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ABSTRACT

The study of resistomes using whole metagenomic
sequencing enables high-throughput identification
of resistance genes in complex microbial commu-
nities, such as the human microbiome. Over recent
years, sophisticated and diverse pipelines have been
established to facilitate raw data processing and an-
notation. Despite the progress, there are no easy-to-
use tools for comprehensive visual, statistical and
functional analysis of resistome data. Thus, explo-
ration of the resulting large complex datasets re-
mains a key bottleneck requiring robust computa-
tional resources and technical expertise, which cre-
ates a significant hurdle for advancements in the
field. Here, we introduce ResistoXplorer, a user-
friendly tool that integrates recent advancements in
statistics and visualization, coupled with extensive
functional annotations and phenotype collection, to
enable high-throughput analysis of common outputs
generated from metagenomic resistome studies. Re-
sistoXplorer contains three modules—the ‘Antimi-
crobial Resistance Gene Table’ module offers various
options for composition profiling, functional profiling
and comparative analysis of resistome data; the ‘In-
tegration’ module supports integrative exploratory
analysis of resistome and microbiome abundance
profiles derived from metagenomic samples; finally,
the ‘Antimicrobial Resistance Gene List’ module en-
ables users to intuitively explore the associations be-
tween antimicrobial resistance genes and the micro-
bial hosts using network visual analytics to gain bio-
logical insights. ResistoXplorer is publicly available
at http://www.resistoxplorer.no.

INTRODUCTION

Antimicrobial resistance (AMR) represents a major threat
to global public health and the economy (1). Consequently,

examining the emergence and dissemination of AMR ge-
netic determinants is one of the priorities in global research
(2-4). Until recently, genetic determinants were mostly un-
derstood in the context of specific pathogens; however,
to fully understand how antimicrobial resistance genes
(ARGs) emerge and disseminate, a more holistic approach is
required. In this respect, advancements in short-read based
high-throughput DNA sequencing (HTS) technologies and
computation methods have facilitated rapid identification
and characterization of ARGs across microbial genomes
present in a sample (metagenome) (5,6). They have been
shown to provide unprecedented knowledge into the large
reservoir of ARGs and contributed to elucidate the ARG
composition and the spread of AMR between human, ani-
mal and environmental microbial communities (7-12). Cur-
rently, resistome profiles describing ARGs in complex and
diverse microbial metagenomes are primarily generated us-
ing whole metagenome shotgun sequencing in which the
total DNA extracted from a microbial community is se-
quenced. The resulting DNA fragments can be analyzed
using read or assembly based approaches to characterize
their resistome composition (5,6). These derived sequencing
datasets are both large and complex, causing considerable
‘big data’ challenges in downstream data analysis.

The main computational effort in resistome analysis of
metagenomic datasets so far has focused on processing,
classification, assembly and annotation of sequenced reads.
This has led to the development of a number of excellent
bioinformatic tools and databases for detecting and quan-
tifying ARGs in metagenomes (5,6,13,14). However, there
is still no clear consensus with regards to standard anal-
ysis pipelines and workflows for high-throughput analysis
of AMR metagenomic resistome data (14,15). Nonetheless,
the outputs from most of these pipelines can be summarized
as a data table consisting of ARGs abundance informa-
tion across samples, i.e. resistome profiles, along with their
functional annotations and sample metadata. For most re-
searchers, the fundamental challenge in data analysis can
often be centered on how to understand and interpret the
information in the abundance tables especially within the
context of different experimental factors and annotations.
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Downstream analysis of resistome data can be separated
into four main categories: (i) composition profiling—to vi-
sualize and characterize the resistome based on approaches
developed in community ecology, such as alpha diversity,
rarefaction curves or ordination analysis; (i) functional
profiling—to analyze resistome profiles at different func-
tional categories (e.g. drug class, mechanism), thus gain-
ing better insights on their collective functional capabili-
ties; (iil) comparative analysis—to identify features having
a significant differential abundance between studied condi-
tions; and (iv) integrative analysis—to integrate the resis-
tome and taxonomic data to understand the complex inter-
play and potential associations between microbial ecology
and AMR. The computational methods and approaches to
perform such analysis are fairly diverse and require deep
understanding and programming skills, representing signif-
icant barriers for their broader and exploratory applications
(16). The first category of analysis can be more straightfor-
ward to perform, but the last three are challenging.

Fundamental challenges within the different categories
relate to the fact that metagenomic data is often character-
ized by differences in library sizes, sparsity, over-dispersion
and compositionality (17,18). Hence, it is critical to normal-
ize the data to achieve comparable and meaningful results
(18-20). To deal with uneven library sizes, researchers of-
ten employ two common normalization approaches prior
to analysis: subsampling the reads in each sample to the
same number (rarefying) or rescaling the total number of
reads in each sample to a uniform sum (using proportions).
The former may entail loss of valuable information, while
the latter could lead to issues related to data composi-
tionality (21). To overcome such challenges, sophisticated
scaling methods based on log-ratio transformations have
been proposed (22,23). To identify differentially abundant
genes, the development of statistical models that account
for features of metagenomic data or the use of methods
to transform data to have distributions that fit standard
test assumptions is generally recommended (19). For in-
stance, the metagenomeSeq algorithm incorporates cumu-
lative sum scaling (CSS) normalization and a zero-inflated
Gaussian (ZIG) mixture model to reduce false positives and
improve statistical power for differential abundance analy-
sis (24,25). It has also been demonstrated that algorithms
developed for RNA-seq data such as edgeR and DESeq2,
along with their respective normalization methods, outper-
form other approaches used for metagenomic abundance
data (20,25,26). These standard strategies are widely em-
ployed, but do not explicitly account for the compositional
nature of whole metagenomic sequencing data (27,28). To
address this issue, promising Compositional Data Analysis
(CoDA) approaches have been proposed (29,30).

