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Abstract

Gametogenesis is one of the most extreme cellular differentiation processes that takes place in 

Drosophila male and female germlines. This process begins at the germline stem cell, which 

undergoes asymmetric cell division (ACD) to produce a self-renewed daughter that preserves its 

stemness and a differentiating daughter cell that undergoes epigenetic and genomic changes to 

eventually produce haploid gametes. Research in molecular genetics and cellular biology are 

beginning to take advantage of the continually advancing genomic tools to understand: (1) how 

germ cells are able to maintain their identity throughout the adult reproductive lifetime, and (2) 

undergo differentiation in a balanced manner. In this review, we focus on the epigenetic 

mechanisms that address these two questions through their regulation of germline-soma 

communication to ensure germline stem cell identity and activity.
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1. Introduction

Germ cells have the unique ability to differentiate into gametes that will give rise to a new 

organism upon fertilization. Drosophila gametogenesis is intensively studied to understand 

cellular differentiation in adult stem cell lineages. This is due to the linear organization of 

germ cells according to their differentiation status in the gonads, which is conducive for 

visualization (Spradling et al., 2011). The complex cellular differentiation processes that 

produce gametes originate from the germline stem cells (GSCs) in both sexes (Fuller and 

Spradling, 2007; Matunis et al., 2012; Spradling et al., 2011). GSCs must self-renew to 
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retain their stemness and produce a differentiating daughter cell (Figure 1) (Chen and 

McKearin, 2003a; Davies and Fuller, 2008; Kiger et al., 2000; Yamashita and Fuller, 2005). 

However, both female and male GSCs are capable of symmetric cell division (SCD) to 

increase GSC number, albeit at low frequency under physiological conditions (Salzmann et 

al., 2013; Sheng and Matunis, 2011; Xie and Spradling, 2000). In addition, partially 

differentiated mitotic germ cells can return to the niche and become GSC-like cells under 

particular conditions, such as pathological and stress-induced conditions, or during aging, a 

process called dedifferentiation (Brawley and Matunis, 2004; Cheng et al., 2008; Herrera 

and Bach, 2018; Kai and Spradling, 2004; Lim et al., 2015; Liu et al., 2015; Sheng et al., 

2009). The ACD of GSCs is controlled by both cell-autonomous and non-cell-autonomous 

mechanisms [reviewed in (Gleason et al., 2018; Kahney et al., 2019)]. The somatic gonadal 

cells, such as the cyst stem cells (CySCs), cyst cells, and hub cells in testes (Figure 1A), and 

the cap cells, escort cells and follicle cells in ovaries (Figure 1B), contribute to the control of 

proper germ cell maintenance and differentiation through signaling pathways in a non-cell 

autonomous manner (Decotto and Spradling, 2005; Gonczy and DiNardo, 1996; Hardy et 

al., 1979; Nystul and Spradling, 2007; Xie and Spradling, 2000).

In recent years, broad epigenetic mechanisms that alter gene expression due to heritable 

chromatin structure change, but no primary DNA sequence change, have been shown to 

regulate germ cell maintenance and differentiation (Buszczak et al., 2009; Casper et al., 

2011; Davies et al., 2013; Maines et al., 2007; Xi and Xie, 2005). Such epigenetic 

mechanisms include the modification of DNA-associated proteins or RNAs which can create 

chromatin structural changes or recruit transcription regulators. These actions subsequently 

allow gene expression changes, such as repression of non-lineage genes or activation of 

germline differentiation genes.

The basic structure of chromatin is comprised of DNA and histones. A single nucleosome 

consists of 147 bp of DNA wrapping around a canonical histone octamer, composed of an 

H3-H4 tetramer and two H2B and H2A dimers. The main epigenetic mechanisms known to 

control germline fate and regulate germ cell differentiation are (1) DNA methylation, (2) the 

incorporation of histone and (3) histone variants, (4) the post-translational modifications of 

histones by different histone modifying enzymes, (5) the repositioning of nucleosomes by 

chromatin remodelers, and (6) the regulation of non-coding RNA-mediated chromatin 

landscape by piRNAs and miRNAs. This review focuses on recent discoveries of epigenetic 

mechanisms in maintaining GSCs and controlling differentiation of early-stage germline 

cells using Drosophila as the model organism.

2. Epigenetic Mechanisms Regulating GSC Maintenance and Self-Renewal

2.1. DNA modifications

DNA methylation is an epigenetic mechanism conserved from plants to mammals. It 

functions through the covalent modification of cytosine and adenine residues (Luo et al., 

2015). Methylation at the fifth position of the cytosine base (5mC) is established and 

maintained by a conserved enzyme family called DNA methyltransferases (DNMTs). 5mC 

modifications normally at the promoter region silence the transcriptional activity of target 
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genes, as well as repressing transcription at transposable elements and other repetitive 

sequences (Suzuki and Bird, 2008; Wu and Zhang, 2014).

There are two main DNMT families, normally classified by their distinct functions to either 

regulate de novo methylation (DNMT3) or maintain existing methylation (DNMT1) (Law 

and Jacobsen, 2010). Although DNMT2 shows structural similarities to DNMT1 and 

DNMT3 family proteins, its function and substrate remain unclear. For example, DNMT2 

family proteins show transposon silencing in the Drosophila early embryo cells and weak 

methyltransferase activity to methylate ribonucleic acids (tRNAs) (Goll et al., 2006; Phalke 

et al., 2009; Schaefer et al., 2010). Drosophila belongs to the “DNMT2 only” species by 

retaining the DNMT2 homolog Mt2 but loses both DNMT1 and DNMT3 (Raddatz et al., 

2013). In Drosophila, the level of 5mC has been shown to be exceptionally low compared to 

other organisms, with only 0.034% 5mC out of total cytosines in the adult fly genome. 

Additionally, this methylation appears to be independent of DNMT2 activity, further 

indicating that DNMT2 may not act as a DNA methylase in Drosophila (Capuano et al., 

2014; Raddatz et al., 2013; Takayama et al., 2014). DNMT2 is involved in non-random 

sister chromatid inheritance during ACD of Drosophila male GSCs (Yadlapalli and 

Yamashita, 2013). Therefore, the scarcity of 5mC in the Drosophila genome and the unclear 

molecular function of DNMT2 suggest that other epigenetic mechanisms may play more 

important roles in the Drosophila germline.

