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Abstract
Glutamine (gln) metabolism has emerged as a cancer therapeutic target in past few years, however, the effect of gln-depri-
vation of bCSCs remains elusive in breast cancer. In this study, effect of glutamine on stemness and differentiation potential 
of bCSCs isolated from MCF-7 and MDAMB-231 were studied. We have shown that bCSCs differentiate into CD24+ epi-
thelial population under gln-deprivation and demonstrated increased expression of epithelial markers such as e-cadherin, 
claudin-1 and decreased expression of mesenchymal protein n-cadherin. MCF-7-bCSCs showed a decrease in EpCAMhigh 
population whereas MDAMB-231-bCSCs increased CD44high population in response to gln-deprivation. The expression of 
intracellular stem cell markers such sox-2, oct-4 and nanog showed a drastic decrease in gene expression under gln-deprived 
MDAMB-231-bCSCs. Finally, localization of β-catenin in MCF-7 and MDAMB-231 cells showed its accumulation in 
cytosol or perinuclear space reducing its efficiency to transcribe downstream genes. Conclusively, our study demonstrated 
that gln-deprivation induces differentiation of bCSCs into epithelial subtypes and also reduces stemness of bCSCs mediated 
by reduced nuclear localization of β-catenin. It also suggests that basal and luminal bCSCs respond differentially towards 
changes in extracellular and intracellular gln. This study could significantly affect the gln targeting regimen of breast cancer 
therapeutics.
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Introduction

Tumor microenvironment plays an important role in the 
growth and development of cancer. It involves various com-
ponents such as cells present in the periphery of cancer cells, 
pH, extracellular matrix and nutrients. It is well established 
that cancer cells have a high uptake of various nutrients such 

as glucose, amino acid (essential/conditionally essential) to 
meet their biosynthetic needs and proliferation (Lyssiotis 
and Kimmelman 2017). Glutamine is a conditionally essen-
tial amino acid involved in various metabolic processes. It 
serves as an important source of nitrogen for anabolic reac-
tions, acts as a carbon donor in TCA cycle and is an impor-
tant precursor for nucleotide biosynthesis. Despite of being 
conditionally essential its uptake is increased in tumors of 
different tissue origins (Altman et al. 2016). Requirement 
for glutamine varies among the type of cancer and also the 
subtype, tissue of origin etc. Breast cancer is a heteroge-
neous disease with different subtypes which may vary in 
their metabolic requirements (Demas et al. 2019; El Ansari 
et al. 2018) e.g. luminal subtype is reported to grow inde-
pendent of glutamine (Gln) while the basal subtype grow is 
dependent on gln due to absence of lineage specific expres-
sion of glutamine synthetase in later (Kung et al. 2011). 
Anti-metabolite drugs have served as useful anticancer tools 
in mitigation of the disease. Number of genomic mutation 
such as p53, kras, c-myc in various cancers have shown 
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toxicity with either intracellular or extracellular gln-depri-
vation (Choi and Park 2018; Jariyal et al. 2019). Diazo-O-
norleucine (DON) was the earliest glutaminase inhibitor due 
to its analogy with glutamine (Seltzer et al. 2010; Shapiro 
et al. 1991; Unger et al. 2005). Subsequently, number of 
glutamine metabolism inhibitors was designed in past year 
and few of them such as BPTES, CB-839are in clinical tri-
als for their safety and efficacy evaluation (Song et al. 2018; 
Wu et al. 2018; Xu et al. 2018). CB-839 is a glutaminase 
inhibitor which is also reported to show anti-proliferative 
effect in triple-negative breast cancer cells. Earlier studies 
have also shown that gln is important for the survival and 
differentiation of hematopoietic cells to erythroid lineage 
(Oburoglu et al. 2014). Glutamine is reported to directly 
prevent the degradation of oct4 by protecting the oxidation 
of cysteine residue which is essential for its stability (Mars-
boom et al. 2016). However the role of gln in cancer stem 
cell studies is still controversial. Few reports suggesting that 
in the core of tumors (CSCs niche), the low concentrations 
of gln are responsible for maintaining stemness by induc-
ing hypermethylation leading to dedifferentiation of tumor 
cells to CSCs (Pan et al. 2016) while other study reports that 
although gln is not essential for growth of murine embryonic 
stem cells but its uptake is required for maintaining high 
levels of α-KG needed for demethylation and maintaining 
pluripotency (Carey et al. 2015). A recent study with lung 
and pancreatic cell lines showed that gln is required for the 
maintenance of redox balance, the gln-deprivation leads to 
an imbalance in redox state of the cell which further down-
regulates the β-catenin pathway and therefore decrease the 
side population which were depicted CSCs-like population 
(Liao et al. 2017). Similarly in hepatocellular carcinoma the 
inhibition of main catabolic enzyme of glutamine i.e. glu-
taminase1 leads to decrease in stemness following increased 
ROS accumulation and inhibition of wnt/β-catenin pathway 
(Li et al. 2019).The increased ROS levels due to gln-depri-
vation are reported to sensitize pancreatic ductal carcinoma 
stem cells towards radiotherapy (Li et al. 2015). In colorectal 
cancer, the gln-deprivation is reported to sensitize the met-
formin resistant CSCs. The treatment with glutaminase C 
inhibitor (Compound 968) and metformin sensitization of 
the cells have demonstrated high expression of gln trans-
porters with CSC properties (Kim et al. 2018). Gln is also 
required for the maintenance of redox balance in breast can-
cer when cells are grown in non-adherent conditions i.e. 
to avoid detachment induced cell death known as anoikis. 
Similarly, the CSCs are also found to be anoikis resistant 
as they are enriched in tumorsphere assay in the low/non-
adherent conditions. Recently, Stanley et al. have shown that 
glutamine-deprivation leads to decrease in the ganglioside 
(GD2+) bCSCs population in MDAMB-231 and SUM159 
cells (Ly et al. 2020). Further, the CSCs in breast cancer are 
identified with CD24−/low/CD44high/+/CD326high/+ expression 

