regularized regression approaches such as adaptive elastic
net can be used to identify the most predictive exposure analytes in
association with specific endogenous biomarkers (Zou and Zhang
2009). This is particularly useful for regulatory prioritization and
precisely characterizing high-dimensional biomarkers signals asso-
ciatedwith environmental contaminants.

Inflammation and oxidative stress are highly discussed mech-
anisms of action for several classes of environmental toxicants.
On a cellular level, toxicants can impact systemic inflammation
and oxidative stress through interference with transcriptional reg-
ulation, enzymatic activity, intracellular balance of reactive oxy-
gen species, or membrane permeability (Ferguson and Chin
2017; Thompson et al. 2015). For example, exposures to phtha-
lates and parabens have been shown in vitro to inhibit cyto-
chrome p450 activity (Ozaki et al. 2016). In vitro studies of
PAHs have shown that exposure can lead to up-regulation of
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cyclooxygenase activity (Bauer et al. 2018; Siegrist et al. 2019).
In addition, several mechanistic studies have reported the eleva-
tion of inflammatory biomarkers, such as cytokines, in response
to trace metals exposures (Milnerowicz et al. 2015). Determining
associations between multiple environmental toxicant classes and
biomarkers of various biological pathways in human studies
is critical for developing precise risk estimation for health
outcomes.

The developmental origins of health and disease hypothesis
proposes that early life environmental factors can impact health
status throughout the life span (Preston et al. 2018). Therefore, the
characterization of associations between environmental toxicants
and endogenous biomarkers during pregnancy has wide applica-
tions for future studies seeking to link toxicological pathways as
mediators for several maternal and child health outcomes.
Systemic perturbations in maternal inflammation, oxidative stress,
and lipidmetabolism during pregnancy can result in tissue damage,
altered vascularization, and interference of fetal nutrient supply
(Colella et al. 2018; Ferguson and Chin 2017). The consequences
of these toxicological mechanisms include altered fetal develop-
ment and increased risk for neonatal mortality and morbidities
(Colella et al. 2018; Jiang et al. 2018).

In the present study, our primary goal was to characterize an
exposure-wide association assessment of a large panel of endoge-
nous biomarkers. By doing so, we estimated single-pollutant
associations between individual toxicants and endogenous bio-
markers. Building upon this, our secondary goal was to evaluate
the exposure variable importance for each endogenous biomarker
in the context of a) mixtures of individual toxicants and b) whole
classes of toxicants within a grouped multipollutant mixtures
framework. We hypothesized that toxicants would have unique
profiles of associations with endogenous biomarkers and that tox-
icant class grouping structure would drive these profiles.

Methods

Study Population
Participants in this cross-sectional study were a subset of the
LIFECODES pregnancy cohort recruited at the Brigham and
Women’s Hospital in Boston, Massachusetts, between 2006 and
2008. Recruitment occurred at <15 wk gestation, and study par-
ticipants were >18 years of age. Questionnaires were adminis-
tered at recruitment to collect for demographic and health
information. Urine and blood specimens were collected at a clinic
visit occurring between 23.1 and 28.9 wk (median 26 wk) gesta-
tion. From the overall cohort of 1,600 pregnant women, a sample
of 173 participants was available for the present study. The sam-
ple was selected based on prioritizing participants with availabil-
ity of biological samples (plasma and urine) where the greatest
number of exposure analytes were measured. Secondary to this
was prioritizing the proportion of cases and controls (1:2) as
close as possible to that in the overall LIFECODES cohort. The
larger LIFECODES cohort had 27% cases, whereas our study
sample had 33.5%, which included 58 women who delivered pre-
term (<37 wk gestation) and 115 randomly selected women who
delivered after 37 wk gestation (Table S1). The Brigham and
Women’s Hospital administered institutional review board ap-
proval for this study. Detailed descriptions regarding recruitment
and study design for the LIFECODES cohort have been pub-
lished previously (Ferguson et al. 2014; McElrath et al. 2012).

Exposure Biomarkers
Aliquots of urine samples were analyzed for exposure biomarkers
at NSF International (Ann Arbor, MI), and extensive details on

protocols have been previously described (Aung et al. 2019a;
Ferguson et al. 2015b, 2017; Kim et al. 2018). Quantification of
exposure analytes were based on protocols and methods devel-
oped by the Centers for Disease Control and Prevention for use
in the National Health and Nutrition Examination Survey. We
measured 17 trace metals using a Thermo Fisher iCAP RQ induc-
tively coupled plasma mass spectrometer with a Teledyne
CETAC Technologies ASX-520 autosampler. We used isotope
dilution liquid chromatography with tandem mass spectrometry
(ID-LC-MS/MS) to quantify 8 PAH metabolites, 7 phenol-
derived compounds, and 4 parabens. Finally, we quantified 9
phthalate metabolites using high-performance LC–electrospray
ionization–MS/MS (HPLC-ESI-MS/MS). Figure 1 shows each
exposure analyte according to its toxicant subclass and indicates
abbreviations for each analyte. All exposure analytes that were
below the limit of detection (LOD) were imputed by dividing the
LOD value by the square root of 2.

Endogenous Biomarkers
Both urine and plasma samples were used to measure endogenous
biomarkers (see Figure 1 for details and abbreviations for each ana-
lyte and biomarker). We measured inflammatory markers in
plasma samples at the University of Michigan Cancer Center
Immunology Core, including four cytokines using the Milliplex
Multiplex Assay Simultaneous High Sensitivity Human Cytokine
Magnetic Bead Panel (EMD Millipore Corp.) and C-reactive pro-
tein using a DuoSet enzyme-linked immunosorbent assay (R&D
Systems). We quantified plasma concentrations of the angiogenic
biomarkers PGF and sFlt-1 using the ARCHITECT immunoassay
(Abbott Laboratories). In addition, wemeasured a panel of 53 eico-
sanoids in plasma using a 6490 triple quadrupole mass spectrome-
ter (Agilent). Three unique protein damage markers NY, DY, and
CY)weremeasured in plasma samples using ESI-MS/MS. Finally,
two oxidative stress markers were measured in urine samples at
Cayman Chemical: 8-IP, which was quantified via affinity column
chromatography and enzyme immunoassay, and 8-OHdG, which
was quantified with direct dilution and enzyme immunoassay.
Endogenous biomarkers that were below the LOD were imputed
with the LODvalue divided by the square root of 2.More extensive
details on analysis and measurement of endogenous biomarkers
have been previously described (Aung et al. 2019b; Ferguson et al.
2017).