2.2. Canonical histones

Due to the lack of DNA methylation in the fly genome, histones are likely the main source 

of epigenetic information in Drosophila. Histones closely interact with DNA and carry 

extensive post-translational modifications (PTMs), which can recruit factors, such as histone 

modifying enzymes and chromatin remodelers, to either activate or repress local gene 

expression (Allfrey et al., 1964; Bannister and Kouzarides, 2011; Boros, 2012; Dawson et 

al., 2009). In the Drosophila male germline, pre-existing (old) histone H3 is found to 

segregate to the GSC, while the newly synthesized (new) histone H3 is preferentially 

inherited by the differentiating daughter cell (Tran et al., 2012). This asymmetric inheritance 

pattern is specific to histones H3 and H4, which have the most known PTMs that regulate 

gene expression and whose incorporation is DNA replication-dependent. Histone variants 

such as histone H3.3, which are incorporated independently of replication, do not show this 

asymmetric inheritance pattern (Tran et al., 2012). Therefore, it was hypothesized and later 

shown that this old versus new H3 and H4 asymmetry between sister chromatids is 

established during DNA replication (Wooten et al., 2019). Additionally, to achieve the 

asymmetric segregation pattern, the mitotic machinery ensures that old histone H3-enriched 

sister chromatids are segregated to the GSC while new histone H3-enriched sister 

chromatids are segregated to differentiating daughter cell. Differential phosphorylation at 

Threonine 3 of H3 (H3T3ph) is shown in the mitotic GSCs, where old H3 is more enriched 

with H3T3ph than new H3. Mis-regulation of this phosphorylation using either a dominant 

negative H3T3A mutant or a phosphomimetic H3T3D mutant leads to randomized 

segregation of old- versus new-histone enriched sister chromatids, as well as cellular defects 

such as stem cell loss and progenitor germline tumor (Xie et al., 2015). Recently, a GSC-

specific ‘mitotic drive’ phenomenon has been identified. Sister chromatids have different 
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amounts of the histone variant that specifies the centromere region, the CENP-A homolog 

Centromere IDentifier (CID). This asymmetric distribution of CID between sister 

centromeres coordinates with the dynamic activities of the spindle microtubules and 

temporal breakdown of the nuclear envelop, first at the proximal side toward the stem cell 

niche followed by the distal side. Together, the spatiotemporally regulated events ensure 

preferential recognition and attachment of the asymmetric sister centromeres by dynamic 

microtubes. Loss of either the asymmetric CID distribution between sister chromatids, by 

compromising the activity of the CID-specific histone chaperone CAL1, or temporally 

asymmetric microtubule activities using microtubule depolymerization drug Nocodazole, 

causes randomized sister chromatid segregation (Ranjan et al., 2019). Together, spatially 

asymmetric CID and H3T3ph between sister chromatids and the temporally asymmetric 

microtubule activity provide the cellular basis for asymmetric histone inheritance during 

ACD of Drosophila male GSCs. Therefore, in light of the phenotypes caused by disrupting 

asymmetric histone inheritance, this process likely maintains GSC identity by retaining old 

histone while allow differentiation of the daughter germ cell by resetting its chromatin 

structure. However, it remains unclear how histones are inherited during SCD of GSCs or 

during spermatogonial dedifferentiation. As SCD normally occurs at a low frequency, it is 

likely that old and new H3/H4 as well as the H3 variant CID display more symmetric 

inheritance patterns during SCD, which are also detectable at a relatively low frequency 

under normal conditions (Ranjan et al., 2019; Tran et al., 2012; Wooten et al., 2019). In 

order to understand histone inheritance during dedifferentiation, certain technical caveats 

need to be solved. For example, spermatogonial dedifferentiation under physiological 

conditions during aging often results in GSC-like cells with misoriented centrosome (Cheng 

et al., 2008), which tend to be arrested and fail to proceed with active mitosis. Even though 

pathological conditions or genetic depletion of bona fide GSCs could induce more efficient 

dedifferentiation, whether and how dedifferentiated GSC-like cells undergo a balanced self-

renewal versus differentiation is unclear. Combination of these treatments with precise 

lineage tracing to locate these GSC-like cells at single cell resolution, along with histone 

labeling strategies and live cell imaging tools, will illuminate these intriguing questions.

Canonical histone H1, the linker histone, regulates proper female GSC self-renewal. In the 

Drosophila ovary, the Bone Morphogenic Protein (BMP) ligands Dpp and Gbb are expressed 

from the niche and regulate GSC identity and activity. These ligands activate BMP signaling 

mediated by phosphorylated Mothers against Dpp (pMad), which subsequently activates 

Daughters against Dpp (Dad) expression in order to repress the transcription of the main 

differentiation factor called Bag of marbles (Bam) in GSCs (Figure 2B) (Casanueva and 

Ferguson, 2004; Chen and McKearin, 2003a; Chen and McKearin, 2003b; Eliazer and 

Buszczak, 2011; Kawase et al., 2004; McKearin and Ohlstein, 1995; McKearin and 

Spradling, 1990; Song et al., 2004; Xie and Spradling, 1998). Knockdown of histone H1 in 

the early-stage germline results in the loss of GSCs and premature differentiation due to 

precocious Bam expression. Interestingly, loss of H1 also results in an increase of 

transcription activating histone modification H4K16ac in the GSCs. This is similar to the 

effect caused by overexpression of MOF, the acetyltransferase for H4K16 (Akhtar and 

Becker, 2000). Collectively, these results suggest that H1 and MOF act antagonistically to 
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maintain H4K16ac at a level that prevents ectopic expression of differentiation genes in 

Drosophila female GSCs (Sun et al., 2015).

2.3. Histone variants

In addition to canonical histones, histone variants also regulate many cellular processes 

including transcriptional activity, heterochromatin formation, DNA repair and cell identity 

(Swaminathan et al., 2005; Talbert and Henikoff, 2017; Tanabe et al., 2008). In Drosophila, 

the only H2A variant is H2Av, which has the functions of both mammalian H2A variants in 

DNA damage repair and transcriptional regulation (Baldi and Becker, 2013; van Daal et al., 

1988). In the Drosophila male germline, H2Av is required for both GSC and CySC 

maintenance, where knockdown of H2Av via RNAi or compromising function using H2Av 
mutants results in declined GSCs and CySCs over time. In the testicular niche, the hub cells 

secrete Unpaired (Upd), which activates JAK-STAT signaling with the downstream 

phosphorylation of the Stat92E transcription factor (pStat92E) in both GSCs and CySCs 

(Harrison et al., 1998; Kiger et al., 2001; Tulina and Matunis, 2001). In CySCs, pStat92E 

activates CySC and GSC self-renewing factors, Zfh1 and Chinmo (Flaherty et al., 2010; 

Leatherman and Dinardo, 2008). In GSCs, pStat92E ensures the expression of adhesion 

molecules for their attachment to the hub cells (Figure 2A) (Herrera and Bach, 2019; 

Leatherman and Dinardo, 2010). However, the role of H2Av in GSC self-renewal seems to 

be independent of the JAK-STAT signaling pathway, as the loss of H2Av does not affect 

pStat92E levels and mutation of the stat92E gene does not affect H2Av expression, either. 

Furthermore, differentiation of both progenitor germ cells and cyst cells appear to be 

unaffected, suggesting that H2Av regulates solely GSC self -renewal by an unknown 

mechanism, independent of the JAK-STAT pathway (Morillo Prado et al., 2013).

2.4. Histone-modifying enzymes

Histone modifications play profound roles in regulating chromatin landscape and function 

(Allfrey et al., 1964; Bannister and Kouzarides, 2011). For example, the addition of an 

acetyl group to the lysine side chains by acetyltransferases neutralizes the positive charge of 

the lysine, weakening the interaction between the histones and DNA (Hodawadekar and 

Marmorstein, 2007). Modifications can recruit remodeling enzymes that reposition 

nucleosomes to regulate many processes such as DNA replication, repair and recombination 

(Bartke et al., 2010; Vermeulen et al., 2010). The histone modifications are catalyzed by 

specific enzymes that can generate, or “write”, these covalent changes. Additional factors 

can recognize, or “read”, these modifications and recruit other factors to lay down additional 

modifications that either promote or repress transcription. Another class of enzymes can 

remove, or “erase”, histone modifications. The histone modifying enzymes are often 

encoded by a single gene in Drosophila, making it an ideal model organism to study the 

roles of histone modifications and their modifiers without complications caused by 

redundant genes (Bannister and Kouzarides, 2011; Boros, 2012; Hennig and Weyrich, 2013).