on the surface. However, how glutamine-deprivation affects 
the proliferation and differentiation capacity of bCSCs pop-
ulation still needs to be evaluated. In this study, we have 
aimed to understand the effect of gln-deprivation in bCSCs 
(CD24−/low/CD44high/+/CD326high/+ population) isolated 
from MCF-7 and MDAMB-231 cells. We have also used 
DON as an inhibitor of glutaminase enzyme which inhib-
its the conversion of gln to glutamate therefore, depriving 
intracellular gln. We found that gln-deprivation differen-
tially affects the bCSCs population isolated from MCF-7 
and MDAMB-231 cells. We have also checked the changes 
in intracellular stem cell markers and demonstrated that the 
degradation of β-catenin may be involved in reducing the 
stem cell population.

Materials and methods

Cell culture

MDA-MB-231 and MCF-7 human breast cancer cell line 
were obtained from American Type Culture Collection 
(ATCC). MCF 7 were grown in Dulbecco’s Modified Eagle 
Medium (DMEM, Life Technology, USA) while MDA-
MB-231 were cultured in Leibovitz’s L15 medium (Life 
Technology, USA) supplemented with 10% heat-inactivated 
fetal bovine serum (Gibco, Life technology, USA), 2 mM 
glutamine, 1% penicillin and streptomycin. Cells were cul-
tured in tissue culture flasks (Falcon, USA) and were kept 
in CO2 incubator at 37 °C in a humidified atmosphere with 
5% CO2. MDA-MB-231 cells were cultured at 37 °C under 
humid environment in a carbon dioxide free incubator. We 
have performed most of experiments for 72 h, however to 
check the long term effect of gln deprivation on breast can-
cer cell lines we have consider 8 days time point where we 
were able to observe morphological changes and surface 
expression changes prominently. The proliferation assay was 
also performed for 10 days and data of alternate days was 
represented.

Proliferation assay

Cells were harvested and seeded at a density of 5000 cells/
well in a 24-well culture plate for 10 days. After 24 h, 
cells were treated with complete glutamine (2 mM) and 
glutamine-deprived media (0 mM). Cell proliferation was 
measured using Alamar blue (10 µg/ml) and cells were 
maintained at 37 °C with 5% CO2 for 4 h to detect its meta-
bolic activity. Fluorescence intensity was measured using 
microplate reader with excitation/emission ant 560/590 nm 
at 2nd, 4th, 6th, 8th and 10th day.
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Tumorspheres assay

Single cell suspensions were plated in non-adherent 6-well 
tissue culture plates coated with poly-2-hydroxyethylmeth-
acrylate (Sigma Aldrich, USA) at a density of 0.1× 105 cells 
in serum free media with 1% penicillin/streptomycin, 1X 
B27 (Gibco, Life Technology, USA), 20 ng/ml EGF (Sigma 
Aldrich, USA) and 20 ng/ml bFGF (Sigma Aldrich, USA) 
to check the formation of tumorspheres. The number of 
spheres formed in each well was examined after 8 days. For 
secondary tumorsphere formation primary spheres were 
centrifuged at 300 g and washed with PBS. Tumorspheres 
were trypsinized and seeded again in fresh media and were 
allowed to for secondary spheres. The sphere formation was 
analysed by measuring the size of each sphere using ImageJ 
software.

Immunocytochemistry

MCF-7 and MDAB-231 cells were seeded in density of 
2 × 104 cells/ well on Millicell EZ slide 8-well glass, sterile 
(Merck, Millipore) and grown to subconfluency. Cells were 
treated for 8 days with glutamine-deprived media and DON. 
After completion of treatment, medium was discarded and 
cells were washed with PBS followed by fixation with 4% 
paraformaldehyde for 10 min at room temperature. Permea-
bilization was done using 0.25% Triton X-100 for 2 min at 
room temperature. Permeabilized cells were then blocked 
with 1% BSA for 30 min, followed by incubation with pri-
mary antibody anti-beta catenin (ab16051-abcam), E-cad-
herin (ab15148-abcam), N-cadherin (sc-59,987- Santa Cruz-
Biotechnology) and claudin-1 (71-7800-Invitrogen) for 1 h 
at room temperature (RT). After complete incubation, the 
cells were washed thrice with PBS and incubated with sec-
ondary antibody Goat anti-Rabbit IgG H&L alexa fluor 488 
(ab150077) or Goat anti-mouse IgG H&L alexa fluor 647 
(ab150115). Finally, the CD24-RPE (MCA1379PET—Bio-
Rad) was added Cells were again washed thrice with PBS 
and nuclei were stained with DAPI. Finally, images were 
taken under confocal microscope (Leica SP8) and analyzed.

Flow cytometry analysis

The cells were harvested by trypsinization and washed with 
PBS. Cells were kept for blocking using 10% fetal bovine 
serum for 1 h in ice cold condition and then stained with 
anti-CD44-Alexaflour 647 (Bio-Rad), anti-CD24-FITC 
(Bio-Rad), anti-CD326-PeCy (Bio-Rad) in PBS for 1 h at 
4 °C. The samples were washed with PBS and finally re-
suspended in 300 µl PBS. Flow cytometry analysis was per-
formed on a Prosort™ Flow Cytometer (Bio-Rad).