Descriptive Statistics
We tabulated all potential covariates for the study sample, includ-
ing maternal age, race (White, African American, or other), edu-
cation level (high school graduate, technical school, some
college, or college graduate), health insurance provider (public or
private), body mass index (BMI) at the initial study visit
(<25 kg=m2, 25–29:9 kg=m2, or ≥30 kg=m2), alcohol use during
pregnancy (yes or no), tobacco use during pregnancy (yes or no),
and fetal sex (male or female). Next, we estimated the distribu-
tions of individual exposure analytes and endogenous bio-
markers. Specifically, for descriptive univariate statistics,
distribution of exposure analytes (phthalates, phenols, parabens,
PAHs, and metals) and endogenous biomarkers (8-IP and 8-
OHdG) measured in urine samples were corrected using specific
gravity as follows:

UBSG =UB×
SGMedian − 1

SG− 1
(1)

where UBSG is the specific gravity–adjusted urinary biomarker
concentration, and UB is the observed uncorrected urinary bio-
marker concentration. The constant SGMedian (1.015) is the
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specific gravity population median, and SG is the observed spe-
cific gravity of the individual urine sample (Meeker et al. 2009).

Single-Pollutant Regression
Our first study aim was to estimate individual pair-wise relation-
ships between exposure analytes and endogenous biomarkers
using single-pollutant analysis. We implemented multiple linear
regression to test for these associations, and the regression model
was specified as follows:

EðMjA,ZÞ= a0 + aAA+ ZaZ (2)

where M denotes the endogenous biomarker (q=65 biomarkers),
and A represents the exposure analyte (p=38 analytes), both of
which were transformed using the natural log. To account for uri-
nary dilution for all urinary exposure and endogenous biomarkers
in regression models, specific gravity was modeled as a covariate,
rather than using specific gravity–corrected exposure concentra-
tions. From the potential aforementioned covariates, we selected
a subset based on a priori assessment from previous studies in
the LIFECODES cohort (Aung et al. 2019a, 2019c; Ferguson
et al. 2014). The final covariate matrix Z contains specific grav-
ity, maternal age, race, education level, health insurance provider,
and BMI at initial study visit. Maternal age and specific gravity
variables were modeled as continuous and the rest of the covari-
ates were modeled as categorical. Models were fit on complete
cases of exposure and endogenous biomarker pairs; therefore any
missing values in the exposure, endogenous biomarker, or

covariates were excluded. Figure S1 illustrates a directed acyclic
graph of the statistical model.

To account for the nested case–control sampling, we calcu-
lated and applied inverse probability weighting to the model in
Equation 2, to weight the cases and controls proportional to the
rates in the parent LIFECODES cohort. As a sensitivity analysis,
we also modeled preterm birth case–control status as a covariate
rather than using inverse probability weights. Based on all possi-
ble pairs of comparisons, there were a total of 2,535 unique linear
regression models. To account for multiple testing and to control
the false-discovery rate (FDR), we applied the Benjamini-
Hochberg procedure to the set of p-values obtained from
Equation 2, respectively, with FDR being 0.2.

Multipollutant Mixtures Analysis
Our study consisted of two mixtures analysis goals: a) to conduct
an exposure-wide mixtures analysis to identify the most predic-
tive exposures among individual analytes and b) evaluate the
variable importance of whole toxicant classes. For the first goal,
we fit a multiple exposure model of each endogenous biomarker,
specified as follows:

EðMjA,ZÞ=b0 +AbA +ZbZ (3)

where M and Z are defined in the same way as in Equation 2. M
is now an n× p matrix, where n=160 and p=38. We applied
adaptive elastic net (Yang and Zou 2013; Zou and Zhang 2009),
a regularized regression approach, to each of the endogenous

Figure 1. Schematic representation of analyses showing the categories and abbreviations of the exposure analytes and endogenous biomarkers.
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biomarkers separately using the R package gcdnet (version 1.0.5;
https://www.rdocumentation.org/packages/gcdnet/versions/1.0.5).
The estimates of the vector b= ðb0, bA, bzÞT were obtained by
solving

arg min
b

�
1
n
h m, a, z; bð Þ+ k2

2
||b�||22 + k1bwT jb�j

�
, (4)

where hðm, a, z;bÞ is an assumed loss function for Equation 2,bw = ðbw1, � � � , bwpÞT is a vector of adaptive weights obtained from
a regular elastic net, and j � j takes the absolute value of each
component in bA. In addition, the coefficients of the covariates
are not penalized in this setup. The elastic net uses both least
absolute shrinkage and selection operator (LASSO) (Tibshirani
1996) and ridge (Hoerl and Kennard 1970) type penalties to per-
form variable selection with a correlated set of exposure analytes.
We optimized for the ‘2 penalty (k2) parameter by considering
potential values on a grid from 0 to 2, in increments of 0.1. We
forced the covariates Z to always be included in the model. For
each potential k2 value, the elastic net function computes the sol-
utions for a fine grid of k1 values, which is the ‘1 regularization
parameter and assumes a Huberized squared hinge loss. From the
potential k1 and k2 values, we selected the combination of values
that yielded the smallest 10-fold cross-validated misclassification
error and used their corresponding coefficient estimates as adapt-
ive weights.