Nonetheless, there is no one statistical method suitable
for all types of metagenomic datasets (20,26). The best
results are achieved from a trade-off between data char-
acteristics (sample or group size, sequencing depth, ef-
fect sizes, genes abundances, etc.) and the normalization
method, incorporated with the coupled exploratory and
comparative analysis (31). Therefore, various statistical and
normalization methods are required for different metage-
nomic datasets, analyses and research questions addressed
(6,19,25,26,31). However, most of the approaches have been

implemented as R packages. Although flexible, learning R
in order to use these methods can be challenging for most
clinicians and researchers.

In the second category, functional profiling, the anno-
tated resistome abundance profiles are analyzed by mapping
ARG:s either to the respective class of drugs to which they
confer resistance (Class-level) or to their underlying molec-
ular mechanism of resistance (Mechanism-level). Analyzing
resistomes at such high level categories enables researchers
to gain more biological, actionable and functional insights
together with a better understanding of their data. How-
ever, these functional levels and categories, along with their
classification scheme, vary considerably between AMR ref-
erence databases (15). Additionally, depending upon the
database used for annotation, users need to manually col-
lect and curate such information and then generate sep-
arate abundance tables for each functional level. Hence,
collecting appropriate functional annotation information
for hundreds of ARGs in resistomes for functional pro-
filing and further downstream analysis can be confusing,
arduous, time-consuming and error-prone. Some of these
databases may also provide information regarding the mi-
crobial hosts that harbor or carry these reference ARGs. In-
formation about such relationships can be complex as one
microbe can carry multiple ARGs and single ARGs can in
turn be present across multiple microbes. To explore such
intricate ‘multiple-to-multiple’ relations, one option is to
use a network-based visualization method. However, such
visual exploration support is not present in current resis-
tome analysis tools.

To address these gaps as well as to meet recent advances in
resistome data analysis, we have developed ResistoXplorer,
a user-friendly, web-based, visual analytics tool, to assist
clinicians, bench researchers and interdisciplinary groups
working in the AMR field to perform exploratory data anal-
ysis on abundance profiles and resistome signatures gener-
ated from AMR metagenomics studies. The key features of
ResistoXplorer include:

1. Support of a wide array of common as well as advanced
methods for composition profiling, visualization and ex-
ploratory data analysis;

2. Comprehensive support for various data normalization
methods coupled with standard as well as more recent
statistical and machine learning algorithms;

3. Support of a variety of methods for performing verti-
cal data integrative analysis on paired datasets (i.e. tax-
onomic and resistome abundance profiles);

4. Comprehensive support for ARG functional annota-
tions along with their microbe and phenotype asso-
ciations based on data collected from >10 reference
databases;

5. A powerful and fully featured network visualization for
intuitive exploration of ARG-microbe associations, in-
cluding functional annotation enrichment analysis sup-
port.

Collectively, these features consist of a comprehensive
tool suite for exploratory downstream analysis of data gen-
erated from AMR metagenomics studies. ResistoXplorer is
freely available at http://www.resistoxplorer.no.
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MATERIALS AND METHODS
Design and implementation

ResistoXplorer is implemented based on Java, R and
JavaScript programming languages. The framework is de-
veloped based on the Java Server Faces technology using
the PrimeFaces (https://www.primefaces.org/) and Boots-
Faces (https://www.bootsfaces.net) component library. The
network visualization uses the sigma.js (http://sigmajs.org/)
JavaScript library. Additionally, D3.js (https://d3js.org/)
and CanvasXpress (https://canvasxpress.org/) JavaScript li-
braries are utilized for other interactive visualization. All
the R packages for performing back-end analysis and visu-
alization are mentioned in the ‘About’ section of the tool.
At the start of the analysis, a temporary account is created
with an associated home folder to store the uploaded data
and analysis results. All the analysis results will be returned
in real-time. Upon completing their analysis session, users
should download all their results. The system is deployed on
a dedicated server with four physical CPU cores (Intel Core
15 3.4GHz), 8GB RAM and Ubuntu 18.04 LTS was used as
the operation system. ResistoXplorer has been tested with
major modern browsers such as Google Chrome, Mozilla
Firefox, Safari and Microsoft Internet Explorer.

Program description and methods

ResistoXplorer consists of three main analysis modules.
The first is the ‘ARG List’ module that is designed to explore
the functional and microbial hosts associations for a given
list of ARGs of interest. The second is the ‘ARG Table’ mod-
ule, which contains functions for analyzing resistome abun-
dance profiles generated from AMR metagenomics stud-
ies. Lastly, the ‘Integration’ module enables users to per-
form integrative analysis on the paired taxonomic and re-
sistome abundance profiles to further explore potential as-
sociations coupled with novel biological insights and hy-
potheses. Figure 1 represents the overall design and work-
flow of ResistoXplorer. We recommend users to try out
our example datasets to get familiar with the basic steps
and key features of the tool before proceeding with anal-
ysis of their own data. ResistoXplorer also contains manu-
als and a comprehensive list of frequently asked questions
to assist users to easily navigate through different analysis
tasks.