Polycomb Group (PcG) and Trithorax Group (TrxG): Both PcG and TrxG protein 

complexes consist of histone modifying enzymes, as well as additional components that 

assist their functions through chromatin compaction, inhibition of chromatin remodeling, 

etc. (Kassis et al., 2017). Several PcG complexes have been characterized, including 
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Polycomb Repressive Complex 1(PRC1) and Polycomb Repressive Complex 2 (PRC2). In 

Drosophila, PRC1 consists of Polycomb (Pc), Polyhomeotic (Ph), Posterior sex combs (Psc) 

or Suppressor of Zestes 2 [Su(z)2], and Sex combs extra (Sce/dRing) (Francis et al., 2001). 

Within PRC1, Pc has a chromodomain that allows it to recognize and bind to the H3K27me3 

modification; Ph has a SAM domain important for the PRC1-mediated repression of target 

genes; Psc and Su(z) 2 have a common C-terminal region that mediates chromatin 

compaction or remodeling; Sce or dRing has the H2A ubiquitin ligase activity to generate 

the H2AK118ub modification, which promotes PRC2 activity in generating more 

H3K27me3 (Francis et al., 2004; Gambetta and Muller, 2014; Kalb et al., 2014; King et al., 

2005; Lo et al., 2009; Messmer et al., 1992; Wang et al., 2004). For PRC2, Enhancer of 

Zestes [E(z)] is the core histone methyl-transferase that generates the H3K27me3 mark. 

Other PRC2 components include Extra Sex combs (Esc), Suppressor of Zestes 12 [Su(z) 

12], and Caf1-55 (Table 1) (Czermin et al., 2002; Muller et al., 2002). The main function of 

Esc and Su(z)12 is to stimulate the enzymatic activity of E(z), but the biochemical role of 

Caf1-55 remains unclear (Anderson et al., 2011; Cao et al., 2002; Czermin et al., 2002; 

Kassis et al., 2017; Ketel et al., 2005; Margueron et al., 2009; Muller et al., 2002; Tie et al., 

2007; Wen et al., 2012; Xu et al., 2010).

PRC1 components regulate male GSC self-renewal. In the Drosophila testis, compromising 

Psc and Su(z) 2 function by mutations or RNAi results in CySC-like tumors. Moreover, 

these overpopulated CySC-like cells outcompete and prevent GSCs from attaching to the 

hub, leading to GSC loss. This CySC overproliferation phenotype can be attributed to 

ectopic expression of a homeobox gene Abdominal B (Abd-B), as forced expression of Abd-

B in wild-type testes results in a similar tumor phenotype (DeFalco et al., 2004). Therefore, 

Psc and Su(z) 2 repress Abd-B expression in the adult germline, in order to maintain CySC 

identity and activity in the adult testes (Morillo Prado et al., 2012). This inadvertently allows 

for the maintenance of GSCs in a non-cell-autonomous nature by preserving the attachment 

of GSCs to the hub and preventing CySC encroachment.

In addition to PRC1, PRC2 component E(z) maintains the Drosophila male germline 

through a cell-autonomous mechanism. In the germline, E(z) mutations cause GSC depletion 

over time, due to defective dedifferentiation of spermatogonial cells. Knockdown of E(z) by 

RNAi specifically in spermatogonial cells also induces GSC loss, confirming that 

dedifferentiation defect contributes to the GSC loss phenotype. In E(z) mutant germ cells, 

ChIP experiments show increased H3K4me3 at 39% of genes that lose H3K27me3, 

suggesting that a global chromatin change in the spermatogonial cells undermines their 

dedifferentiation potential. Therefore, E(z) maintains the global chromatin state of 

spermatogonial cells that is conducive for dedifferentiation to replenish lost GSCs due to 

aging or degeneration (Eun et al., 2017).

On the other hand, TrxG acts antagonistically to PcG by activating gene expression through 

a variety of mechanisms, including histone modifications, ATP-dependent chromatin 

remodeling, chromosome cohesion, and recruitment of RNA polymerase II to the promoters 

of target genes (Kassis et al., 2017). In Drosophila, three classes of Complex of Proteins 

Associated with SET1 (COMPASS) have been identified, each containing a distinct histone 

methyltransferase [Trithorax (Trx), SET domain containing 1 (Set1), or Trithorax related 
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(Trr)], Ash2, and three additional subunits (Mohan et al., 2011). Set1 is responsible for 

generating the majority of H3K4me2 and H3K4me3 in Drosophila, while the role of Ash2 is 

to stabilize the methyltransferase activity of the COMPASS complexes (Table 1) (Ardehali 

et al., 2011; Dou et al., 2006; Hallson et al., 2012; Kassis et al., 2017). Recently, Set1 has 

been shown to act with an E3 ubiquitin ligase Bre1 to generate the majority of H3K4me3 

modification and regulate GSC maintenance and differentiation in the Drosophila ovary 

(Bray et al., 2005). Mutation of bre1 or knockdown of set1 by RNAi cause female GSC loss 

and decreased expression of BMP signaling components, such as pMad or Dad. In the 

germaria, Dally restricts Dpp diffusion to ensure that only the GSCs receive Dpp signal 

(Akiyama et al., 2008; Guo and Wang, 2009). In addition, DE-cadherin ensures GSC 

adhesion to the niche cells (Song and Xie, 2002; Song et al., 2002) (Figure 2B). Inactivation 

of bre1 or set1 in the terminal filament and cap cells results in female GSC loss with reduced 

Dally and DE-cadherin expression, leading to precocious GSC differentiation. Moreover, 

compromising bre1 or set1 in the escort cells induces overproliferation of GSC-like pMad-

positive cells due to increased Dpp and Dally. Therefore, Bre1 and Set1 act together to 

control female GSC maintenance and differentiation through multiple mechanisms (Xuan et 

al., 2013). It is possible that in the GSCs and the niche, the addition of H3K4me3 by Set1 at 

the genomic loci of BMP pathway components promotes their expression for the 

maintenance of GSCs. In addition, Set1 may act in the escort cells to promote the expression 

of a negative regulator of Dpp and Dally. However, both of these possibilities have yet to be 

determined by identifying direct targets of H3K4me3 and Set1 in a cell-type-specific 

manner. In addition, a RNAi screen study identified Set1 as a self-renewal factor in female 

GSCs (Yan et al., 2014).