In our second mixtures analysis goal to evaluate the variable
importance of the whole toxicant classes, we applied sparse-
group LASSO. This method assumes a linear predictor matrix
framework and provides evidence of toxicant class importance in
association with endogenous biomarkers. Coefficients within the
sparse-group LASSO framework were estimated using

arg min
b

�
−
1
n
logL bð Þ+ 1−að Þk

Xr

k=1

ffiffiffiffiffi
pk

p ||b kð Þ||2 + ak||b||1
�
(5)

where LðbÞ represents the likelihood function defined in
Equation 2, and || � ||1 and || � ||2 are the L1 and L2 norms, respec-
tively. Toxicant classes and covariates were categorized into
r=6 groups: a) covariates, b) trace metals (As, Ba, Cu, Hg, Mn,
Mo, Ni, Pb, Se, Sn, Tl, and Zn), c) PAHs (2-NAP, 1-NAP,
2-FLU, 2-and 3-PHE, 9-PHE, 1-PHE, 4-PHE, and 1-PYR), d)
parabens (BPB, EPB, MPB, and PPB), e) phenols (BPA, 2,4-
DCP, 2,5-DCP, BP3, and TCS), and f) phthalates (MEHP,
MEHHP, MEOHP, MECPP, MBzP, MBP, MiBP, MEP, and
MCPP) (Figure 1). Among the groups, pk represents the number
of exposure analytes in the kth group. We applied the mixing pa-
rameter a and tuning parameter k, which collectively controls
both group-wise sparsity and within-group sparsity of non-null
predictor variables. Specifically, we designated a as 0.95, a value
that assumes strong overall sparsity while encouraging grouping
(Simon et al. 2013). As a sensitivity analysis, we also explored a
more conservative a value of 0.99. Based on this implementation,
predictor groups with the greatest importance relative to individ-
ual endogenous biomarkers are contained in the model as the tun-
ing parameter k increases. Therefore, the groups exiting the
model last are the most important.

We also conducted hierarchical Bayesian kernel machine
regression (BKMR) to assess class-level importance and selec-
tion using the bkmr package (version 0.2.0) (Bobb et al. 2015). In
contrast to sparse-group LASSO, hierarchical BKMR accounts
for nonlinearity in the exposure matrix. The exposure analytes
are partitioned into groups Sg, g=1, � � � ,G, corresponding to
G=5 toxicant classes (metals, PAHs, parabens, phenols, and

phthalates) (Figure 1). Group-level posterior inclusion probabil-
ities were estimated from hierarchical BKMR to signify the rela-
tive importance of the toxicant classes. For each endogenous
biomarker, the hierarchical BKMR framework was modeled as

M= hðS1, � � � ,SGÞ+ ZcZ + e, (6)

where hð�Þ is a kernel function that may incorporate nonlinear asso-
ciations and/or exposure interactions, and e∼MVNð0,r2IÞ.
Hierarchical BKMR incrementally allows individual group-level
predictors to enter the kernel function at a given time. The relation-
ship between hðS1, � � � ,SGÞ and each outcome variable M in the
model is further adjusted by a covariatematrixZ. Implementation of
hierarchical BKMR relied on aGaussian kernel distribution, flat pri-
ors, and 10,000 iterations for theMarkov chainMonte Carlo.

Results

Descriptive statistics
The majority of participants were >30 years of age (76.9%) and
White (62.4%) (Table 1). Most of the study sample also had some
form of higher education (86.1%) and private health insurance
(88.4%). Approximately 76% had a BMI of <30 kg=m2. Overall,
relatively few participants smoked (8.1%) or drank alcohol (4.0%)
during pregnancy. The larger LIFECODES cohort included
smaller proportions of participants who were White (58.5%), were
>30 years of age (69.1%), and had access to private health insur-
ance (79.9%) but was similar with regard to educational attainment
(83.6% with some form of higher education), alcohol use (4.1%),
and smoking (6.4%) during pregnancy (Table S1).

We observed low detection (<70%) of the following exposure
analytes, which were excluded from further analyses: beryllium,
cadmium, chromium, tungsten, uranium, bisphenol S, and triclo-
carban (Excel Table S1). All of the endogenous biomarkers had
detection rates of >75% (Excel Table S1). Among the log-
transformed exposures, the phthalate metabolites MEHHP and
MEOHP had the strongest correlation (Pearson q=0:95), and for

Table 1. LIFECODES prospective pregnancy cohort profile (N =173).

Population characteristics Count (%)

Preterm birth Case 58 (33.5)
Control 115 (66.5)

Age [(y) n] 18–24 8 (4.62)
25–29 32 (18.5)
30–34 90 (52.0)
≥35 43 (24.9)

Race/ethnicity White 108 (62.4)
African American 21 (12.1)
Other 44 (25.4)

Education High school degree (13 y) 24 (13.9)
Technical school (>13 y) 20 (11.6)
Junior college or some college (>13 y) 57 (32.9)
College graduate (≥16 y) 72 (41.6)

Health insurance
provider

Private/HMO/self-pay 153 (88.4)
Medicaid/SSI/MassHealth 19 (11.0)
Missing 1 (0.58)

BMI at initial visit
(kg=m2)

<25 84 (48.6)
25–29:9 49 (28.3)
≥30 40 (23.1)

Tobacco use No smoking during pregnancy 161 (93.1)
Smoked during pregnancy 12 (6.9)

Alcohol use No alcohol use during pregnancy 163 (94.2)
Alcohol use during pregnancy 7 (4.0)
Missing 3 (1.7)

Fetal sex Female 79 (45.7)
Male 94 (54.3)

Note: BMI, body mass index; HMO, health maintenance organization; MassHealth,
Massachusetts combined Medicaid and Children’s Health Insurance Program; SSI,
Supplemental Security Income.
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the endogenous biomarkers, 9-oxoODE and 12(13)-EpoME had
the strongest correlation (Pearson q=0:99) (Excel Table S2).
Across pairs of exposures and endogenous biomarkers, 4-PHE
and 8-OHdG had the strongest correlation (Pearson q=0:69).