RESULTS AND DISCUSSION
Data upload and processing

Overview of data inputs. The three analysis modules (ARG
List, ARG Table and Integration) are represented as three
interactive buttons in ResistoXplorer. Users must choose an
analysis path based on their input. The input can be up-
loaded in two different ways—by entering a list of ARGs or
by uploading an ARG abundance table along with a sam-
ple metadata file containing group information. In the latter
case, the files can be uploaded as a tab-delimited text (.txt)
or in comma-separated values (.csv). Further, users must
also provide the annotation information of ARGs either by
uploading a file (.txt or .csv) or by just selecting the same
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database used for their annotation during upstream anal-
ysis. Additionally, the Integration module requires users to
also upload a taxa abundance table in the same formats. The
taxonomic and functional annotation files are optional in
case of integrative analysis. Users can go to the correspond-
ing ‘Manuals’ and ‘Data Format’ section, or download the
example datasets for more details.

ARG-functional annotations collection. The annotation
information and the classification scheme for reference
ARGs (or sequences) are collected from nine widely
used generalized AMR databases: CARD (32), ResFinder
(33), MEGARes (15,34), AMRFinder (35), SARG (36),
DeepARG-DB (37), ARGminer (38), ARDB (39) and
ARG-ANNOT (40). Further, this annotation information
is organized into tables containing the reference ARGs in
rows and their functional annotation levels across columns
for each of the databases. The headers (names) for refer-
ence ARGs are annotated as in the chosen database. Some
of the annotation levels having multiple functional cate-
gory assignments for ARGs were removed from the tables
to avoid false counts inflation during downstream anal-
ysis. Additional manual curation for functional category
naming and data redundancies were performed in some of
the databases. Further, we also structured functional an-
notation information from the BacMet (41) database and
antimicrobial peptide (AMP) resistance gene dataset (42)
to enable users to perform functional profiling and down-
stream analysis of antibacterial biocides/metals and AMP
resistance genes abundance profiles. It should be noted that
ResistoXplorer does not perform any functional annotation
of sequencing data. The tables are stored in RDS file format
for less storage space and fast retrieval of data. Users can
use these tables to analyze their resistome profile directly
at different functional levels rather than manually collect-
ing the annotation information from their corresponding
database. The ‘Data Format’ and ‘About’ pages provide a
detailed description on the format, structure of annotation
table and database statistics, together with the links to allow
users to download the annotation structure (‘Downloads’
section) available for the individual database.

Data filtration and normalization. By default, features
with zero read count across all the samples or only present
in one sample with extremely low count (e.g. 2) are removed
from downstream analysis based upon statistical and bi-
ological approximations. Also, features present in only a
small percentage of samples (e.g. 20%) with very few counts
(e.g. 2) cannot be discriminated from sequencing errors or
low-level contamination. It is also considered difficult to
interpret their significance with respect to the whole com-
munity. By default, such low-quality features are filtered
based on sample prevalence and their abundance levels to
improve the comparative analysis. The default values are
those used by the other tools and mostly found in the lit-
erature (43,44). Users can also choose to remove low abun-
dant features by setting a minimum count cutoff based on
their mean or median value. Conversely, some features re-
main constant in their abundances throughout the experi-
mental conditions or across all the samples. These features
are implausible to be informative in the comparative analy-
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Figure 1. ResistoXplorer flow chart. ResistoXplorer accepts resistance gene list and ARG/taxa abundance tables as input data. Three successive steps are
performed: data processing, data analysis and result exploration. The accompanying web interface offers a varied suite of options, and generates several
tables and graphics to enable users to intuitively go over the data analysis tasks.

sis. Users can exclude such low variant features based on
their inter-quantile ranges, standard deviations or coeffi-
cient of variations (43). Removing those uninformative fea-
tures can increase the statistical power by reducing multiple
testing issues during differential analysis (45). The filtered
data is used for most of the downstream analysis except al-
pha diversity and rarefaction analysis. In case of integrative
analysis, users can also choose to apply different data filtra-
tion criteria for both taxonomic and resistome abundance
data.

After data filtering, users must perform data normal-
ization to remove the systematic variability between sam-
ples. Currently, ResistoXplorer offers three categories of
data normalization—rarefying, scaling and transforma-
tion, based on various widely used methods for metage-
nomic abundance data (25). In addition, ResistoXplorer
supports other normalization methods like centered log-
ratio (clr) and additive log-ratio (alr) transformation to fa-
cilitate compositional data analysis. The choice of method
is dependent upon the type of analyses to be performed
(20,31). The normalized data is used for exploratory data
analysis including ordination, clustering and integrative
analysis. Users can explore different approaches and visu-
ally investigate the clustering patterns (i.e., ordination plots,
dendrogram and heatmap) to determine the effects of differ-
ent normalization methods with regard to the experimen-
tal factor of interest. The total sum scaling (TSS) normal-
ization is recommended for such type of analysis and has
been set as the default option in ResistoXplorer (20,46,47).
Also, comparative analysis using different approaches is
performed on normalized data. However, each of these ap-
proaches will use its own specific normalization procedure

due to the lack of benchmark study evaluating which nor-
malization methods should be combined with the differ-
ent statistical approaches to achieve best performance for
identifying differentially abundant genes (26). For example,
the relative log expression normalization is used for DE-
Seq2, and the centered log-ratio transformation is applied
for ALDEX2. In the integrative analysis module, taxonomic
and resistome datasets are normalized using the same ap-
proach.