Su(var)3-9 and Heterochromatin Protein 1 (HP1): Telomeric and pericentric 

chromosomal regions are enriched with transcriptionally repressed heterochromatin, whose 

formation is regulated by H3K9me2/3 “writer” [Su(var)3-9] and H3K9me2/3 “reader” 

Heterochromatin Protein 1 (HP1) (Table 1) (Eissenberg et al., 1990; James et al., 1989; 

James and Elgin, 1986; Schotta et al., 2002; Schotta et al., 2003). The recognition of 

H3K9me3 by HP1 facilitates heterochromatin formation by recruiting more Su(var)3-9 

(Bannister et al., 2001; Grewal and Jia, 2007; Lachner et al., 2001). HP1 has a variety of 

functions in addition to repressing gene expression, such as telomere capping and 

maintaining telomere length (Fanti et al., 1998; Perrini et al., 2004; Vermaak and Malik, 

2009). In Drosophila, HP1 regulates both male and female GSC maintenance. In the male 

germline, knockdown of HP1 or Su(var)3-9 induces ectopic Bam expression in the GSCs 

and GBs, resulting in GSC loss. These phenotypes in the early-stage germline are 

concomitant with the loss of two germ cell markers, Vasa and Escargot (Esg) (Streit et al., 

2002; Voog et al., 2014). On the other hand, overexpression of HP1 or Su(var)3-9 in the 

early-stage germline results in the opposite phenotypes, shown as loss of Bam expression 

and overexpression of Vasa and Esg. Overexpression of HP1 also partially rescues the GSC 

loss phenotype in hopscotch (hop) mutant testes. Since Hop is the Drosophila Receptor 

Tyrosine Kinase (RTK), mutations in hop result in the loss of proper JAK-STAT signaling in 

male GSCs and GSC loss (Herrera and Bach, 2019; Kiger et al., 2001; Tulina and Matunis, 

2001). Based on these results, HP1 seems to enhance GSC self-renewal by promoting the 

JAK-STAT signaling (Xing and Li, 2015). Interestingly, in GSC-like cells in the Upd-
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overexpressing testes, overexpression of HP1 induces differentiation by regaining Bam 

expression. Therefore, HP1 reverts the GSC tumor phenotype upon hyperactivating the JAK-

STAT signaling pathway, suggesting a negative regulation of STAT signaling by HP1 (Loza-

Coll et al., 2019). However, it is unclear whether these seemingly contradictory results are 

due to different genetic backgrounds carrying distinct JAK-STAT signaling activities. For 

example, HP1 could act as a “rheostat” to upregulate the activity of JAK-STAT signaling 

when it is low, but downregulate it when it is too high. The molecular mechanisms will await 

more investigations.

In the female germline, HP1 is also important for GSC maintenance and differentiation. 

Knockdown of HP1 results in germaria containing only GSC-like cells or only differentiated 

cells, suggesting an imbalance between GSC self-renewal and differentiation at the cellular 

level. At the molecular level, both differentiation gene bam and genes promoting stemness as 

well as germline identity, such as nanos, cup, p-element induced wimpy testis (piwi), and 

vasa are all downregulated in HP1 mutant ovaries (Forbes and Lehmann, 1998; Gonzalez et 

al., 2015; Wang and Lin, 2004). CLIP-PCR and ChIP experiments demonstrate that HP1 

protein binds to nanos, cup and piwi mRNAs. Therefore, HP1 regulates female GSC 

maintenance and differentiation though post-transcriptional stabilization of stemness and 

differentiation gene mRNA by forming an hnRNP nuclear complex (Casale et al., 2019). 

However, how HP1 balances between these two group of mRNAs for proper GSC 

maintenance and differentiation remains to be addressed.

Eggless/ dSETDB1: Eggless/dSETDB1 (Egg) is another histone lysine methyltransferase 

that catalyzes tri-methylation of H3K9 and regulates Drosophila oogenesis (Table 1) 

(Clough et al., 2007). Mutations of egg gene causes two main phenotypes in the ovary: 

accumulation of GSC-like tumor cells and loss of differentiated germ cells (Clough et al., 

2014; Wang et al., 2011). Dad expression is lost in the egg mutant GSCs; however, both 

Bam and Benign gonial cell neoplasm (Bgcn), another germline differentiation factor, are 

found to be normally expressed, suggesting that Egg maintains GSCs in a Bam-Bgcn 

independent manner (Clough et al., 2014; Li et al., 2009; Wang et al., 2011). It is possible 

that Egg represses differentiation genes in GSC, but it is unknown whether this repression is 

through direct regulation of Dad expression.

Enoki mushroom (Enok): Enok is a Monocyticleukaemia zinc finger, Ybf2/ Sas3, Sas2 

and Tip60 (MYST) family histone acetyltransferase that preferentially acetylates Lys23 on 

histone H3 tail and promotes transcription (Table 1) (Huang et al., 2014). Compromised 

Enok in female GSCs causes rapid GSC loss through premature differentiation due to 

ectopic expression of Bruno, an RNA Recognition Motif (RRM)-containing RNA binding 

protein that targets Sxl for translational repression, in order to promote CB differentiation 

and female germline cyst formation (Wang and Lin, 2007). Additionally, loss of Enok in the 

cap cells results in impaired BMP and Notch signaling, leading to GSC loss due to 

premature differentiation and niche size reduction, respectively. Therefore, Enok maintains 

Drosophila female GSCs through both cell-autonomous and non-cell-autonomous 

mechanisms. This indicates that Enok positively regulates BMP and Notch signaling in the 

cap cells but negatively regulates Bruno in the female GSCs (Xin et al., 2013).
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Ubiquitously transcribed tetratricopeptide repeat, X chromosome histone 
demethylase (dUTX): The Drosophila UTX (dUTX) is a H3K27me2/me3-specific 

demethylase that can form a complex with an acetyltransferase CREB-binding protein 

(CBP), a chromatin remodeler and TrxG component Brahma (Brm), in order to antagonize 

PcG-mediated gene silencing (Table 1) (Holowatyj et al., 2015; Smith et al., 2008; Tie et al., 

2012). In the male germline, dUTX maintains active transcription of Suppressor of cytokine 
signaling at 36E (Socs36E) gene, which encodes a negative regulator of the JAK-STAT 

pathway, by ensuring the transcription start site is deprived of the repressive H3K27me3 

mark. Socs36E is predominantly detected in the hub cells and CySCs to maintain proper 

JAK-STAT signaling activity and the 1:2 ratio of GSCs: CySCs (Figure 2A) (Herrera and 

Bach, 2019; Issigonis et al., 2009; Terry et al., 2006). Compromising dUTX in the CySCs 

induces increased Zfh1-positive cells inside and around the hub area as well as ectopic 

pStat92E in the more differentiated germ cells. In addition, knockdown of dUTX in the 

germline results in enhanced DE-cadherin expression, leading to increased hub size and hub 

cell number. These defects can be suppressed by either overexpressing Socs36E or halving 

Stat92E. Together, dUTX controls JAK-STAT signaling activity and regulates the feedback 

from stem cells (i.e. GSCs and CySCs) to the niche, in order to maintain niche morphology 

and regulate proper gene expression non-cell-autonomously (Tarayrah et al., 2013).

Little imaginal Disc (Lid): Lid is a H3K4me3-specific demethylase that maintains male 

GSC self-renewal and prevents premature differentiation (Eissenberg et al., 2007; Holowatyj 

et al., 2015; Lee et al., 2007; Tarayrah et al., 2015). Inactivation of Lid via RNAi knockdown 

or mutations in testes results in GSC loss and the presence of more differentiated 

spermatogonial cysts next to the hub, in place of GSCs. In addition, lid mutant testes have 

ectopic Bam and reduced Stat92E expression in the GSCs. Furthermore, enhanced 

expression of Stat92E or DE-Cadherin can partially rescue the GSC loss phenotype in lid 
mutant testes. Therefore, Lid acts cell-autonomously to regulate JAK-STAT signaling in the 

germline to maintain proper GSC activity and proliferation potential (Tarayrah et al., 2015).