Pair-Wise Single-Pollutant Associations
After controlling for FDR q<0:2, phthalate metabolites collec-
tively exhibited 19 associations with endogenous biomarkers, most
of which were positive (n=18) and with eicosanoids belonging to
the cytochrome p450 (n=13) and lipoxygenase pathways (n=3)
(Figure 2A and Excel Table S3). Four phthalate metabolites
(MEHP,MEOHP,MECPP, andMiBP) and summedDEHP phthal-
ate metabolites (MEHP, MEHHP, MEOHP, and MECPP) were
positively associated with the cytochrome p450–derived eicosa-
noids 8(9)-EET and 9,10-DiHOME (see Figure 1 for lists of all ex-
posure analytes and endogenous biomarkers with abbreviations).

The phthalate metabolite MBzP was positively associated with two
lipoxygenase-derivedmetabolites: RVD1 and 8-HETE.

The phenols had 13 FDR-adjusted associations with endoge-
nous biomarkers, including 5 for BPA and 5 for 2,4-DCP (Figure
2A and Excel Table S3). All associations with BPA were posi-
tive, including associations with three eicosanoid biomarkers
[5(6)-EET, 13-oxoODE, and LA], the oxidative DNA damage
marker 8-OHdG, and the protein damage marker CY. In contrast,
all associations with 2,4-DCP were negative associations with
eicosanoid biomarkers [BCPGE1, 9(10)-EpoME, 11,12-DHET,
5-HETE, and LTE4].

The PAH metabolites had 17 FDR-adjusted associations with
endogenous biomarkers, including 13 positive associations
(Figure 2A and Excel Table S3). Four PAH metabolites (2-FLU,
2- and 3-PHE, 1-PHE, and 1-PYR) were positively associated
with the oxidative stress marker 8-IP.

A

Figure 2. (A) Heatmap of pair-wise associations between exposure analytes and endogenous biomarkers estimated usingmultiple linear regression and inverse proba-
bility weights.Models adjusted for maternal age, race, education, health insurance provider, bodymass index at first visit, and specific gravity. The sample size for most
models was N =160, except for the following biomarkers: BCPGE1 (N =159), LTE4 (N =132), sFlt-1 (N =156), and PGF (N =157). Black and blue grids indicate
positive and negative associations, respectively. Color intensities are representative of p-values, that is, darker grids indicate smaller p-values. Pair-wise associations
that remain significant after controlling the false-discovery rate at 0.2 are labeled bywhite X symbols. Dashed lines delineate biomarker subgroups and toxicant classes.
See Excel Table S3 for the corresponding numeric data. (B) Heatmap ofmultipollutant associations between exposure analytes and endogenous biomarkers selected by
adaptive elastic net. Models adjusted for maternal age, race, education, health insurance provider, body mass index at first visit, specific gravity, and preterm birth case
status. The sample size for mostmodels wasN =160, except for the following biomarkers: BCPGE1 (N =159), LTE4 (N =132), sFlt-1 (N =156), and PGF (N =157).
Black and blue grids indicate positive and negative signals, respectively. Dashed lines delineate biomarker subgroups and toxicant classes. See Excel Table S4 for the
corresponding numeric data. Abbreviations and subclasses of toxicants are defined in Figure 1.
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Trace metals had 18 FDR-adjusted associations with endoge-
nous biomarkers, and half were positive (n=9) (Figure 2A and
Excel Table S3). However, in the lipoxygenase pathway, all three
FDR-adjusted associations were negative (Ba and RVD1; Ba and
13-oxoODE; and Ni and 13-oxoODE).

The directions of association were largely consistent when we
adjusted for preterm birth case–control status as a covariate rather
than using inverse probability weights (Figure S2). However, pre-
cision was reduced relative to the primary models, and fewer
associations met the FDR threshold.

Multipollutant Associations
When adaptive elastic net was used as a multipollutant penalized
regression approach, phthalates were selected as predominantly
positive signals among eicosanoids in the cyclooxygenase
(n=7), cytochrome p450 (n=7), and lipoxygenase pathway
(n=8) groups, as well as parent lipid compounds (n=3)
(Figure 2B and Excel Table S4). PAHs were also predominantly
selected as positive signals among eicosanoids in the cytochrome
p450 pathway (n=8). The chlorinated phenols (2,4-DCP, 2,5-
DCP, and TCS) were predominantly selected as negative signals
among eicosanoids belonging to each of the enzymatic pathways:
cyclooxygenase (n=8), cytochrome p450 (n=5), and lipoxygen-
ase (n=4). The selection trend for metals was largely negative

among eicosanoids in the lipoxygenase pathway (n=5) while
exhibiting both negative (n=6) and positive (n=7) selection
among eicosanoids in the cytochrome p450 pathway. Among the
endogenous biomarkers, the oxidative stress marker 8-OHdG
exhibited the greatest consistency of positive selection across
multiple toxicant classes, including phthalates, phenols, PAHs,
and metals.

Adaptive elastic net coefficient estimation accounts for con-
founding and co-adjustment of multiple pollutants; therefore,
estimates differ from single-pollutant regression coefficients. For
example, for 9,10-DiHOME, one of the most highly selected
cytochrome p450 metabolites, adaptive elastic net regression
with adjustment for all exposures selected MEOHP (adaptive
elastic net b=0:1; single-pollutant b=0:28), TCS (adaptive elas-
tic net b= − 0:07; single-pollutant b= − 0:21), and PPB (adapt-
ive elastic net b= − 0:08; single-pollutant b= − 0:15) (Excel
Tables S3 and S4). As expected, adaptive elastic net b coeffi-
cients were reduced compared with single-pollutant models due
to the shrinkage estimation component of the method. Adaptive
elastic net regression estimates for 13-oxoODE, the lipoxygenase
metabolite with the greatest number of FDR-adjusted associa-
tions, followed a similar pattern: MEHHP (adaptive elastic net
b=0:14; single-pollutant b=0:2), BPA (adaptive elastic net
b=0:16; single-pollutant b=0:31), 1-NAP (adaptive elastic
net b=0:09; single-pollutant b=0:26), 9-PHE (adaptive elastic net

B

Figure 2. (Continued.)
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b=0:11; single-pollutant b=0:17), 1-PYR (adaptive elastic net
b=0:05; single-pollutant b=0:21), Ba (adaptive elastic net
b= − 0:15; single-pollutant b= − 0:24), and Pb (adaptive elas-
tic net b= − 0:09; single-pollutant b= − 0:18) (Excel Tables
S3 and S4).