Isolation of breast cancer stem cells

MDA-MB 231 and MCF 7 cells were seeded in T-75cm2 
flasks to reach confluency. Cells were harvested, trypsinized 
and resuspended in 1X PBS. BCSC’s were isolated based on 
expression of CD44+, CD24− and CD326+ (Supplementary 
Table 1). Briefly cells were stained with anti-CD44-Alex-
aflour 647, Anti-CD24-FITC and Anti-CD326-PeCy7 and 
BCSC’s was identified by the flow cytometry. Cells were 
sorted into 5 ml tubes containing 1 ml culture medium sup-
plemented with 10% FBS and 1% penicillin and streptomy-
cin. The sorted cells were seeded on a 24-well plate treated 
with Glutamine-deprived media and DON containing media. 
The untreated sorted cells were taken as control. The effect 
of glutamine on stem cells was analyzed after 72 h using 
Flow cytometry.

Apoptotic assay

The cells were seeded in 6 well plates and allowed to attach 
overnight. After 24 h, cells were treated with complete 
glutamine, glutamine-deprived media and 25 µM DON. 
Cells were harvested by trypsinization and incubated with 
Annexin V-Alexafluor 488 (Invitrogen, Life Technology, 
USA) and propidium iodide (Life technology, USA) in 
Annexin binding buffer for 15 min in dark. Stained cells 
were immediately subjected to flow cytometry and studied 
after 72 h and 8 days of treatment.

Quantitative real time‐polymerase chain reaction 
(qRT‑PCR)

Total RNA was extracted using Trizol (Ambion, USA) 
according to the manufacturer’s protocol. Quantification of 
RNA concentration was done using the Nano Drop 2000 
Spectrophotometer (Nano Drop Technologies, Thermo, 
USA). cDNA preparation was done using cDNA Synthesis 
Kit (Bio-Rad) according to the manufacturer’s instruction. 
ITaq™ RT-PCR SYBR Green kit (Bio-Rad, USA) was used 
to prepare the reaction mix according to instructions of the 
manufacturer. The primers for target genes such as Sox2, 
Nanog, Pou5F-1/oct-4 and housekeeping (18 s rRNA) genes 
were designed to amplify only the cDNAs compatible to 
mRNA sequence but not any genomic sequences. (Supple-
mentary Table 2) shows oligonucleotide sequence used for 
this study. The analysis and quantification of gene expression 
were carried out using the Step one software, version 2.0 
(Applied Bio systems, USA).

Western blot analysis

MDAMB-231 and MCF-7 cells were grown in gln-deprived 
condition and were treated with DON for 72 h. Cells were 
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washed thrice with PBS and protein content was isolated 
using RIPA buffer. Protein was quantified using BCA rea-
gent kit (Invitrogen). Nuclear and cytosolic extract of cells 
were extracted using nuclear extraction kit from abcam 
(ab113474). An equal amount of protein from each experi-
mental condition was loaded to perform gel electrophoresis 
in 10–12% acrylamide. Proteins were transferred on PVDF 
membrane and were probed against β-catenin, sox-2 and 
oct-4. Data for total cell protein expression was normalized 
using total protein stained with commassie blue.

For nuclear and cytosolic extracts β-actin and PCNA were 
used as internal controls respectively.

Results

Intracellular and extracellular glutamine‐
deprivation sensitizes breast cancer cells 
towards apoptosis

MDAMB-231 and MCF-7 cells were grown in gln-deprived 
media to analyse the effect of gln-deprivation on these cell 
types. Gln-deprivation in media significantly decreases 
the proliferation rate of MCF-7 and MDAMB-231 cells 
(supplementary Fig. 1a). The MDAMB-231 cells showed 
a more pronounced effect of gln-deprivation and did not 
reach confluency in gln-deprived conditions. Glutamine is 
a conditionally essential amino acid which is also required 
for nucleotide synthesis, therefore apoptotic assay was 
conducted to find out whether cells were dividing slowly 
or were undergoing apoptosis. Results of cell staining with 
annexin-V and PI showed that the percentage of apoptotic 
cells in MDAMB-231 cells significantly increased in gln-
deprived conditions as compared to cells grown in gln 
containing complete media (Supplementary Fig. 1b). Fur-
thermore, MDAMB-231 cells were more sensitive towards 
the withdrawn of extracellular gln. DON is an analogue 
of glutamine and act as an inhibitor of enzymes utilizing 
glutamine in biochemical reactions. Glutaminase (GLS) is 
an enzyme with two isoforms (GLS1 and GLS2) found in 
cytosol and mitochondria. GLS is involved in the conver-
sion of glutamine to glutamate, consequently important 
for utilization of extracellular and intracellular gln by cell. 
Therefore, to check if hampering intracellular utilization of 
gln sensitizes MCF-7 cells which are utilizing intracellular 
gln (Kung et al. 2011). Treatment of 25 µM DON in com-
plete media significantly increased the apoptotic population 
in MCF-7 cells as compare to control cells and cells grown 
in gln-deprived media (Supplementary Fig. 1b). However, 
in MDAMB-231 cells the intracellular and extracellular gln 
deficiency did not showed any significant difference in cell 
viability (Supplementary Fig. 1a). Conclusively, MCF-7 
cells utilize intracellular gln whereas MDAMB-231 cells are 

more dependent on extracellular supply of gln and therefore 
are sensitive to intracellular and extracellular-deprivation 
of gln respectively.