2.5. Chromatin remodeling factors

For biological processes such as DNA replication, recombination, repair, and transcription, 

chromatin remodeling enzymes change the packaging state of the chromatin (Narlikar et al., 

2013). Chromatin remodeling factors use energy from ATP hydrolysis to move, eject or 

restructure nucleosomes to allow certain factors to either gain or lose access to specific 

genomic regions. There are four families of chromatin remodeling enzymes: Switch 

Defective/Sucrose Nonfermenting (SWI/SNF), Imitation Switch (ISWI), Chromodomain-

Helicase-DNA-binding protein (CHD), and Inositol Requiring 80 (INO80). All four families 

have a conserved ATPase subunit that belongs to the helicase superfamily 2 (SNF2), but 

each has unique flanking domains that specifically regulate its corresponding functions and 

activities (Eisen et al., 1995). For example, the SWI/SNF family ATPase contains a C-

terminal bromodomain that assists in sliding and ejecting nucleosomes (Hassan et al., 2002). 

The ISWI family ATPase contains a SANT domain that optimizes nucleosomal spacing for 

chromatin assembly and transcriptional repression activities (Corona et al., 2002; Corona 

and Tamkun, 2004; Deuring et al., 2000). The CHD family ATPase contains a 

chromodomain that recognizes modified nucleosomes to be ejected or moved, allowing for 
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transcriptional activity changes (Marfella and Imbalzano, 2007; Woodage et al., 1997). 

Lastly, the INO80 family has a split ATPase domain, which is responsible for promoting 

transcriptional activation and DNA repair (Bao and Shen, 2007; Clapier and Cairns, 2009; 

Narlikar et al., 2013; Shen et al., 2000).

Nucleosome remodeling factor (NURF): In the ISWI family, NURF is an ATP-

dependent complex that plays important roles in both Drosophila male and female early-

stage germline (Table 2) (Badenhorst et al., 2002; Xi and Xie, 2005). In the male, the NURF 

complex components ISWI, Nurf55 and Nurf301 are expressed in the testicular niche, 

including hub cells, GSCs, and CySCs (Figure 1A). Nurf301, a specific NURF complex 

component, is required cell-autonomously for both GSC and CySC maintenance. 

Compromising Nurf301 results in the loss of both GSCs and CySC over time, due to 

premature differentiation caused by ectopic Bam expression and the loss of Stat92E 

expression. Increasing Stat92E levels partially rescues the CySC loss phenotype in nurf301 
mutant testes. In addition, downregulation of Nurf301 results in partial rescue of the GSC 

loss phenotype in socs36E mutant. These results indicate that NURF interacts with JAK-

STAT pathway components to ensure proper stem cell maintenance in testes, by promoting 

Stat92E expression and preventing precocious Bam expression (Cherry and Matunis, 2010).

In addition, the NURF complex interacts with the Ecdysone (Ecd) steroid hormone pathway 

in female GSCs and male CySCs to maintain stem cell self-renewal. Binding of Ecd to the 

Ecdysone Receptor (EcR) results in the dimerization between EcR and Ultraspecle (Usp), 

which initiates a transcriptional cascade including E74, E75, and Broad (Br) (Schwedes and 

Carney, 2012). In the ovary, loss of Usp, E74, Ecd, or EcR results in female GSC loss. 

Additionally, Usp or E74 mutant female GSCs display decreased ISWI expression and 

compromised BMP signaling. Therefore, Ecdysone signaling acts through the NURF 

chromatin remodeling complex to promote female GSC maintenance by regulating BMP 

signaling (Ables and Drummond-Barbosa, 2010). In the testes, Ecdysone signaling 

components are expressed in hub cells and the CySC lineage. Inactivation of Ecd in the 

CySCs results in both GSC and CySC loss. Additionally, EcR has been shown to interact 

with Nurf301 to maintain both stem cell populations. Together, these results show that EcR 

and Nurf301 interact to regulate the transcription of stemness factors to promote the self-

renewal of both GSCs and CySCs in the testis (Li et al., 2014).

Polybromo-containing Bap (PBAP): In Drosophila, Brm is the only SWI/SNF 

chromatin remodeling ATPase and is present in both SWI/SNF complexes: Brm-associated 

protein (BAP) complex and PBAP complex (Table 2) (Mohrmann et al., 2004; Moshkin et 

al., 2007). In the Drosophila ovary, loss of PBAP components Bap180 and Brm in the 

germline or niche has been shown to result in GSC loss over time, suggesting that PBAP 

complex is required for female GSC maintenance (He et al., 2014).

Domino (Dom): In the INO80 family, Dom is a SWR1-like ATPase that is linked to the 

chromatin incorporation of the histone variant H2Av in both male and female germline 

(Table 2) (Kobor et al., 2004; Mizuguchi et al., 2004; Ruhf et al., 2001). In the male, clonal 

induction using dom mutations results in both GSC and CySC loss over time, suggesting 

that Dom is required for GSC and CySC maintenance cell-autonomously. Additionally, 
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reduced H2Av incorporation is detected in dom mutant GSCs. Therefore, both Dom and 

H2Av are required to maintain GSCs and CySCs, likely by repressing differentiation genes 

and/or maintaining active expression of self-renewal genes (Morillo Prado et al., 2013). In 

the female, Dom is identified as a GSC self-renewal factor (Yan et al., 2014)

Nucleosome Remodeling and Deacetylase (NuRD): In the CHD family, NuRD is 

the ATPase complex that functions antagonistically to the DNA replication-related element 

factor (DREF), in order to regulate male GSC maintenance (Table 2) (Hirose et al., 2002; 

Hirose et al., 1996). Compromising DREF leads to precocious GSC differentiation and GSC 

loss over time. GSCs without DREF display impaired Dad expression and ectopic Bam 

expression due to compromised BMP signaling. Genetic interaction experiments show that 

mutations in NuRD complex components Mi-2 and Caf1 suppress the GSC loss phenotype 

in the DREF mutants. Therefore, NuRD antagonizes DREF while DREF allows GSCs to 

self-renew, likely as a transcription factor to promote expression of BMP pathway genes to 

inhibit differentiation (Angulo et al., 2019).

2.6. RNA- binding proteins and non-coding RNAs

MicroRNAs (miRNAs) are small RNAs that negatively regulate gene expression post-

transcriptionally. It has been demonstrated that miRNAs regulate stemness, cell division, 

differentiation, and homeostasis of multiple Drosophila stem cells (Hatfield et al., 2005; 

Park et al., 2007; Shcherbata, 2019). Primary miRNAs (pri-miRNAs) are expressed in the 

nucleus by RNA polymerase II. The hairpin structure of pri-miRNAs is recognized by the 

RNase II enzyme, Drosha, which along with its partner, Pasha/DGCR8, cleaves the pri-

miRNAs into precursor miRNAs (pre-miRNAs). Subsequently, another RNase II enzyme, 

Dicer-1 (Dcr-1), which along with its partner, Loquacious, cleaves pre-miRNAs into a 22-

nucleotide RNA duplex followed by interacting with Argonaute 1 (Ago1). With Ago1, 

miRNAs form the RNA-induced silencing complex (miRISC), which cleave and degrade 

target mRNAs, as well as repress their translation (Shcherbata, 2019).