In hierarchical BKMR, important toxicant class-level varia-
bles were indicated by high posterior inclusion probabilities (i.e.,
>0:5) (Figure 3 and Excel Table S5). Among the eicosanoid
groups, phthalates exhibited positive signals with high posterior
inclusion probabilities for cytochrome p450 products (9,10-
DiHOME, 8,9-DHET, 8(9)-EET, 5(6)-EET, CAA, 18-HETE,
and 9S-HODE), lipoxygenase products (13S-HODE and 13-
oxoODE), one cyclooxygenase product (PGD3), and one parent
compound (aLA). Phenols exhibited negative signals with high
posterior inclusion probabilities for cyclooxygenase products
(15DO12,14-PGJ2, PGB2, and BCPGE1), cytochrome p450
products [9,10-DiHOME, 8(9)-EET, 14,15-EET, 9(10)-EpoME,
16-HETE, and 11,12-DHET], and lipoxygenase products (5-HETE

and LTE4). Parabens yielded positive signals with high posterior
inclusion probabilities for cytochrome p450 products (12,13-
DiHOME, 9,10-DiHOME, and 8(9)-EET), one lipoxygenase
product (13-oxoODE), one cyclooxygenase product (PGE3), and
one parent compound (LA). PAH metabolites exhibited high pos-
terior inclusion probabilities for positive signals with cytochrome
p450 products [14(15)-EET, 5(6)-EET, and 9S-HODE], and neg-
ative signals for two lipoxygenase products (LTC4-ME and 8-
HETE) and one parent compound (aLA). Metals exhibited high
posterior inclusion probabilities for negative signals with two cy-
clooxygenase pathway products (PGE3 and PGD3), and a posi-
tive signal with 9-oxoODE; positive signals (12(13)-EpoME and
16-HETE) and one negative signal (5,6-DHET) for cytochrome
p450 pathway products; and positive signals for two lipoxygen-
ase pathway products (RVD1 and 13-oxoODE).

Sparse-group LASSO was used to rank the importance of
each toxicant class based on the number of times it appeared with
increasing k values. Using an a value of 0.95, phthalates were

Figure 3. Heat map of posterior inclusion probabilities (PIPs) for toxicant classes estimated using Bayesian kernel machine regression (BKMR). Models adjusted
for maternal age, race, education, health insurance provider, body mass index at first visit, specific gravity, and preterm birth case status. The sample size for most
models wasN =160, except for the following biomarkers: BCPGE1 (N =159), LTE4 (N =132), sFlt-1 (N =156), and PGF (N =157). Directions of association are
estimated directly from joint-wise associations in the BKMRmodels. Black cells designate pairs that were positively associated, and blue cells designate pairs that
were negatively associated. The color intensities are indicative of PIP, that is, darker colors represent higher PIPs. Dashed lines delineate biomarker subgroups and
toxicant classes. See Excel Table S5 for the corresponding numeric data. Abbreviations and subclasses of toxicants are defined in Figure 1.
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selected as the most important class more often than other toxi-
cant classes (47% of the time) (Excel Table S6). Across all of the
endogenous biomarkers, other toxicant classes were selected as
the most important (or were tied with another class for the most
important rank) in the following proportions: phenols (23%), par-
abens (12%), PAHs (26%), and metals (23%). Phthalate selection
as the most important toxicant class was also evident in the con-
text of eicosanoid enzymatic pathways: cyclooxygenase products
(47% of the time), cytochrome p450 products (61%), and lipoxy-
genase products (44% of the time). Sensitivity analysis with a
stricter a value of 0.99 yielded similar results, with phthalates
being selected as the most important toxicant class 54% of the
time (Excel Table S6).

Discussion
The present study characterizes potential intermediate toxicologi-
cal pathways by implementing an exposure-wide association
assessment of multiple classes of toxicants using a unique panel
of biomarkers indicative of lipid metabolism, inflammation, oxi-
dative stress, and angiogenesis. We applied a comprehensive
analysis of pair-wise single-pollutant relationships and performed
shrinkage estimation and variable selection in a multipollutant
framework using adaptive elastic net, hierarchical BKMR, and
sparse-group LASSO. Overall, this study is a robust assessment
of associations across various biological pathways and can be
used to develop models of exposure–response relationships and
inform toxicological mechanisms of health outcomes.

Across multiple mixtures analysis methods there were consis-
tencies and differences of note. One of the major consistencies
was that phthalates exhibited overwhelmingly positive signals
with cytochrome p450 and lipoxygenase pathway products based
on adaptive elastic net, sparse-group LASSO, and hierarchical
BKMR. However, although adaptive elastic net and sparse-group
LASSO continued to select phthalates as highly important for
the cyclooxygenase pathway, the importance of phthalates in
hierarchical BKMR was diminished. Findings also differed
with regard to phthalates and the cyclooxygenase metabolite
9-oxoODE, where phthalates were selected as the most important
toxicant class by sparse-group LASSO but were not identified as
important by adaptive elastic net and hierarchical BKMR. Each
of the mixtures analysis methods indicated largely negative sig-
nals for phenols with products from the cyclooxygenase, cyto-
chrome p450, and lipoxygenase pathways. However, for the
lipoxygenase metabolite 13-oxoODE, the sparse-group LASSO
selected phenols as the most important, whereas the hierarchical
BKMR identified phthalates as the most important. Both the
adaptive elastic net and sparse-group LASSO methods assume
linear relationships between exposures and outcomes, whereas
BKMR can fit nonlinear exposure–response functions. That may
be one factor influencing the differences in findings across meth-
ods. In addition, each method has differential tolerance for two
important factors in toxicant effects: sparsity of signals and multi-
collinearity. These nuances in methodological differences under-
line the importance of interpreting the mixtures results in the
context of single-pollutant results, which can help substantiate
findings. Ultimately, differences in findings across mixtures
methods underscore the need to transparently apply multiple mix-
tures methods within both frequentist and Bayesian frameworks.