Composition profiling

Visual exploration. ResistoXplorer allows users to visu-
ally explore the resistome based on various intuitive visu-
alization approaches used for metagenomic data. For in-
stance, users can visualize resistome abundance data while
simultaneously showing the functional hierarchical rela-
tionships and connectivity between features using an in-
teractive sankey diagram, zoomable sunburst or treemap
graphics (Figure 2C). In case of treemap, users can click a
particular rectangular block of interest to further inspect its
compositions at a lower functional level. The abundances
can be represented as either absolute counts or relative pro-
portions. However, such visualizations are more suitable for
resistome profiles having an acyclic and hierarchical func-
tional annotation structure. Abundance profiles can also
be viewed at different functional levels using other com-
mon visualizations such as stacked area or stacked bar plot
(Figure 2A). The plot is organized by experimental factors
to help visualize the differences in resistome composition
across different conditions.
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sequence sample size.

Diversity profiling. The resistome diversity profiling is im-
plemented mainly based on the R vegan and phyloseq
packages (48,49). Currently, users can perform alpha diver-
sity (within-sample) analysis using eight common richness
and/or evenness-based diversity measures. Since the Chaol
measure performs well and is recommended for estimating
ARG diversity (50), it has been set as a default one in Re-
sistoXplorer. The results are represented in the form of a
dot plot for individual samples and box plots for each sam-
ple group (Figure 2B). The corresponding statistical signifi-
cance is calculated automatically using either parametric or
non-parametric tests. The analysis can be performed at dif-
ferent functional levels based on the available annotations.
Additionally, the reliability of estimated diversity in sam-
ples can be assessed through rarefaction curves in which
the number of unique features (ARGs) identified is plotted
against the sequence sample size (Figure 2D).

Ordination analysis. The ordination analysis function al-
lows users to explore and visualize the similarities or dis-
similarities between samples based on their composition
at different functional levels. The dissimilarity can be cal-
culated using five non-phylogenetic-based quantitative or
qualitative distance measures. Since the different types of
distance measures have specific niches and can affect the

outcomes and the interpretation of the analysis, it is rec-
ommended by several authors to apply different measures
to better understand the factors underlying composition
differences (6,51,52). Currently, three widely accepted or-
dination methods are supported, including principal coor-
dinate analysis (PCoA), non-metric multidimensional scal-
ing (NMDS) and principal component analysis (PCA). In
particular, users can follow a CoDA ordination approach
by performing PCA on the centered log-ratio transformed
data. The corresponding statistical significance is calculated
using one of the three common multivariate statistical test-
ing methods. Permutational multivariate analysis of vari-
ance (PERMANOVA) was set as the default option (53).
By default, ordination analysis is performed using PCoA
on a most widely used Bray—Curtis dissimilarity metric and
assessed using PERMANOVA. The results are represented
as both 2D and 3D sample plots. The samples visualized
in these ordination plots are colored based on metadata or
their alpha diversity measures to help users identify any un-
derlying patterns in the datasets (Figure 3B).

Comparative analysis

Differential abundance testing.  This section enables users
to perform statistical testing to identify features that are
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significantly different in abundance across sample groups.
ResistoXplorer supports standard tests, such as DESeq?2
(22), edgeR (23), metagenomeSeq (24), LEfSe (54), as
well as more recent CoDA univariate analysis approaches
such as ALDEx2 (55) and ANCOM (56). DESeq2 and
edgeR are broadly used and generally considered as ro-
bust and powerful parametric statistical approaches for
datasets with small group and equally distributed library
sizes (18,20,25,26). They fit a generalized linear model and
assume that read counts follow a negative binomial dis-
tribution to account for the features of count data. In
contrast, the metagenomeSeq, with its recommended CSS
normalization, has substantially higher performance with
larger group sizes (26,48). LEfSe uses the standard non-
parametric tests for statistical significance coupled with lin-
ear discriminant analysis to assess the effect size of differen-
tially abundant features. The CoDA methods perform sta-
tistical testing on the log ratios of features rather than their
actual count abundances to deal with the compositional na-
ture of sequencing data. ALDEXx2, for instance, performs
parametric or non-parametric statistical tests on log-ratio
values from a modeled probability distribution of the data
and returns the expected values of statistical tests along
with effect size estimates. ANCOM tests the log-ratio abun-
dance of all pairs of features for differences in means using
non-parametric statistical tests. By default, the Benjamini—
Hochberg correction is used for all approaches to control

the false discovery rate across significant genes. The differ-
ential analysis can also be performed at different functional
levels.

The results from the differential analysis are displayed as
a table. By default, the result table will show a maximum
of 500 top features ordered according to their adjusted P-
values. The significant features (if present) are automatically
highlighted in orange color. Further, users can also see a
boxplot summary for any feature of interest by just click-
ing the ‘Details’ icon. Since different statistical approaches
may generate divergent P-values, it is often recommended to
compare and visualize results using more than one statisti-
cal approach, as to increase confidence in the interpretation
of results.

Machine learning-based classification. Prediction of mi-
crobiome signatures using machine learning algorithms has
been gaining more recognition and shown to perform well in
recent resistome data analyses and classifications (7,57,58).
ResistoXplorer provides two such powerful supervised clas-
sification methods—Random Forest (59) and Support Vec-
tor Machine (SVM). Both can be applied to resistome data
for identification of potential biomarkers. In particular, the
Random Forest algorithm uses an ensemble of classification
trees (forest), with final class prediction based on the ma-
jority vote of the ensemble. As the forest is constructed, it
can provide an unbiased estimate of prediction errors by ag-



gregating cross-validation results using bootstrapped sam-
ples. Random forest also measures the importance of each
feature based on the increase of the prediction errors when
it is randomly shuffled. Alternatively, the SVM algorithm
uses a training set of samples separated into classes to iden-
tify a hyperplane in higher dimensional feature space that
generates the largest minimum distance (margin) between
the samples that belongs to different classes (60). ResistoX-
plorer’s SVM analysis is performed using recursive feature
selection and sample classification via linear kernel (61).
The features used by the best model are considered to be
important and ranked based on their frequencies of being
selected in the model. Figure 4D shows the classification
performance of SVM with regards to decreasing number of
features (variables).