Mutations in genes encoding components for miRNA biogenesis, such as dcr-1, ago1, 

loquacious, and mei-P26, all lead to GSC loss phenotypes (Azzam et al., 2012; Forstemann 

et al., 2005; Jin and Xie, 2007; Li et al., 2012; Yang et al., 2007). In mei-P26 mutant ovaries, 

GSC loss can be attributed to disrupted BMP signal transduction, which results in the 

impaired Dad and pMad expression in GSCs. In addition, ectopic Bam and Brain tumor 

(Brat) expression is detected in the mei-P26 mutant germaria. In wild-type GSCs, brat 
mRNA is the target of the Nanos-Pumilio complex: when Nanos expression decreases in the 

late-stage germline, Brat expression increases and in turn, represses the translation of Mad. 

When pMad is not present, bam expression is de-repressed, which initiates germline 

differentiation (Figure 2B) (Harris et al., 2011). These results suggest that Mei-P26 

cooperates with Nanos and miRISC to repress the translation of specific mRNA targets such 

as brat, with which pMad is upregulated and bam is repressed, a condition for promoting 

GSC self-renewal (Li et al., 2012; Li et al., 2013).

In addition, miRNAs themselves regulate GSC maintenance in both male and female 

gonads. In the testis, malfunction of the miRNA-310/313 cluster results in abnormal 
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germline and somatic gonadal cell differentiation, which can be suppressed by reducing 

Armadillo (Arm, or β-catenin) levels. Indeed, miR-310/313 recognizes the 3’ UTR of arm 
mRNA and targets it for degradation. Arm is an important effector of the Wnt signaling 

pathway and a key cell-cell adhesion molecule contributing to attachment of GSCs to the 

niche cells (Song et al., 2002) (Figure 2). These results indicate that miR-310/313 controls 

Wnt signaling and regulates GSC-hub cell adhesion in testes (Pancratov et al., 2013).

Piwi interacting RNA (piRNAs) are the most abundant small non-coding RNA in the 

Drosophila male and female gonads. The main role of piRNAs is to protect genomes of both 

germline and somatic gonadal cells by repressing transposons (Brennecke et al., 2008; 

Hermant et al., 2015). The piRNAs act in a complex with the PIWI family proteins, which 

includes Piwi, Aubergine (Aub), and Argonaute 3 (Ago3) (Brennecke et al., 2007; Saito et 

al., 2006). Together, this complex silences transposons at both the transcriptional and post-

transcriptional levels (Le Thomas et al., 2013; Lim et al., 2009; Vagin et al., 2006; Yang and 

Xi, 2017). Piwi is the founding member of the PIWI family and is present in both germline 

and somatic gonadal cells, while Aub and Ago3 are only required for piRNA production in 

the germline (Brennecke et al., 2007). In the ovaries, Piwi protein has been shown to interact 

with PcG components in the terminal filament cells, cap cells and GSCs to regulate female 

GSC maintenance and differentiation (Peng et al., 2016). Loss of Piwi in the early germline 

results in GSC loss, but Pc or E(z) mutations suppress this phenotype in piwi mutant ovaries. 

Piwi also physically interacts with PcG components Su(z)12 and Esc; E(z) has a higher 

enrichment at its target genes in piwi mutant ovaries. As Su(z)12, Esc and E(z) are all PRC2 

components, Piwi may interact with Su(z)12 and Esc to sequester E(z) away from the 

chromatin, which may lead to reduced H3K27me3 but increased RNA Polymerase II at 

target genes to activate transcription. Therefore, the negative regulation of PRC2 and 

H3K27me3 by Piwi may be necessary for transposon suppression, proper female GSC 

activity, and oogenesis (Peng et al., 2016).

3. Epigenetic Mechanisms Regulating GSC Differentiation

3.1. Canonical Histones

Canonical linker histone H1 regulates proper female GSC differentiation. In the ovary, H1 is 

required for escort cell maintenance and germ cell differentiation. Knockdown of H1 in the 

escort cells leads to accumulation of GSC-like cells with upregulated BMP signaling, 

ectopic expression of cap cell-specific genes, as well as elevated transposon activity and 

DNA damage, resulting in escort cell death. Overall, these results demonstrate that H1 acts 

cell-autonomously in escort cells to repress cap cell identity and transposon activity, which 

are necessary to maintain escort cell identity and regulate proper germ cell differentiation 

(Yang et al., 2017).

3.2. Histone Modifying Enzymes

Polycomb Group (PcG) and Trithorax Group (TrxG): In addition to Su(z)2 and Psc, 

Pc has been shown to regulate Abd-B expression in the CySCs. Knockdown of Pc in the 

CySCs leads to Zfh1-positive CySC-like tumor cells, overproliferation of early-stage germ 

cells at the expense of differentiation. The overproliferative CySCs phenotype can be 
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partially rescued by compromising Abd-B, suggesting mis-expressed Abd-B in the CySCs 

underlies these cellular defects (Zhang et al., 2017).

In the Drosophila ovary, knockdown of PRC1 components Sce, Ph, or Psc/Su(z) 2 in the 

escort cells results in a GSC-like tumor cells, which express the BMP pathway components 

pMad and Dad, but lack Bam expression. Upregulated BMP signaling is responsible for this 

tumor phenotype, as compromising Dpp results in partial rescue. Finally, the TrxG 

component Brm activates Dpp expression in the escort cells, as compromising Brm also 

rescues this tumor phenotype (Dingwall et al., 1995). Therefore, PRC1 acts in the escort cell 

to repress Dpp to allow for the proper differentiation of GSCs. Either inactivation of PRC1 

or hyperactivation of Brm induces ectopic Dpp expression, which prevents germline 

differentiation with accumulation of GSC-like tumor cells in the Drosophila ovary (Li et al., 

2016). Therefore, PRC1 acts non-cell autonomously in the escort cells to restrict active BMP 

signaling in GSCs.

Eggless/ dSETDB1: In addition to maintaining GSCs, Egg is required for GSC 

differentiation. Loss of egg results in escort cell death, increased BMP signaling in the 

germaria, and GSC differentiation defects (Wang et al., 2011). Egg also acts in escort cells to 

regulate GSC differentiation non-cell autonomously, likely by repressing BMP regulators, 

such as Dally.