Focusing on the eicosanoid biomarkers, phthalate metabolites
were selected as positive signals for multiple products from each
of the enzymatic pathways (cytochrome p450, lipoxygenase, and
cyclooxygenase). Phthalate metabolites were also positively asso-
ciated with the parent lipid compounds a-LA and AA, which can
be metabolized by cytochrome p450 enzymes. The cytochrome
p450 enzymes belong to a superfamily of intrinsic membrane-

bound enzymes that are dispersed throughout the endoplasmic
reticulum and mitochondria (Guengerich et al. 2016). These
enzymes metabolize parent fatty acids into metabolites such as
9,10-DiHOME and 8(9)-EET. Cytochrome p450 enzymes are
also involved in the metabolism of xenobiotics (e.g., steroids and
environmental chemicals) (Guengerich et al. 2016). In vitro stud-
ies have reported evidence that exposure to parent phthalate com-
pounds (dibutyl phthalate and dimethyl phthalate) and
metabolites (MEHP and MBP) can inhibit the functions of cyto-
chrome p450 enzymes (Ozaki et al. 2016; Peng et al. 2019) . Our
findings illustrate potential biochemical processes that could be
sensitive to phthalate exposure, including the metabolism of aLA
and other parent compounds into 9,10-DiHOME and 8(9)-EET.

One of the cytochrome p450 metabolites, 9,10-DiHOME, is a
leukotoxin and ligand of the peroxisome proliferator-activated re-
ceptor gamma (PPAR-c) (Lecka-Czernik et al. 2002). Mechanistic
insights from in vitro studies suggest that 9,10-DiHOME can
directly alter mitochondrial membrane permeability (Sisemore
et al. 2001) and interfere with neutrophil mediated clearance of
pathogens (Thompson and Hammock 2007). In addition, 8(9)-
EET is also a ligand of PPAR-c and has broad ranging functions
including anti-inflammatory and anti-hypertensive effects
(Barnych et al. 2017; Bystrom et al. 2011). Interestingly, mecha-
nistic studies have reported evidence that phthalate metabolites are
capable of stimulatingPPAR-c (Engel et al. 2017; Schlezinger et al.
2004). Inhibition of cytochrome p450 activity may potentially
result in increased substrate and metabolite concentrations.
Furthermore, phthalate stimulation of PPAR-c can also create
competition for cytochrome p450 metabolites, which could partly
explain the positive associations we observed with products from
this pathway. The conceptual hypothesis of phthalate-induced inhi-
bition of cytochrome p450 and interference of PPAR-c should be
tested further in additional replication studies.

PAHs were predominantly selected as positive signals for
cytochrome p450 metabolites and negative signals for cyclooxy-
genase metabolites. PAH exposure can lead to reduced gap junc-
tion activity (Bauer et al. 2018), which is integral for epithelial
cell-to-cell signaling and immune cell adhesion and migration
(Okamoto and Suzuki 2017). Furthermore, PAHs have pro-
inflammatory capacity upon ligand binding of aryl hydrocarbon
receptors and interactions with the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-jB), which is a tran-
scription factor that regulates the expression of inflammatory sig-
naling molecules (Gdula-Argasi�nska et al. 2016). Mechanistic
studies have demonstrated that PAHs can form DNA adducts and
influence gene expression of several enzymes, including cyto-
chrome p450 and cyclooxygenases (Bauer et al. 2018; Gdula-
Argasi�nska et al. 2016). PAHs may potentiate an increase in li-
poxygenase products as an indirect result of stimulating enhanced
expression of cytochrome p450 and cyclooxygenases.

The selection of phenols and parabens as negative signals was
most evident in the lipoxygenase and cyclooxygenase pathways
and, to a lesser extent, in the cytochrome p450 pathway.
Mechanistic in vitro models have shown that chlorinated phenols
can alter cytosolic calcium ion levels (Michałowicz et al. 2018),
which can influence calcium-dependent metabolism of fatty acids
(Schlottmann et al. 2014). In another example, the chlorinated
phenol TCS has been shown to inhibit the aromatase enzyme
CYP19A1 in vitro, which can alter production of estradiol (Li
et al. 2017). Inhibition of estradiol production may result in
decreased lipid metabolism (Naukam and Curtis 2019), which
may partially explain the negative signals that we observed for
metabolites across the eicosanoid enzymatic groups. Additional
replication studies are needed to inform potential mechanisms by
which phenols and parabens impact lipid metabolism.
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Lipoxygenases, which are expressed throughout epithelial tis-
sue and by circulating immune cells, catalyze the formation of
inflammatory mediators from parent fatty acid compounds such
as LA and AA (Mashima and Okuyama 2015). The catalytic ac-
tivity of lipoxygenases is modified by intracellular Ca2+ concen-
trations and the process by which lipoxygenases translocate from
the cytosol to biomembranes is Ca2+-dependent (Rouzer and
Kargman 1988; Walther et al. 2004). In addition to phenols, met-
als (i.e., As, Ba, and Pb) were also selected as negative signals
for lipoxygenase products by elastic net regression. Several trace
metals have cationic states and can, therefore, potentially alter li-
poxygenase activity by competing with Ca2+. For example, Pb
exposure in animal models has demonstrated inhibition of
Ca2+-dependent enzymes such as protein kinases, resulting in
altered cytosolic concentrations (Kasten-Jolly and Lawrence
2018). Essential metals such as Mn are also potent ligands of lip-
oxygenases (Zhu and Richards 2017). As such, increasing intra-
cellular concentrations of multiple trace metals may alter the
catalytic activity of lipoxygenases.

