Skip to main content
. 2021 Mar 11;11:576007. doi: 10.3389/fonc.2021.576007

Table 4.

The best classification performances for predicting the BCR within five years after first diagnosis.

Classifier Feature set AUC (%) Accuracy (%) Sensitivity (%) Specificity (%)
(# selected features) Mean ± se Mean ± se Mean ± se Mean ± se
Naive Bayesian NCA (12) 74.72 ± 0.35 72.14 ± 1.13 70.98 ± 1.94 72.50 ± 1.91
RF (8) 81.34 ± 0.24 74.68 ± 1.50 74.15 ± 2.77 74.85 ± 2.78
SVM-RFE (13) 75.61 ± 0.42 72.60 ± 1.12 76.34 ± 1.82 71.44 ± 1.77
RF NCA (10) 88.25 ± 0.21 75.55 ± 0.68 90.44 ± 0.92 70.30 ± 1.10
RF (3) 90.36 ± 0.21 77.05 ± 0.94 94.15 ± 1.59 71.74 ± 1.70
SVM-RFE (6) 89.14 ± 0.25 78.84 ± 1.10 86.59 ± 2.03 76.44 ± 2.05
SVM NCA (5) 80.69 ± 0.61 84.22 ± 0.69 70.00 ± 1.46 88.64 ± 1.11
RF (6) 82.89 ± 0.57 85.84 ± 0.64 73.90 ± 0.89 89.55 ± 0.92
SVM-RFE (5) 80.10 ± 0.48 83.18 ± 0.91 67.56 ± 2.70 88.03 ± 1.97

Mean and standard error (se) of AUC values, Accuracy, Sensitivity, and Specificity evaluated on 100 10-fold cross-validation rounds for each feature importance technique and classifier.