Other features. There are several other valuable functions
implemented in ResistoXplorer for exploratory analysis of
resistome data. Users can perform core resistome analy-
sis to detect core sets of features present in samples or
sample groups based on their abundance and prevalence
level (Figure 3A). ResistoXplorer also supports commonly
used correlation analysis and hierarchical clustering. The
results from hierarchical clustering can be visualized using
heatmaps (Figure 4A) and dendrograms (Figure 4B). For
publication purposes, all visualizations can be downloaded
as either Scalable Vector Graphics (SVG) or Portable Doc-
ument Format (PDF) files.

Integrative analysis

The main goal of this module is to explore and unveil poten-
tial hidden correlations between the microbiome and resis-
tome using a variety of integrative data analysis approaches.
Such analyses have been increasingly used to explore the as-
sociations between the bacteria and ARGs in different envi-
ronments (11,62,63). Currently, ResistoXplorer offers sev-
eral advanced and commonly used univariate and multivari-
ate statistical methods for data integration and correlation
analysis. All these analyses are performed on filtered and
normalized datasets.

Global Similarity analysis. This section allows users to de-
termine the overall similarity between the microbiome and
resistome dataset using two multivariate correlation-based
approaches: Procrustes analysis (PA) and Coinertia analysis
(CIA). The datasets used for such analysis can be normal-
ized using scaling and/or transformation approaches to ac-
count for uneven library sizes and compositional data. The
analysis can be performed at various functional and tax-
onomic levels based on available annotations. These func-
tions currently support five common distance measures.
The ordinations from the distance matrices can be calcu-
lated using either PCoA, PCA or NMDS. By default, both
these analyses are being assessed employing widely used
PCoA on a Bray—Curtis distance metric. In case of PA, the
microbiome ordination is scaled and rotated onto the re-
sistome ordination to minimize the sum of squared differ-
ences between the two ordinations. For the CIA, the mi-
crobiome and resistome ordination are constrained so that
the squared covariances between them are maximized to
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measures the congruence between datasets. The results are
represented using both 2D and 3D ordination plots, where
samples are colored and shaped based on the datasets (Fig-
ure 5A). Users can also color the samples based on differ-
ent experimental factors to identify some patterns or gain
biological insights. The corresponding similarity coefficient
and P-value from both these analyses are estimated auto-
matically to assess the strength and significance of the asso-
ciation between the two datasets. The similarity coefficient
ranges from 0 and 1, with 0 suggesting total similarity and 1
total dissimilarity between the two datasets. Users can per-
form both Procrustes and Coinertia analysis to gain more
confidence by evaluating the congruency of the results.

Omics data integration approaches. ResistoXplorer of-
fers other multivariate projection-based exploratory ap-
proaches, such as regularized canonical correlation analy-
sis (rCCA) and sparse partial least square (sPLS) for the
integration of microbiome and resistome data. These ap-
proaches aim at highlighting the correlations between high
dimensional ‘omics’ datasets. They are implemented pri-
marily based on the R mixOmics package (64). By default,
both the datasets are normalized during such analyses using
their recommended normalization technique (i.e. clr trans-
formation). Users can choose or tune the number of com-
ponents and regularization parameters for rCCA. In the
case of sPLS, all variables are selected in both datasets by
default. In addition to sample plots, other variable plots
like clustered image maps (Figure 5C) and correlation circle
plots (Figure 5D) are displayed to facilitate the interpreta-
tion of the complex correlation structure between datasets.

Pairwise microbe-ARG correlation analysis. This section
enables users to determine if there are strong relationships
(co-occurrence patterns) between individual microbial taxa
(microbiome) and ARGs (resistome) using univariate corre-
lation analysis. Users can perform such analysis using four
different types of classical and more recent approaches, in-
cluding Spearman, Pearson, CCLasso and Maximal Infor-
mation Coefficient. Since the Spearman correlation anal-
ysis is most commonly used in resistome studies (65) and
seems to perform overall better than other approaches in
identifying pairwise associations between omics data, it has
been present as a first choice in ResistoXplorer (66). In
particular, features (ARGs or taxa) that are not present in
half of the samples across all the groups are removed to
eliminate an artificial association bias before performing
Spearman correlation analysis (65,67). By default, these ap-
proaches (except CCLasso) use the microbiome and resis-
tome relative abundances (proportions) for correlation in-
ference, while the CCLasso is based on log-ratio normal-
ization of microbiome and resistome compositional data.
Due to the lack of consensus on each approach in differ-
ent conditions, it is recommended to compare results from
multiple methods (66,44). The analysis can be conducted on
taxa at their different taxonomic annotations (i.e. phylum,
genus and species) and on resistome at different functional
levels (e.g. class, mechanisms, ARG, etc.) based on available
annotations. Users can select strong and significant pairwise
correlations using a combination of absolute correlation co-
efficients and adjusted P-value. The results are represented
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Figure 4. Example outputs from clustering analysis and machine learning-based classifications in ARG Table module of ResistoXplorer. (A) A clustered
heatmap showing the variation of resistome abundance at group level in samples organized based on time point. (B) A dendrogram showing the clustering
of samples with colors based on treatment and time point. (C and D) A graphical summary of the classification performance on different treatment groups

using the Random Forests and SVM algorithm, respectively.

as a co-occurrence network (Figure 6A) with each node in-
dicating either a microbial taxon or a resistance determi-
nant (ARG). The nodes can be sized based on their network
topological measures (degree and betweenness). Users can
double click on a node to highlight its corresponding cor-
related nodes in a network. The width and color of an edge
indicate the strength and direction of the correlation be-
tween two nodes. The nodes are colored as well as shaped
according to the dataset. The underlying correlation matri-
ces and network centrality-based measures are also avail-
able to download.