Oxidative stress in damaged tissues and blood lymphocytes
can lead to the oxidation of macromolecules such as mitochon-
drial and nuclear DNA, proteins, and lipids. These oxidative
stress signals can be quantified by measuring oxidation products
such as 8-OHdG, NY, DY, CY, and 8-IP. Notably, there were
several positive associations with 8-OHdG, representing multiple
classes (trace metals, PAHs, phenols, phthalates). After adjusting
for FDR, this included MBP, BPA, 2,5-DCP, 2-FLU, 1-PHE
1-PYR, Se, and Zn. On the other hand, we observed much more
subtle patterns with the protein damage markers. Similarly, there
were also less consistent signals for the lipid oxidative stress
marker 8-IP compared with 8-OHdG. These findings suggest that
8-OHdG may be a common biomarker of oxidative stress across
several toxicant classes, although the utility of 8-OHdG measured
via immunoassay has been challenged in validation studies
(Barregard et al. 2013; Cooke et al. 2009; Møller et al. 2012;
Rossner et al. 2016). Furthermore, 8-OHdG and 8-IP are urinary
outcome biomarkers, and even with adjustment of specific grav-
ity, residual bias due to hydration status may have differentially
influenced the signals we observed (O’Brien et al. 2016).
Therefore, additional biomarkers of oxidative stress should be
measured to complement inferences drawn from 8-OHdG.

In a separate prospective birth cohort of singleton pregnancies
based inMichigan (n=56), specific gravity–adjusted phenols, phtha-
lates, andmetals were measured in maternal urine samples in the first
trimester (8–14 wk gestation) for cross-sectional and prospective
analyses with oxidative stress biomarkers measured inmaternal urine
samples and neonatal cord blood samples (Puttabyatappa et al. 2020).
Consistent with our findings, adjusted linear regression models in the
prospective analyses of that study reported a negative association
between first-trimester maternal urinary Pb and neonatal cord blood
CY (Puttabyatappa et al. 2020). Exposure levels of Pb in this sample
[geometric mean ðGMÞ=0:22 lg=L] were comparable, but slightly
lower than levels observed in the present LIFECODES subsample
(GM=0:37 lg=L) (Goodrich et al. 2019). However, their findings
for first-trimester urinary phthalate metabolites in adjusted linear
regression models were less consistent, where inverse cross-sectional
associations were observed between two metabolites (MCPP and
MCINP) and the first-trimester maternal plasma CY level
(Puttabyatappa et al. 2020). In addition, in prospective analyses, first-
trimester maternal urinary MBzP was inversely associated with neo-
natal cord blood NY (Puttabyatappa et al. 2020). Puttabyatappa et al.
(2020) analyzed phthalates with lower GMs of first-trimester mater-
nal urinary MCPP (1:38 lg=L) and MBzP (4:2 lg=L) compared
with what we observed in our LIFECODES subsample for MCPP
(GM=2:64 lg=L) and MBzP (GM=8:22 lg=L) (Goodrich et al.

2019). The GM for first-trimester MCINP in that comparison study
was 1:29 lg=L (Goodrich et al. 2019), although this metabolite was
not measured in our LIFECODES subsample. Another prospective
study based in Michigan (n=24) measured plasma BPA and oxida-
tive stressmarkers (NY,DY, andCYnormalized for total tyrosine) in
women (8–14 wk gestation) with singleton term pregnancies and
in cord blood (Veiga-Lopez et al. 2015). Plasma BPA was opera-
tionalized as low (range: 0:03–0:14 ng=mL) and high (range:
4:1–96:4 ng=mL) (Veiga-Lopez et al. 2015).

Cross-sectional crude analyses in that study reported a positive
correlation between maternal plasma concentrations of tyrosine
normalized NY and unconjugated BPA (Veiga-Lopez et al. 2015).
Differences in biological matrices for BPA exposure assessment
limit comparisons in this context, but they circumstantially support
evidence of associations across tissue types. Inconsistent associa-
tions observed across independent studies may be due to several
factors, including exposure distributions, sample size differences,
and the timing of sample collection during pregnancy. For exam-
ple, samples collected in the present LIFECODES subsample were
between 23.1 and 28.9 wk of gestation, whereas the Michigan
based study samples measured biomarkers in biological media col-
lected between 8 and 14 wk of gestation. Beyond these factors,
inconsistencies in associationsmay be present due to spurious find-
ingswithin our study and comparison studies.

In the larger LIFECODES cohort (N =464), estimates from
linear mixed effects models used to estimate associations between
maternal urine 8-OHdG and maternal urinary exposures meas-
ured in samples collected at multiple time points (5–38 wk gesta-
tion) from each participant (n=1,555 samples) indicated positive
associations for phenols and parabens with 8-IP and 8-OHdG
(Ferguson et al. 2019), consistent with the present analysis. A
separate cross-sectional study of a subset of 200 LIFECODES
participants (Ferguson et al. 2017) analyzed urine samples col-
lected at median 26 wk gestation and reported associations
between maternal urinary PAH metabolites, 8-OHdG, and 8-IP
that were in the same direction as in the present study. In a cross-
sectional study of women (n=230) who delivered singleton term
infants based in Taiwan, Huang et al. (2017) measured urinary
BPA, nonylphenol, and 8-OHdG from samples collected between
27 and 38 wk of gestation. That study did not report notable asso-
ciations between maternal urinary BPA and 8-OHdG concentra-
tions in adjusted linear regression models (n=200) (Huang et al.
2017). However, their study did find that higher levels of nonyl-
phenol was associated with higher 8-OHdG (Huang et al. 2017).
In adjusted linear regression models of another analysis with a
subset of the sample (n=202), Huang et al. (2018) found that
pregnant women with urinary BPA and nonylphenol both above
the median was associated with higher 8-OHdG. The creatinine-
corrected GM BPA concentration in third-trimester urine samples
from the Taiwanese study population was 2:24 lg=g creatinine,
whereas in the present LIFECODES subset sample, the specific
gravity-corrected GM urine BPA concentration in samples col-
lected 23–29 wk of gestation was 1:50 lg=L (Excel Table S1).