Su(var)3-3/ lysine -specific demethylase 1 (Lsd1): Lsd1 is a demethylase for H3K4 

mono- and di methylation and is a regulator for heterochromatin spreading and GSC niche 

size in the Drosophila ovary (Table 1) (Di Stefano et al., 2007; Eliazer et al., 2011; 

Holowatyj et al., 2015; Rudolph et al., 2007). Lsd1 also acts non-cell-autonomously to 

regulate female GSC differentiation. Inactivation of lsd1 by mutation or RNAi in escort cells 

induces escort cell death and formation of GSC-like tumors, due to ectopic Dad expression 

and loss of Bam expression. ChIP experiments suggest that Engrailed is a direct target of 

Lsd1, suggesting that BMP signaling is indirectly repressed by Lsd1. In wild-type germaria, 

Engrailed, a homeobox transcription factor, acts in the terminal filament and cap cells to 

maintain female GSCs, but in lsd1 mutant germaria, Engrailed is detected in the escort cells 

(Bolivar et al., 2006; Desplan et al., 1985; Kornberg, 1981; Morata and Lawrence, 1975; 

Rojas-Rios et al., 2012). Moreover, compromising Engrailed in lsd1 mutant ovaries rescues 

the GSC-like tumor phenotype and overexpression of Engrailed phenocopies lsd1 mutant 

phenotype. Knockdown of lsd1 in the escort cells also causes cell fate changes, shown by 

ectopic expression of Hedgehog (Hh), which is normally expressed exclusively in the 

terminal filament and cap cells to promote expression of Dpp for the neighboring GSCs 

(Rojas-Rios et al., 2012). In conclusion, Lsd1 acts in the escort cells to inhibit Engrailed, 

which prevents hyperactive Hh signaling from activating Dpp expression. These functions 

restrict Dpp expression solely in the cap cells and terminal filament cells, which in turn 

ensures BMP signaling is only received by the female GSCs (Eliazer et al., 2014; Eliazer et 

al., 2011).

Tat interactive protein 60kDa (Tip60): The Drosophila Tip60 complex acetylates 

lysines 5, 8, 12, and 16 on histone H4 to regulate gene expression, chromatin packaging, and 

DNA repair (Kusch et al., 2004; Schirling et al., 2010). It is comprised of the histone 
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acetyltransferase Tip60, the ATPase Domino, Nipped-A, Enhancer of Pc [E(Pc)] and a few 

other components (Table 1) (Clapier and Cairns, 2009; McCarthy et al., 2018). Among them, 

E(Pc) and Nipped-A are shown to regulate male and female GSC differentiation, 

respectively. Knockdown of E(Pc) in the CySC and early cyst cells in testes causes 

overproliferation of CySC-like cells and GSC-like cells, and ectopic expression of somatic 

cell markers in germline tumors. Cell-type-specific ChIP experiments show that E(Pc) 

directly binds to genes encoding components of multiple signaling pathways, including 

JAK-STAT and EGF. The EGF signaling pathway has been previously shown to control 

encapsulation, proper differentiation and mitotic divisions of early-stage germ cells by the 

cyst cells (Kiger et al., 2000; Parrott et al., 2012; Schulz et al., 2002). Inactivation of Tip60 

acetyltransferase function in the CySC lineage results in similar phenotypes as seen in E(Pc) 

mutant testis. Therefore, E(Pc) and Tip60 act synergistically to promote CySC 

differentiation cell-autonomously and to regulate proper germ cell differentiation and 

maintain germline identity non-cell-autonomously (Feng et al., 2017).

In the male germline, E(Pc) is required for proper germ cell activity, as the germline-specific 

knockdown of E(Pc) results in germline tumor and GSC cell death phenotypes. In addition, 

compromising E(Pc) in the germline results in increased CycB expression in the late-stage 

germ cells and enhanced γH2Av, a marker for DNA double-strand break (DSB) and cell 

death (Lake et al., 2013). Finally, knocking down E(Pc) in the germline reduces Bam 

expression, responsible for the germline tumor phenotype. In summary, in the male germline 

E(Pc) regulates transcription of cycB through H4 acetylation, accumulation of Bam protein, 

and DNA repair for proper GSC differentiation and the mitosis-to-meiosis transition (Feng 

et al., 2018).

In the female germline, knockdown of Nipped-A results in reduced Bam expression, leading 

to the accumulation of GSC-like tumor cells. Inactivation of Tip60 complex components, 

such as Bap55, Domino, E(Pc), YL-1 and Tip60, also results in GSC-like tumors in the 

ovaries. Through ChIP experiments, bgcn is detected as a direct target gene of Nipped-A. 

Since Bgcn regulates GSC differentiation, overexpressing Bgcn could rescue differentiation 

defects of Nipped-A knockdown germ cells. In conclusion, the Tip60 complex is required 

cell autonomously to ensure Bgcn expression in the pre-cystoblast to promote female GSC 

differentiation (McCarthy et al., 2018).

Ovaries absent (Ova): A recent study identified Ova and its bridging role between HP1 

and Lsd1 to silence heterochromatic genes in the Drosophila ovary. The ova mutant ovaries 

show either germline tumor or germ cell loss phenotypes. Specific knockdown of ova in the 

somatic gonadal cells results in GSC-like tumor cells, accompanied with ectopic pMad and 

Dad expression but decreased Bam levels. Biochemical assays show that Ova directly binds 

to Lsd1 and HP1α in vitro and expression of the Ova protein fragment that interacts with 

both HP1α and Lsd1 is sufficient to rescue the ova mutant defects in ovaries. Moreover, 

ChIP experiments show increased H3K4me2 at telomeric transposons in ova mutant ovaries 

compared to the control ovaries. Given that Lsd1 is an H3K4me2 demethylase, these results 

suggest that Ova is indispensable for the H3K4 demethylation activity of Lsd1 in 

heterochromatic gene silencing. Therefore, Ova is necessary for heterochromatin formation 
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as well as HP1- and Lsd1-mediated gene silencing of GSC self–renewal genes to ensure 

proper differentiation of female GSCs (Yang et al., 2019).

3.3. RNA- binding proteins and noncoding RNAs

miRNAs and piRNAs have also been shown to regulate GSC differentiation. Mutations of 

miR-9a result in decreased GSC division and failure in spermatogenesis. RNA-seq 

experiments have shown increased N-cadherin expression in miR-9a mutant testes. 

Consistently, overexpression of N-cadherin phenocopies while compromising N-cadherin 

levels suppresses miR-9a mutant phenotypes. Since N-cadherin is a cadherin family member 

for adherens junction between GSCs and hub cells (Figure 2), these results suggest that 

normal functions of miR-9a downregulate N-cadherin to allow for detachment of GSCs from 

the niche for differentiation (Epstein et al., 2017).

In the ovary, Vret, a Tutor domain-containing protein, is associated with Piwi and Aub. 

Knocking down Vret in the germline or the somatic gonadal cells results in mis-localized 

Piwi to the nucleus in both cell types and loss of Aub in the germline nuage structure. In 

addition, vret mutant ovaries show reduced piRNA levels and enhanced transposons 

mobilization, as well as somatic cell death and GSC differentiation defects. These result in 

germaria filled with GSC-like cells, but these phenotypes can be suppressed when wild-type 

Vret is expressed in the somatic gonadal cells. Based on these data, Vret is likely an 

essential component of the Piwi- and Aub-containing RISC complexes in the germline, as 

well as Piwi-containing RISC complexes in the somatic gonadal cells, to regulate transposon 

levels and biogenesis of primary piRNAs in the ovary (Zamparini et al., 2011).