ARGs-microbial host network exploration

The module offers users the possibility to understand
the complex ‘multiple-to-multiple’ relations between ARGs
and microbial hosts, using an advanced network-based vi-
sual analytics system. It is straightforward to identify key
players from a network perspective, for instance, by look-
ing for those ARGs that are found in multiple microbes or

by identifying those microbes that simultancously contain
multiple ARGs of interest.

ARG-microbial host association data collection. ResistoX-
plorer currently supports four reference databases (Res-
Finder (33), CARD (32), ARDB (39) and BacMet (41))
and a recently published AMP dataset (42) for network-
based microbial host associations exploration of ARGs.
These primary databases contain direct or indirect informa-
tion regarding the microbial host for the reference ARGs.
In the latter case, the information on microbial host as-
sociated with each of the reference ARGs has been col-
lected from their corresponding GenBank accession num-
ber using a combination of text mining and manual cu-
ration, like in ResFinder and ARDB. Further, this infor-
mation has been manually annotated to improve name
readability and remove redundancy. Moreover, the avail-
able functional annotation information of ARGs was also
collected and organized into sets to facilitate enrichment
analysis.
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Figure 5. Example outputs from Integration module of ResistoXplorer. (A) A 3D NMDS plot from Procrustes analysis with samples shape and color
with regards to datasets. (B) A 3D PCoA plot from Coinertia analysis, with the length of lines connecting two points indicating the similarity of samples
between two datasets. (C) A clustered image heatmap showing the correlations between and among taxa (phylum level) and ARGs (group level). (D) A
correlation circle plot showing the correlation structure of features (taxa/ARGs) present in two datasets.

ARG-microbial host association table and network creation.
The uploaded list of ARGs are searched against the selected
target database. This list can comprise significant ARGs de-
tected in differential abundance testing or ARGs identified
through high-throughput qPCR. The results will be repre-
sented as an association table with each row corresponding
to a particular reference ARG (sequence) and its potential
microbial host. When available, the table also provides other
association information along with hyperlinks to the corre-
sponding GenBank Accession number and PubMed liter-
ature. Users can directly remove each row by clicking the
delete icon in the last column to keep only high-quality as-
sociations supported by literature or experimental evidence.
The resulting ARG-host associations are used to build the
default networks. Since not all the nodes will be connected,
this approach may lead to the generation of multiple net-
works. The statistics of nodes and edges are provided for
users to have an overview of the size and complexity of the
generated networks. Further, users can also filter the nodes
based on their topological measures (degree and between-
ness) in case of large networks for better interpretation.

Network visualization and functional analysis. The result-
ing networks are visualized using HTMLS5 canvas and
JavaScript-based powerful and fully featured visualization
system. This system is implemented based on a previously

published visual analytics tool (68). It is comprised of three
main components: the central network visualization area,
the network customization and functional analysis panel on
the left, and the right panel containing a node table (Figure
7). Users can intuitively visualize and manipulate the net-
work in the central area using a mouse with a scroll wheel.
For example, users can scroll the wheel to zoom in and out
the network, hover the mouse over any node to view its
name, click a node to display its details on the bottom-right
corner or double click a node to select it. The horizontal
toolbar to the top exhibits basic functions to manipulate
the network. The first is the color picker to enable users to
choose a highlight color for the next selection. Users can
also select and drag multiple nodes by using the dashed
square icon in the toolbar.

The network customization panel provides various op-
tions to configure the general visualization features of the
default network or to specify the range of mouse opera-
tion. The ‘Layout’ option enables users to perform auto-
matic network layout using different algorithms; the ‘Back-
ground’ option enables users to select between a white and
black background. The range of mouse operations during
highlighting and dragging-and-dropping can be varied us-
ing the ‘Scope’ option. For instance, in ‘single node’ mode,
only the node which has been clicked or dragged will be
highlighted or affected, whereas all the nodes that are being
selected by the users will be affected in the ‘all highlights’
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mode. Additionally, the ‘Download’ option allows users to
either save the current network in different formats or to
download the network file in GraphML format for visual-
ization in other software. The node table on the right panel
displays the ARGs and their microbial hosts along with cor-
responding network topological measures. The correspond-
ing abundance values, if available, will also be presented in
the last column. Users can directly click on any row of inter-
est to select, and the network view will automatically zoom
to the related node. The bottom right panel provides more

detailed info related to the node(s) being highlighted or cur-
rently selected on the network.

ResistoXplorer also supports functional enrichment
analysis of the ARGs present within the current network
using hypergeometric tests. This approach coupled with the
network visualization system has the potential to provide
better interpretation of AMR resistance mechanisms and
inform on possible dissemination routes of ARGs. The cat-
egories or levels at which enrichment analysis can be per-
formed will be based on the initially selected database. The



enrichment analysis results are shown as a table on the left
panel. By clicking on a row of the result table, users can
highlight all nodes related to an enriched function within
the network. There are also several other options and func-
tionalities present, which allow users to intuitively explore,
manipulate and customize the ARG-microbial host associ-
ation networks.