Glutamine‐deprivation alters the morphology 
of MDAMB‑231 cells

MDAMB-231 cells grown in gln-deprived media undergo 
cell death, however few cells were viable when grown in gln 
deficiency but undergone morphological changes. Also, the 
cells treated with DON were also undergone drastic change 
in morphology as compare to control cells. The cells become 
more flattened showing widened cytoplasm and oval nuclei 
in treated group while the untreated cells showed elongated 
cells with spindle shaped morphology (Supplementary 
Fig. 2a). The cells also showed a significant increase in their 
size in treated groups (Supplementary Fig. 3a). The mor-
phological changes were more pronounced in cells treated 
with DON as compared to cells grown in gln-deprivation. 
However in MCF-7 cells no morphological changes were 
observed after depriving extracellular or intracellular gln 
(supplementary Fig. 2b). Further, freshly isolated breast 
cancer stem cells (bCSCs) population response was stud-
ied in gln-deprived conditions. We isolated CD24−/CD44+ 
and EpCAM+ cell population from MCF-7 and MDAMB-
231 cells. CD24−/CD44+ and EpCAM+ cells are known to 
have bCSCs properties (Ghebeh et al. 2013; Xie et al. 2016). 
bCSCs isolated from MDAMB-231 cells showed similar 
changes in cell morphology and in increase in size as shown 
by MDAMB-231 cell line. bCSCs grown in gln-deprived 
media and DON changed their morphology towards epithe-
lial like cells (Fig. 1a, c) (Supplementary Fig. 3b). Surpris-
ingly, bCSCs isolated from MCF-7 cells were highly sensi-
tive to gln-deprivation in contrast to the MCF-7 cells line. 
bCSCs treated with DON showed stress in cells within 24 h 
and cells undergo apoptosis within 72 h (Fig. 1b). Conclu-
sively, it has been shown that bCSCs isolated from MCF-7 
cells are very sensitive to gln-deprivation as compare to 
whole cell population of MCF-7 cells and bCSCs isolated 
from MDAMB-231 cells.

Glutamine‐deprivation changes the surface 
expression of stem cell markers in breast cancer cell 
population

We analysed the surface expression of stem cell markers 
CD24, CD44 and EpCAM in MCF-7 and MDAMB-231 
after gln-deprivation. The study was conducted for 72 h 
and 8 days to check the short term and long term effect 
of gln depletion on breast cancer cells. After 72 h of gln-
deprivation and DON treatment, MCF-7 cells showed a 
significant decrease in population with high surface expres-
sion of EpCAM (Fig. 2a). However, no significant change 
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in the EpCAM expressing population was observed after 
deprivation of gln for 8 days. Notably, 8 days treatment of 
DON showed a significant increase in EpCAMmedium and 
EpCAMhigh population in MCF-7 cells (Fig. 2b). There 
was no significant change in the expression of CD44 was 
observed after deprivation of gln in MCF-7 cells. Further-
more, MDAMB-231 cell showed a significant increase in 
the population with CD44medium and CD44high expression 
after 72 h and 8 days of gln-deprivation (Fig. 2c, d). Simi-
larly, treatment of DON for 72 h and 8 days have shown to 
increase the population of CD44high cells in MDAMB-231 
cells (Fig. 2c, d).

Effect of gln-deprivation on surface expression of CD24 
was also observed in MCF-7 and MDAMB-231 cells. Gln-
deprivation in media did not show any changes in the sur-
face expression of CD24 for 72 h (Fig. 3a). However, after 
long term deprivation of gln for 8 days, MCF-7 cells with 
CD24+ve population doubled as compared to cells grown in 
complete media (Fig. 3b). In contrary, treatment of DON for 
72 h increased the cells with CD24+ve population and after 8 
days, decreased the CD24−ve population compared to control 
cells was observed. In MDAMB-231 cells, deprivation of 
gln did not changed CD24+ ve population (Fig. 3c), but the 
long-term deprivation of gln and treatment of DON signifi-
cantly increased the CD24+ ve population compared to con-
trol cells (Fig. 3d). Conclusively, gln-deprivation changed 
the cells from CD24−ve to CD24+ve phenotype in MCF-7 and 
MDAMB-231 cells. EpCAM expression of MCF-7 cells was 

changed by gln-deprivation for short-term while the DON 
significantly increased the population of EpCAMhigh cells. 
Also, MDAMB-231 cells responded to gln-deprivation and 
DON treatment by increasing the CD44high population. 
Therefore, it has been shown that surface expression of stem 
cell markers is responsive to extracellular and intracellular 
deprivation of gln.

Glutamine‐deprivation changed the surface 
expression of stem cell markers on breast cancer 
stem cell population

Freshly isolated bCSCs (CD24−/CD44+ and EpCAM+) 
population from MDAMB-231 cells were incubated in gln-
deprived culture media and the surface expression of CD24, 
CD44 and EpCAM was further evaluated using flow cytom-
etry. MDAMB-231-bCSCs grown in gln-deprived condi-
tions and DON containing media have shown significant 
increase in the CD24+ population from 16 to 66% within 
72 h (Fig. 4a). MDAMB-231-bCSCs population with CD44 
expression showed a shift from CD44mediumto CD44high in 
gln-deprived conditions but a more prominent and signifi-
cant population shift was observed in DON treated group 
(Fig. 4b). These results suggest that MDAMB-bCSCs may 
have differentiated into cancer cells in the absence of gln due 
to increase in the population of CD24+ cells.

Furthermore, we also checked the tumorsphere forma-
tion of MDAMB-231 and MCF-7 cells either in the absence 

Fig. 1   Morphological changes in breast cancer cells after glutamine 
depletion (a) and (b). Representative images of MDAMB231-bCSCs 
and MCF-7-bCSCs showing morphological changes in cells grown in 

gln-deprived media and DON containing complete media. (c). Higher 
magnification images showing morphological changes in MDAMB-
231-CSCs
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of extracellular gln or presence of DON. To analyse the 
self -renewal properties of cells in tumorspheres we have 
also performed secondary tumorsphere formation in gln-
deprived and DON treated conditions. Gln-deprivation 
and DON treatment in MCF-7 significantly decreased the 
size of primary tumorspheres. However the sphere form-
ing capability was drastically reduced during secondary 
tumorsphere formation when cells were deprived of gln and 
were treated with DON (Fig. 5a). MDAMB-231 cells also 
showed a decrease in the size of tumorsphere in gln-deprived 
conditions. However, the DON treatment surprisingly has 
shown to increase the size of tumorspheres. Secondary tum-
orspheres of MDAMB-231 cells also showed a decrease in 

size of spheres when gln was deprived in media. Similar to 
primary spheres DON also formed larger secondary spheres. 
Furthermore, the spheres formed in gln-deprived or DON 
treated group were less compact as compared to untreated 
spheres (Fig. 5b).