Associations between phthalate metabolites and urinary
8-OHdG and 8-IP were consistent between the repeated measures
analysis of multiple samples from the larger LIFECODES study
sample (Ferguson et al. 2015a) and the present subset analysis. In
a prospective study (n=46) based in South Korea, paraben expo-
sure and oxidative stress biomarkers were measured in urine sam-
ples collected from mothers a day before delivery (one
participant was collected after delivery) (Kang et al. 2013). That
study identified suggestive (p=0:07) positive cross-sectional
associations in adjusted linear regression models between mater-
nal urinary EPB (specific gravity–corrected median= 44:6 lg=L)
and 8-OHdG (Kang et al. 2013). Although we did not observe
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similar associations in the present LIFECODES subset analysis,
this may partially be explained by exposure levels of EPB, which
were substantially lower in the LIFECODES cohort subset (spe-
cific gravity–corrected median= 4:34 lg=L).

Among the trace metals, Al-Saleh et al. (2017) conducted a
large cross-sectional study (n=944) of mothers without chronic
conditions (e.g., hypertension, renal and cardiac conditions, dia-
betes) in Saudi Arabia and measured trace metals and 8-OHdG in
maternal urine samples collected 3–12 months after their recent
pregnancy. Adjusted linear regression models in that study
(nHg = 881, nCd = 881, nPb = 875) indicated that maternal urinary
Hg (GM=0:68 lg=g creatinine), Cd (GM=0:31 lg=g creati-
nine), and Pb (GM=3:77 lg=g creatinine) were associated with
higher maternal urinary 8-OHdG (Al-Saleh et al. 2017). In corre-
lation estimations from another subset analysis in this sample
(n=316), Al-Saleh et al. (2016) also observed a positive correla-
tion between total mercury in breast milk (GM=0:77 lg=L) and
maternal urinary 8-OHdG. The inconsistent relationships may be
partly due to geographic differences or, in the case of Pb, a signif-
icant difference in exposure levels (LIFECODES subsample
GM=0:37 lg=L), albeit the use of creatinine in the Saudi
Arabian sample limits the ability to make direct exposure distri-
bution comparisons. Additional replication analyses will further
inform oxidative stress associations in observational studies.

Collectively, the associations reported in the present study
underscore the potential for enzymatic perturbations through ex-
posure to environmental toxicants. The clinical implications can
be postulated based on knowledge of the pathophysiology linked
to cytochrome p450, lipoxygenases, and cyclooxygenases. Given
the immunoresponsive nature of eicosanoid products, alterations
in these signaling molecules may influence the risk for cardiovas-
cular conditions such as hypertension and myocardial infarction
(Fan et al. 2015; Parente and Perretti 2003; Rowland and
Mangoni 2014; Singh and Rao 2019). During pregnancy, cardio-
vascular disease risk also affects maternal and neonatal mortality
and morbidity (Leon et al. 2019; Roos-Hesselink et al. 2019).
Changes in these endogenous eicosanoid biomarkers also pose
altered risk for chronic kidney and liver disease (Afshinnia et al.
2020; Fan et al. 2015; Rowland and Mangoni 2014). Altogether,
multiple health end points are susceptible to environmental per-
turbations in enzymatic pathways that govern the concentrations
of circulating eicosanoids and biomarkers of inflammation and
oxidative stress.

There are some limitations in our study that are important to
underline in order to improve future studies. First, the study
design was cross-sectional, and our findings are therefore suscep-
tible to reverse causation. For example, disease states caused by
other stimuli (e.g., infection or injury) can impact systemic
inflammation and oxidative stress, which in turn could alter renal
clearance of toxicants. In addition, cross-sectional associations
are unable to confirm that the exposures preceded the outcome
variables. We recommend that future studies explore repeated
measurements of the panel of endogenous biomarkers that we
focused on in order to assess windows of susceptibility. The asso-
ciations reported in this study also have the potential for being
noncausal due to uncontrolled confounding, selection bias, expo-
sure misclassification, and other sources of bias that cannot be
ruled out. We also conducted multiple comparisons; therefore,
there is risk for false discoveries. This was partly ameliorated by
accounting for FDR in our interpretations. FDR adjustment does
not, however, reduce the risk of false discoveries due to bias. For
example, the risk of amplification bias in multipollutant models
may reduce accuracy in comparability between single and multi-
pollutant models (Weisskopf et al. 2018). In terms of effect esti-
mation, an additional limitation to consider is the potential for

differences in the amount of exposure measurement error for vari-
ous biomarkers of exposure, which underscores the possibility
that larger magnitudes of associations do not necessarily confirm
stronger true associations. Another limitation that should be high-
lighted is our use of circulating endogenous biomarkers in
plasma, which limited our inferences to systemic perturbations.
We may be missing important tissue-specific relationships associ-
ated with toxicant exposures, and the relevance of findings to
subsequent health outcomes is uncertain. Last, the findings of this
study are not necessarily generalizable to other populations.

Our study also contains several strengths that should be con-
sidered. First, we conducted our analyses in a well-characterized
birth cohort. Drawing from a case–control sample of preterm
births, we partly reduced selection bias by constructing inverse
probability weights, which enhances the quality of inference in
our findings. Furthermore, we leveraged high-sensitivity instru-
mentation to measure a robust panel of endogenous biomarkers.
Similarly, our exposure assessment was also highly comprehen-
sive, covering a wide range of toxicant classes. Because of these
strengths, future studies can build upon our model parameteriza-
tion to evaluate replication across cohorts. In addition, the statisti-
cal approach in our study is innovative because it used penalized
regression, hierarchical BKMR, and sparse-group LASSO to dis-
entangle pathway specific associations for toxicants within a mul-
tipollutant framework. This approach is particularly useful for
policy applications in order to help inform prioritization of toxi-
cants based on biological mechanisms.

In conclusion, this study leveraged multiple statistical meth-
ods to characterize signals of endogenous biomarkers associated
with individual toxicants and whole toxicant classes. When we
applied adaptive elastic net, BKMR, and sparse-group LASSO,
phthalates were consistently linked to positive signals with
plasma eicosanoids from the cytochrome p450 and lipoxygenase
pathway. Phenols were also consistently linked to negative sig-
nals with all eicosanoid enzymatic pathways. This study informs
the prioritization of specific pairs or clusters of endogenous bio-
markers and exposure analytes for future studies of health
outcomes.
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