Use case

To illustrate the functionality of the tool, we have se-
lected two recent resistome studies with publicly available
metagenomic datasets (69,70). These datasets have been
mounted as an example sets in the ‘ARG Table’ module
of our tool. In Doster et al. (70), the authors have ex-
amined the effects of tulathromycin (antimicrobial drug)
on gut microbiome and resistome using commercial feed-
lot cattle. Two groups of cattle were used, with one un-
treated group and the other treated with metaphylaxis. Fe-
cal samples were collected from 15 cattle within each group
at two time points—baseline (Day 1) and after 11 days
(Day 11). Shotgun sequencing was performed on the ex-
tracted metagenomic DNA, and reads were aligned by the
authors to MEGARes and custom Kraken database for re-
sistome and microbiome characterization. The resulting re-
sistome abundance profile is uploaded to the ARG Table
module of ResistoXplorer for further downstream analysis
and exploration. Since the reads were annotated using the
MEGARes database, we have directly selected the precom-
piled functional annotation information of the correspond-
ing database to annotate and classify ARGs (gene acces-
sions) at higher functional levels. All the ARGs are mapped
and classified at three functional hierarchical levels—class,
mechanism and group as per the MEGARes classification
scheme. We first compared the resistome alpha diversity
at the mechanism level; the Shannon diversity indices of
the treatment group decrease over time, but the diversity
changes are not prominent in the untreated group (Figure
2B). The composition profiling is carried out to explore and
represent the gut resistome of cattle. As shown in Figure
2A, the resistome composition at the class level is domi-
nated mainly by the ARGs that confer resistance to tetracy-
cline and the macrolide-lincosamide-streptogramin (MLS)
class of antibiotics in all the samples. The hierarchical com-
position profiling using the Sankey diagram showed that
almost all of the ARGs that belongs to tetracycline-class
confer resistance through ribosomal protection proteins. In
contrast, most of the ARGs that belong to the MLS-class
confer resistance through macrolide efflux pumps. More-
over, the resistome composition at different functional lev-
els was quite similar between treated and untreated cattle
(Figure 2C). The ordination analysis at AMR mechanism
level using PCA (CoDA-based) and PCoA indicated that
the resistome composition of treated and untreated groups
were significantly different between time points (ANOSIM:
R = 0.49, P-value < 0.05; Figure 3B and C). We also per-
formed differential abundance testing on fecal resistome
profile using metagenomeSeq and ALDEx2 (CoDA-based)
at class, mechanism, and group level. No significant features
were found to be differentially abundant between treatment
groups using both these methods at all levels. All these anal-
yses confirm and replicate the previous findings and results
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of the original publication. We also performed additional
analyses of the data to highlight the utility and exploratory
capabilities of ResistoXplorer. The rarefaction curve anal-
ysis indicated that enough sequencing depth was achieved
to describe the ARG richness in all the metagenomic sam-
ples (Figure 2D). The heatmap showed that most of the fea-
tures (except TETQ, MEFA, TETW and TETO) at group
level have a very low abundance and sparse representation
across all the 60 samples. The distinct abundance pattern of
TET40 group is observed when comparing the Dayl with
Dayl11 for both the treatment groups (Figure 4A). The hi-
erarchical clustering analysis showed that samples belong-
ing to both treated and untreated groups are clustered effec-
tively based on time points (Figure 4B). The ARGs belong-
ing to tetracyclines and MLS classes comprise the core re-
sistome in cattle, based on their abundance and prevalence
level (Figure 3A). Additionally, both Random Forest and
SVM algorithms suggested that the treatment groups could
not be predicted with high accuracies based on the resis-
tome profiles of fecal samples, confirming the findings that
tulathromycin does not seem to influence the gut resistome
in cattle (Figure 4C and D).

Furthermore, the bacterial and ARG abundance profiles
are uploaded to the Integration module of ResistoXplorer
to explore the relationship between the fecal microbiome
and resistome in cattle. The application of Procrustes anal-
ysis suggested that there were no significant overall similar-
ities between the resistome and bacterial abundance profile
(M2 = 0.23, P-value > 0.05; Figure 5A). However, the re-
sults from Coinertia analysis indicated that resistome and
bacterial composition are moderately correlated with sta-
tistical significance (RV coefficient = 0.47, P-value < 0.05;
Figure 5B). To deal with the result discrepancies between
approaches, we also investigated the pairwise associations
between individual taxa (microbiome) and ARGs (resis-
tome) using Spearman and Pearson correlation analysis.
The results showed that no significant and strong pairwise
correlations (criteria: absolute correlation coefficient > 0.7;
adjusted P-value < 0.05) were identified between any taxa
(phylum level) and ARG (group level) (Figure 6A and B),
suggesting that the gut resistome was not correlated and
structured by bacterial composition.