Intracellular stem cell markers in breast cancer cells 
and breast cancer stem cells

To analyse the effect of gln-deprivation on breast cancer cell 
lines, MCF-7 and MDAMB-231 cells were either grown in 
gln-deprived media or in DON containing media for 72 h. 
The gene expression analysis of MCF-7 cells revealed a 

Fig. 2   Stem cell marker modulations after glutamine-deprivation (a) 
and (b). Flow cytometry data shows the effect of gln-deprived media 
and DON containing complete media on EpCAM in MCF-7 after 72 
and 8 days of treatment. (c) and  (d)  Flow cytometry data showing 

effect of gln-deprived media and DON containing complete media on 
CD44 in MDAMB-231 cells after 72 and 8 days of treatment. Data 
was analyzed using two-way ANOVA, each bar represents n = 3, 
± SD, *p < 0.05, **p < 0.01, ***p < 0.001
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significant increase in expression of sox-2 and nanog in 
DON containing media (Fig. 6a). However, there was no 
significant difference found in stem cell markers expression 
in gln-deprived conditions as compare to control. We have 
also checked the protein levels of sox-2 and oct-4 in MCF-7 
and MDAMB-231 cells. The protein expression of sox-2 
was found to be increased after gln-deprivation and DON 
treatment. The oct-4 protein levels remained unchanged after 
gln-deprivation in media while it was significantly reduced 
after DON treatment (Supplementary Fig. 4). Furthermore, 
similar experiment was conducted on the isolated bCSCs 

from MCF-7 cells. The mRNA expression showed that 
MCF-7-bCSCs grown in gln-deprived conditions showed 
a significant increase in the expression of sox2, nanog and 
oct-4, suggesting that these cells may not require extracel-
lular gln supply and enhance stem cell gene expression in 
gln-deprived conditions (Fig. 6b). Nevertheless, as shown 
earlier the MCF-7 bCSCs were highly sensitive to the DON 
treatment and were not able to increase their stem cell gene 
expression (Fig. 6b).

Glutamine-deprivation in MDAMB-231 cells for 72 h 
have demonstrated significant increase in the mRNA 

Fig. 3   Glutamine depletion changes CD24 surface expression (a) and 
(b). Flow cytometry data showing effect of gln-deprived media and 
DON containing complete media on CD24 expressing population in 
MCF-7 after 72 and 8 days of treatment. (c) and (d)  Flow cytome-
try data showing effect of gln-deprived media and DON containing 

complete media on CD24 expressing population in MDAMB-231 
cells after 72 and 8 days of treatment. Data was analyzed using two-
way ANOVA, each bar represents n = 3, ± SD, *p < 0.05, **p < 0.01, 
***p < 0.001
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expression of sox-2, oct-4 and nanog while the treatment 
with DON did not show any significant change in the expres-
sion of stem cell markers (Fig. 6c). Breast CSCs isolated 
from MDAMB-231 were also grown in gln-deprived media 
and DON containing media. mRNA expression of MDAMB-
231-bCSCs showed a significant decrease in stem cell mark-
ers such as sox2, oct-4 and nanog (Fig. 6d) after availability 
of gln was hindered. In summary, these results demon-
strated that the extracellular gln-deprivation could lead to 
an increase in stem cell markers in whole MDAMB-231 cell 
population while in whole MCF-7 cell population restraining 
intracellular gln supply by DON showed the similar effect. 
In contrary to normal cells, MCF-7-bCSCs demonstrated 
increase in stem cell gene expression in the absence of gln in 
growth media; however, MDAMB-231 bCSCs have shown 
decrease in the stem cell gene expression in absence of intra-
cellular as well as extracellular gln.

Gln‐deprivation induces changes in wnt/β‑catenin 
signalling

We have demonstrated the localization of catenin in MCF-7 
and MDAMB-231 cells upon gln-deprivation. MCF-7 cells 
grown under gln deficiency have shown the expression of 
β-catenin in cytosol and on nuclear boundaries (perinuclear 
space) (Fig. 7a). The cells grown in DON showed cytosolic 
catenin also, deformities in nuclei of these cells were observed 
(Fig. 7a). However, MCF-7 cells grown in complete media with 
glutamine clearly showed β-catenin on the cell membrane only 
(Fig. 7a). In MDAMB-231 cells β-catenin was located in the 

cytosol of the normal cells while cells grown in gln-deprived 
media showed catenin localization near the nuclei of cells 
(Fig. 7b). The cells treated with DON showing morphologi-
cal changes as discussed earlier have demonstrated aggrega-
tion of β-catenin in cytosol (Fig. 7b). For further confirmation 
of localization of β-catenin, nuclear and cytosolic fractions 
from MCF-7 and MDAMB-231 cells were extracted and its 
expression was analysed. MDAMB-231 cells showed very low 
expression of β-catenin as compared to MCF-7 cells. Although 
the cytosolic expression of β-catenin remain unaffected by gln-
deprivation of DON treatment there was a significant decrease 
in its nuclear localization was observed (Supplementary Fig. 5).

Furthermore, the β-catenin expression was also ana-
lysed in MCF-7-CSCs and MDAMB-231 CSCs. Similar 
to MCF-7 cells MCF-7-CSCs clearly showed the pericel-
lular accumulation of β-catenin in gln-deprived and DON 
treated conditions (Fig. 7c). MCF-7-CSCs grown in com-
plete media showed β-catenin localization on the cell mem-
brane. However in MDAMB-231-CSCs a clear difference 
from MDAMB-231 cells was observed in β-catenin localiza-
tion. MDAMB-231-CSCs grown in Gln-deprived and DON 
conditions showed β-catenin distribution on cell membrane 
and nucleus (Fig. 7d).

Gln‐deprivation induces epithelial differentiation 
of breast cancer stem cells

To identify if gln-deprivation could affect the differentia-
tion of CSCs we have checked the expression of epithelial 
and mesenchymal protein after growing cells in gln-deprived 

Fig. 4   Glutamine modulates stemness of bCSCs: (a) Flow cytometry 
data showing effect of gln-deprived media and DON containing com-
plete media on CD24 expressing population in MDAMB-231-bCSCs 
after 72 of treatment. (b)  Flow cytometry data showing effect of 

gln-deprived media and DON containing complete media on CD44 
expressing population in MDAMB-231-bCSCs cells after 72 of treat-
ment. Data was analyzed using two-way ANOVA, each bar represents 
n = 3, ± SD, *p < 0.05, **p < 0.01, ***p < 0.001
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conditions. Interestingly, gln-deprivation increased the 
expression of epithelial protein such as e-cadherin and clau-
din-1 in MDAMB-231-CSCs and MCF-7-CSCs (Fig. 8). 
Gln-deprivation in the media leads to intense nuclear locali-
zation of e-cadherin in MDAMB-231-CSCs while in cells 
grown in complete media showed cytosolic expression of 
the protein (Fig. 8a). Claudin-1 was found to be located in 
nucleus of MDAMB-231-CSCs however gln-deprivation 
significantly increased its expression (Fig. 8a and Supple-
mentary Fig. 6b). Similarly, n-cadherin was also translocated 
to nucleus after gln-deprivation while in DON treated cells 
it was localized in cytosol. However n-cadherin expression 
was found to be increased significantly in cells deprived 
of gln (Fig. 8a and supplementary Fig. 6b). Notably, the 
expression of CD24 was also found to be increased after 

CSCs were grown in gln-deprived conditions (Supplemen-
tary Fig. 3b) as shown earlier by flow cytometery (Fig. 4b).

MCF-7-CSCs also showed a clear distribution of e-cad-
herin on cell membrane after gln-deprivation and DON 
treatment however the cells grown in complete media the 
protein was more intensely located in the nucleus (Fig. 8b). 
Similarly, the claudin-1 was also localized to plasma mem-
brane after gln-deprivation notably, the nuclear expression 
of protein was also visible in control and gln-deprived cells 
(Fig. 8b). Expression of e- cadherin and claudin-1 was sig-
nificantly increased after gln-deprivation and in DON treated 
cells (Supplementary Fig.  6c). In contrary, the expres-
sion of mesenchymal marker n-cadherin was significantly 
decreased after growing cells in gln-deprived and DON 
containing conditions as compared to control cells (Fig. 8b 

Fig. 5   Effect of gln deprivation on tumorsphere formation: (a) Repre-
sentative images of primary and secondary tumorsphere formation in 
MCF-7 grown in gln-deprived media and DON containing complete 
media. (b)  Representative images of primary and secondary tumor-

sphere formation in MCF-7 grown in gln-deprived media and DON 
containing complete media. Statistical analysis was done using one-
way ANOVA, each bar represents n = 3, ± SD, *p < 0.05, **p < 0.01, 
***p < 0.001
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Fig. 6   qPCR analysis of stem cell markers: (a) and (b) mRNA expres-
sion of stem cell markers Sox-2, oct-4 and Nanog in MCF-7 and MCF-
7-bCSCs after growing cells in gln-deprived media and DON-contain-
ing complete media for 72  h. (c) and (d)  mRNA expression of stem 

cell markers Sox-2, oct-4 and Nanog in MDAMB-231 and MDAMB-
231-bCSCs after growing cells in gln-deprived media and DON con-
taining complete media for 72 h. Statistical analysis: one-way-ANOVA, 
each bar represents n = 3, ± SD, *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 7   β-catenin localization in breast cancer cells and breast can-
cer stem cells. (a)  MCF-7 cells showing localization of β-catenin 
on cell membrane in control cells. β-catenin is localized in cytosol 
and perinuclear space after MCF-7 cells were grown in gln derived 
media DON containing complete media for 8 days. (b)  MDAMB-
231 cells showing localization of β-catenin in cytosol in control 
cells. β-catenin is localization increases in perinuclear space after 
MDAMB-231 cells were grown in gln derived media. Accumulation/
aggregation of β-catenin in cytosol of MDAMB-231 cells after treat-
ment with DON containing complete media for 8 days. (c) MCF-7-

CSCs showing localization of β-catenin on cell membrane. β-catenin 
is localized in cytosol and perinuclear space after MCF-7-CSCs were 
grown in gln derived media DON containing complete media for 
72 h. (d) MDAMB-231-CSCs cells showing localization of β-catenin 
in cytosol in control cells. β-catenin is localization is observed in 
nucleus and plasma membrane after MDAMB-231-CSCS were 
grown in gln derived media. Cells were stained with primary anti-
body against β-catenin, secondary antibody Alexaflour-488 tagged 
and counter stained with DAPI
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and Supplementary Fig. 6c). Also, the CD24 expression was 
found to be decreased in MCF-7 CSCs after gln-deprivation 
and DON treatment (Fig. 8b).