Comparison with other tools

A variety of tools or pipelines have been developed in recent
years to support resistome analysis of metagenomic data
(15,33,36,37,71,72). Most of these tools have been designed
primarily for raw reads processing and annotation, with
limited or no support for interactive visual exploration and
downstream analysis. ResistoXplorer complements these
tools and resources by providing real-time visual analytics
experience along with comprehensive support for statisti-
cal, visual and exploratory analysis on the metagenomic re-
sistome data. AMR++ Shiny (15) is a web-based R /shiny
application dedicated for basic exploratory and statistical
analysis of metagenomic resistome and microbiome data.
More recently, resistomeAnalysis (67) R package also sup-
ports visualization, comparative and integrative analysis of
resistome abundance profile. Based on the detailed compar-
isons among those tools (Table 1), it is clear that ResistoX-
plorer offers a unique set of features and functions with
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Table 1. Comparison of ResistoXplorer with other web-based tools (except resistomeAnalysis R package) supporting downstream analysis of metage-

nomic resistome data

Tools ResistoXplorer AMR++ Shiny resistomeAnalysis WHAM!
Platform Web-based Web-based + locally R package Web-based
installable
Registration No No No
Data processing
Data input Abundance tables Abundance tables Abundance tables Abundance tables
(Biobakery + EBI)
Functional User-defined + collected from MEGARes CARD User-defined
annotation >10 AMR databases
Filtering Abundance, variance Abundance (quantile) Variance
Normalization Scaling, transformation, rarefying CSS, rarefying TSS, proportion Proportion, clr
Composition profiling
Visual profiling Stacked bar plot, stacked area, Stacked bar plot Stacked bar plot Interactive stacked
sankey diagram, zoomable bar plot
sunburst, treemap
Alpha diversity Multiple Richness
Ordination analysis PCoA, NMDS & PCA (2D & 3D) PCA & NMDS PCoA (2D)
(Bray—Curtis) (2D)
Comparative analysis
Differential analysis DESeq2, metagenomeSeq, metagenomeSeq DESeq2 ALDEx2
EdgeR, LEfSe, ALDEx2,
ANCOM
Classification Random Forests, SVM
Other functions Heatmaps, dendrogram, Heatmaps, Alpha Heatmaps, dendrogram, Interactive
correlation, core resistome, alpha rarefaction bar plots correlation, core resistome Heatmaps,

Integrative analysis

Gene (ARG) List
exploration

rarefaction curves
Procrustes, Coinertia, rCCA,
sPLS, Spearman, Pearson,
CCLasso, MIC
ARG-microbial host network
visual analytics & functional

Spearman

correlation
Visual comparisons

analysis

ResistoXplorer: http://www.resistoxplorer.no
AMR ++ Shiny: https://github.com/lakinsm/amrplusplus-shiny

resistomeAnalysis (R package): https://github.com/blue-moon22/resistomeAnalysis

WHAML!: https://ruggleslab.shinyapps.io/wham_v1/

Note: Tools exclusively dedicated for sequence annotations are not included.

regards to comprehensive statistical and exploratory data
analysis, visualization, integrative data analysis and ARG-
microbial network visual analysis.

Limitations and future directions

The ARG table module can be used for visualization
and analysis of resistome profiles characterizing differ-
ent genetic determinants present within an AMR refer-
ence database. However, ResistoXplorer does not allow
users to choose multiple precompiled functional annota-
tion databases to analyze the entire ecologies (antimicrobial
drugs, biocide, metal and other resistance drivers) of resis-
tance determinants. More importantly, the functional an-
notations collected in ResistoXplorer mainly depend on the
information and classification scheme present in the origi-
nal databases. Hence, there might still be some acyclic and
hierarchical functional annotation structure in databases,
which users need to curate for accurate count-based anal-
yses. The biocuration of ARGs and their functional an-
notation structure for the supported databases is beyond
the scope of the study. Although some of the supported
databases are no longer updated, such as ARDB and ARG-
ANNOT (5,6), excluding them would have limited the pos-
sibility of exploring and analyzing previous datasets, as well
as a variety of present studies that still use them. In re-

gard to the ARG-microbial host associations module, these
are limited by the type and quality of information avail-
able in the databases. Currently, ResistoXplorer offers lim-
ited functionalities and features for vertical data integration
and pairwise correlation analysis. As most of the advanced
approaches for performing this type of analysis on multidi-
mensional datasets are based on computationally intensive
re-sampling (cross-validation) and permutation-based ap-
proaches to calculate statistical significance, which adds lay-
ers of complexity and computational power demands, that
is often challenging for a real-time interactive web applica-
tion. In future versions, we plan to continuously update and
expand our database and analysis support for exploration
of mobilome, virulome and other resistance determinants
of relevance in AMR metagenomic studies.

CONCLUSION

Whole metagenomic sequencing studies are providing un-
paralleled knowledge on the diversity of resistomes in the
environment, animals and humans, and on the impact of in-
terventions, such as antibiotic use (7-12,67,69). Currently,
such studies and data analyses are mainly exploratory in
nature. In spite of the continuous development of many
new statistical approaches, there is no exclusive method
that unfailingly performs well, as demonstrated by several
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benchmarking studies (20,25,26,46). Indeed, it has been re-
cently suggested that metagenomic analysis should be ex-
plored comparatively using different available approaches
(31). However, this is a time consuming task and requires
knowledge and bioinformatics training on the implemen-
tation of each statistical method employed. Therefore, it
is critical to assist researchers and clinical scientists in the
field to easily explore their own datasets using a variety of
approaches, in real-time and through interactive visualiza-
tion, to facilitate data understanding and hypothesis gener-
ation. ResistoXplorer meets these requirements by offering
comprehensive support for composition profiling, statisti-
cal analysis, integrative analysis and visual exploration of
resistome data. Conversely, such analysis is entirely depen-
dent on the comprehensiveness and quality of the AMR ref-
erence databases (5,6). Hence, the use of continuously up-
dated and curated databases with a simple, acyclic and hi-
erarchical functional annotation scheme is desired for accu-
rate downstream analysis. Lastly, ResistoXplorer will con-
tinuously be updated to follow the advancements in ap-
proaches for resistome analysis. We believe ResistoXplorer
will have the potential to find large applicability as a useful
resource for researchers in the field of AMR.
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