Discussion

In last decade glutamine metabolism has emerged as a 
potential anticancer target due to dependency of various 
tumors on gln (Bott et al. 2019). After glucose, gln is used 
as secondary source of carbon by cells and it is the only 
and major source of nitrogen for the cells. Gln is involved 
in TCA cycle through anaplerosis, proliferation of cells by 
de novo synthesis of nucleotides and is also required for 
synthesis of glutathione to maintain redox balance in the 
cells (Bott et al. 2019). Although, role of gln in various 

cancers has been explored widely but very few studies have 
investigated its contribution in cancer stem cell maintenance 
(Chae and Kim 2018; Peiris-Pagès et al. 2016). In breast 
cancer, only a recent study has shown that bCSCs identi-
fied by GD2+ cells were sensitive towards gln-deprivation 
and to glutaminase inhibitor CB839(Ly et al. 2020). Here, 
we have determined the effect of gln on bCSCs (CD24−/low/
CD44high/+/CD326high/+ population) isolated form MCF-7 
and MDAMB-231 cell lines as in vitro model. Firstly, we 
have shown that gln-deprivation decelerate proliferation of 
MCF-7 and MDAMB-231 cells. MDAMB-231 cells were 
also found to be more sensitive to the gln deficiency than 
MCF-7 cells. We have also observed drastic changes in 
the morphology of MDAMB-231 cells after gln-depriva-
tion. As shown earlier that basal cells are more dependent 
on extracellular supply of gln (Kung et al. 2011), we have 

Fig. 8   Expression of epithelial and mesenchymal markers in 
MDAMB-231-CSCs and MCF-7-CSCs: (a)  MDAMB-231-CSCs 
stained with e–cadherin showed cytosolic expression in control 
cells and intense nuclear localization in gln-deprived and DON 
treated conditions. Claudin-1 showed nuclear localization of protein 
in control, gln-deprived and DON treated conditions and n–cad-
herin showed cytosolic expression in control and DON treated cells 

while the protein was nuclear localized in gln-deprived conditions. 
(b) MCF-7-CSCs stained with e-cadherin showed nuclear expression 
in control cells and nuclear and plasma membrane localization in gln-
deprived and DON treated conditions. Claudin-1 showed nuclear and 
plasma membrane localization of protein in control, gln-deprived and 
DON treated conditions. N-cadherin showed nuclear expression in 
control, gln-deprived and DON treated cells
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used DON, a glutaminase inhibitor to inhibit the intracel-
lular conversion of gln to glu. Treatment with DON has 
significantly decreased the viability of MCF-7 cells (Sup-
plementary Fig. 1). These results suggest that intracellular 
deprivation of gln sensitize both basal and luminal cells. 
Thereafter, similar experiment was conducted with MCF-
7-bCSCs and MDAMB-231-bCSCs. Surprisingly, MCF-
7-bCSCs were highly sensitive to intracellular deprivation of 
gln whereas MDAMB-231-bCSCs showed similar morpho-
logical changes as observed in MDAMB-231 cells (Fig. 1). 
A recent study suggested that gln-deprivation is detrimental 
for the survival of soft tissue sarcomas particularly due to 
their mesenchymal origin (Lee et al. 2020). Earlier studies 
have shown that gln metabolism is necessary for the differ-
entiation of haematopoietic stem cells into erythroid lineage 
(Oburoglu et al. 2014). Also, it has been shown that human 
induced pluripotent stem cells (iPSCs) require gln oxidation 
for maintaining their naive undifferentiated state (Tohtama 
et al. 2016). Ramirez-Peña Esmeralda et al. has shown that 
epithelial mesenchymal transitions (EMT) cause cells to 
become independent of gln by suppressing the expression 
of GLS2 (Ramirez-Peña et al. 2019). Therefore, if the gln 
is unavailable to MDAMB-231-bCSCs they are only able 
to differentiate into epithelial phenotype and in case of 
MDAMB-231 cells alter their mesenchymal phenotype to 
epithelial in absence of gln.

Furthermore, the analysis of bCSCs surface stem cell 
marker analysis revealed an increase in CD24+ population 
in MCF-7 and MDAMB-231 cells after gln-deprivation, it is 
worth mentioning here that the conversion of CD24− popula-
tion into CD24+ population was only observed after depriva-
tion of the glutamine for longer period of time (8 days) but not 
in 72 h (Fig. 3). CD24 is small mucin-like GPI anchor found 
on the surface of various cells and is associated with distant 
metastasis in breast cancer (Abraham et al. 2005). In breast 
cancer, CD24−/low/CD44high/+/CD326high/+ population have 
been linked with cancer stem cell properties (Al-Hajj et al. 
2003; Ghebeh et al. 2013; Xie et al. 2016). Staining of mouse 
mammary gland cells has revealed that CD24−, CD24low and 
CD24high population was representing non-epithelial, myoepi-
thelial/basal and luminal epithelial cells respectively (Sleeman 
et al. 2006). Similarly, the number of EpCAMhigh population 
decreased in exogenous gln-deprivation, however long term 
deprivation merely showed any changes in EpCAM expression 
in MCF-7 cells (Fig. 2a, b). Previously, it has been shown that 
knockdown of EpCAM in MCF-7 cells inhibit their invasion 
properties (Martowicz et al. 2012). Also, the increase in the 
EpCAM expression has been correlated to poor survival rate in 
breast cancer (Agboola et al. 2012; Gao et al. 2017; Martowicz 
et al. 2012; Ohashi et al. 2016; Schnell et al. 2013; Ye et al. 
2015). These results suggest that gln-deprivation was leading 
breast cancer cells towards epithelial phenotype by changing 
CD24 and EpCAM expression in MCF-7 cells. Contrarily, 

the number of CD44high population was increased after gln-
deprivation in MDAMB-231 cells (Fig. 2) but has also shown 
morphological changes of epithelial phenotype. Further, iso-
lated MDAMB-231-bCSCs grown in gln-deprived medium 
showed similar increase in CD24+ population but did not show 
any changes in the CD44high population after gln-deprivation 
(Fig. 4). However, DON treatment significantly increased the 
CD44high population in MDAMB-231 and MDAMB-231-bC-
SCs.We studied tumorsphere formation in gln-deprived con-
dition and in the presence of DON to understand whether the 
increase in CD44high population is related to increase in sphere 
forming capability of cells. Although MCF-7 cells grow well 
in adherent condition in gln-deprived condition but they were 
unable to form spheres in non-adherent conditions. Notably, 
MDAMB-231 formed larger spheres in DON treated group 
but did not show any significant changes in gln-deprived 
conditions (Fig. 5). Earlier studies have explored the role of 
CD44 in increasing the aggregation of cells in the presence of 
intracellular hyaluronic acid (Cooper and Dougherty 1995; 
Goodison et al. 1999; Green et al. 1988; Underhill and Dorf-
man 1978). Therefore, the large spheres observed in DON 
treated group were perhaps the cell aggregates formed due 
to increased CD44 expression and do not depict actual can-
cer stem cell population. We have further checked the intra-
cellular stem cell markers such as sox-2, oct-4 and nanog in 
gln-deprived conditions to demonstrate the stemness. It was 
observed that MCF-7 cells grown in gln-deprived media does 
not showed any changes in the expression of sox2 and nanog 
but DON treatment have significantly increased the expression 
of sox-2 and nanog in MCF-7 cells. However, the MCF-7-bC-
SCs have shown increased expression of stem cell markers 
in gln-deprived conditions and were very sensitive to DON 
treatment. MDAMB-231 cells grown in gln-deprived medium 
demonstrated increase in the expression of stem cell mark-
ers (Fig. 6). Earlier, such observations have been reported in 
melanoma and MDAMB-231 derived xenograft mice mod-
els, subsequent to hypermethylation of DNA due to decreased 
activity of Jumonji-domain-containing histone demethylases 
owing to depletion in α-KGA derived from gln (Pan et al. 
2016).These results suggest that intracellular stem cells mark-
ers in MCF-7-bCSCs and MDAMB-231 cells may respond 
to gln-deprivation in a similar way. Furthermore, MDAMB-
231-bCSCs decreased the expression of stem cell markers in 
response to gln-deprivation supporting the earlier observation 
of morphological changes and differentiation towards epithe-
lial lineage. Our study has suggested that luminal and basal 
bCSCs differ in their response towards gln-deprivation in their 
microenvironment. Studies in human breast cancer and murine 
models has shown important role of Wnt/β-catenin signalling 
in development, morphogenesis and tumorogenesis of mam-
mary glands. Wnt signalling is also involved in self renewal 
of normal and cancer stem cells (Valkenburg et al. 2011). Up 
regulation of β-catenin expression in breast cancer is found 
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to mediate cancer stem cell like phenotype (Chen et al. 2007; 
Valkenburg et al. 2011; Woodward et al. 2007). Therefore, 
we have checked the β-catenin expression in MCF-7 and 
MDAMB-231 cells after deprivation of gln and treatment with 
DON. Immunocytochemistry staining have demonstrated cyto-
solic, perinuclear and membrane localization of β-catenin in 
MCF-7 cells grown in gln-deprived conditions while in DON 
treated cells showed only cytosolic localization of β-catenin. 
DON treated MCF-7 cells also showed nuclear deformities as 
shown by DAPI (Fig. 7). MDAMB-231 staining with β-catenin 
showed accumulation of protein in perinuclear space whereas 
in DON treated group the protein aggregation was observed 
in cytosol. Earlier the studies have shown that overexpres-
sion of β-catenin leads to its aggregation in nucleus or cytosol 
making it unavailable for transcriptional activation of genes 
(Giannini et al. 2000; Jazi and Najafi 2017).Furthermore, the 
differentiation of MCF-7-CSCs and MDAMB-231-CSCs 
into epithelial phenotype was shown by increased expression 
of epithelial markers such as e-cadherin and claudin-1 and 
decreased expression of n-cadherin (Fig. 8 and Supplementary 
Fig. 3). A recent study suggests that e-cadherin localization 
into nucleus inhibits β-catenin induced signalling by compet-
ing with its binding to transcription factors and is inversely 
correlated to metastasis and cancer stem cell phenotype (Su 

et al. 2015). In MDAMB-231-CSCs gln-deprivation leads to 
nuclear localization of e-cadherin (Fig. 8) and a corresponding 
change in morphology and membrane expression of β-catenin 
(Fig. 7) was observed. Similarly, e-cadherin was also located 
in the nucleus and membrane of MCF-7-CSCs in gln-deprived 
conditions (Fig. 8) and absence of β-catenin in nucleus was 
observed (Fig. 7). Therefore, it is postulated that e-cadherin 
could be inhibiting the β-catenin induced gene modulation in 
these cells.

Conclusion

The present study has explored the role of gln metabolism 
in maintenance of bCSCs isolated from luminal and basal 
breast cancer cell lines (Fig. 9). We have demonstrated that 
deprivation of gln could reduce the stemness of bCSCs and 
drive them towards epithelial differentiation. It was found 
that that luminal-bCSCs were very sensitive to intracellular 
gln-deprivation and differentiated into non-CSCs upon gln-
deprivation. While basal breast cancer stem cells differenti-
ated to show an epithelial phenotype in gln-deprived con-
ditions. Furthermore, the intracellular inhibition of gln by 
glutaminase inhibitor has profoundly changed the phenotype 

Fig. 9   Schematic representing the effect of glutamine-deprivation of luminal and basal breast cancer and breast cancer stem cells



221Comparative stemness and differentiation of luminal and basal breast cancer stem cell type…

1 3

of basal bCSCs. More, elaborative studies with other gln 
inhibitors and in vivo evaluation of this study will elucidate 
the therapeutic potential gln metabolism in breast cancer 
stem cells.
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