4. Conclusions and Perspective

In this review, we focus on distinct epigenetic regulatory mechanisms in both female and 

male GSC maintenance and differentiation using Drosophila as the model organism. The 

commonalities and differences between these two GSC systems provide insight into some 

general scenario as well as sexual dimorphism. Here, we summarize these highlights and 

comment on existing caveats as well as future perspectives:

1. Both GSC systems achieve a balanced ratio between stem cells and 

differentiating cells through ACD, which greatly facilitate studying epigenetic 

mechanisms in endogenous stem cells at single-cell resolution. This feature, 

combined with cell-type-specific labeling and cutting-edge imaging methods, 

such as live cell imaging and superresolution imaging, will provide more 

important insight on how epigenetic regulators play biological functions in vivo.

2. Both GSC systems have well characterized niche structure, critical signaling 

pathways emanated from the niche, cellular features including cell cycle 

progression and markers for inter- and intra-cellular components. Interestingly, 

studies exploring the roles of epigenetic factors in regulating GSC self-renewal 

and differentiation mainly reveal their control on the activity of two signaling 

pathways: JAK/STAT and BMP pathways. These could be due to two reasons: 

First, it is likely because of the key roles these two signaling pathways play in 

determining the balance between stem cell fate and differentiation cell fate. For 
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example, epigenetic regulators tend to change the expression of stemness genes, 

such as dad and stat92E, or the differentiation genes, such as bam and bgcn. 

Second, the convolution of the results on a few downstream targets could be due 

to detection methods. Given the abundant reagents available to analyze abnormal 

expression or localization of these known key factors, it is not surprising that 

they serve as the top candidates when designing experiments to explore the 

“read-outs” of abnormal epigenetic regulation. However, rapid development on 

single-cell genomics and epigenomics techniques will now or soon allow 

characterization of the direct targets of these epigenetic regulators in pure cells 

with distinct identities, leading to a comprehensive understanding of their roles 

in adult stem cell systems. On the other hand, due to their intricate regulation on 

signaling pathways, it is intriguing to see that many of these epigenetic 

regulations have both cell-autonomous and non-cell-autonomous roles. Co-

existence of GSCs with somatic gonadal cells in both systems provides a unique 

opportunity to dissect these relationships in vivo, given their reliable anatomy 

and morphological distinctions, as well as the relative less complicated tissue 

architecture compared to the mammalian tissue/organ.

3. Interestingly, disruption of epigenetic regulation often results in multiple cellular 

defects. Characterization of these pleiotropic phenotypes often reveal gene 

misexpression (i.e. expression levels are too high, too low, or are ectopic in the 

wrong cell and/or at the wrong timing), suggesting a rather confused cell fate. 

Given that it is very plausible that each epigenetic regulator has many targets and 

even the same epigenetic regulator has different targets in different cells, the 

nature of the cell fate state in their loss-of-function mutants could be quite 

complicated. Furthermore, most of the “rescuing” results when genetic 

suppression has been detected are mainly based on morphological recovery but 

not on functional recovery, the later requires more rigorous assay including the 

ability to regain stem cell activity for both successful self-renew and full 

differentiation to become functional egg or sperm. Therefore, to completely 

understand their molecular and cellular defects, new technology such as single-

cell RNA-seq could help elucidate the genome-wide transcriptome change; and 

lineage tracing could reveal their differentiation footage. Finally, given our 

current knowledge that certain chromatin changes could precede actual 

transcription change, such as the phenomena of “poised” RNA Pol II and 

bivalent histone modifications, the downstream effects could comprise both 

actual gene expression changes and alterations only at the chromatin level. The 

later will require chromatin structure profiling using small number of cell or even 

at the single-cell level, which is becoming more and more feasible given the 

quick advancement of single-cell epigenome techniques.

4. Finally, even though results using both female and male GSC systems 

demonstrate many common themes, distinct feature have also been identified, as 

discussed throughoutin this review. Many of these distinctions could reflect the 

intrinsic differences between these two adult stem cell lineages. These include 

findings from many fly germ cell laboratories, such as the different Bam 
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expression patterns, the distinct roles of the JAK-STAT pathway, position and 

function differences of certain organelles (e.g. spectrosome), germline-soma 

interactions at the niche, etc. As their abnormalities are often found upon 

compromising certain epigenetic regulator using genetic mutations or RNAi 

knockdown, which often takes some time for the phenotypes to manifest. It is 

still challenging to know the dynamics of the functions of epigenetic regulators. 

More acute disruption methods especially the reversible ones, such as the Auxin-

inducible degron (AID) technology, combined with high-temporal resolution 

analyses of cellular defects, could greatly facilitate understanding of their 

primary roles.

In summary, our understandings of epigenetic regulation in early-stage germ cells at single-

gene resolution have greatly improved in recent years. Moreover, the advanced techniques 

will pave the way for better understanding of the dynamic epigenetic regulation in the 

Drosophila gonads, at both genome-wide level and individual gene locus, as well as in real-

time with single cell resolution.
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Figure 1: Niches, early-stage germline and somatic gonadal cells in Drosophila male and female 
gonads.
(A) The Drosophila testis is a pair to two coiled tubes, each containing a single stem cell 

niche at the apical tip. The stem cell niche is called the hub (dark blue), which is a cluster of 

10–12 densely packed somatic cells. The germline stem cells (GSCs) (dark green) and the 

cyst stem cells (CySCs) (dark pink) are radially positioned around the hub. There are 10–15 

GSCs arranged around the hub with two CySCs enveloping each GSC. The GSCs undergo 

an asymmetric division to produce a self-renewed daughter GSC and a gonialblast (GB) 

(light green). The GB is displaced from the hub and undergoes 4 rounds of miotic divisions 

with incomplete cytokinesis to create cysts of interconnected germ cells. The differentiating 

germline cysts continue to be encapsulated by two post mitotic cyst cells (light pink). The 

16-spermatogonial cell cyst then undergoes meiosis as spermatocytes to produce 64 

spermatids. (B) The Drosophila ovary consist of 16–20 tubular structures called ovarioles. 

An ovariole consists of a germarium at the apical tip and a linear progression of 
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differentiating egg chambers that produce eggs, located at the base. The germarium is 

comprised of the GSC niche and the proliferating germ cells. The GSC niche includes a 

stack of 8–10 post-mitotic somatic cells called the terminal filament (dark blue) and 5–7 

epithelial cells called the cap cells (light blue) that directly interact with the 2–3 GSCs (dark 

green). Female GSCs divide asymmetrically to produce a self-renewed GSC that stays in 

contact with the cap cells and a posteriorly displaced daughter cell that leaves the niche and 

differentiates into a cystoblast (CB) (light green). The CB then undergoes 4 rounds of 

synchronous mitotic cell divisions with incomplete cytokinesis to create 16 interconnected 

cystocytes. Interspersed between the early germline cells are 4 −6 escort cells (pink) that 

surrounded the GSCs and the dividing CBs. The interconnected germ cell cysts then begin to 

associate with somatic follicle cells. Follicle cells (orange) are derived from two follicle 

stem cells (FSCs) (red) that are located between the escort cell and follicle cell transition 

zone. Once the 16-cell germ cyst is surrounded by follicle cells, it becomes an egg chamber, 

buds off from the germarium, and continues to mature and undergoes meiosis to develop into 

an oocyte and 15 interconnected nurse cells. Adapted from Gleason et al., Genetics 2018.
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Figure 2: Signaling pathways regulating GSC self-renewal and differentiation at niches in 
Drosophila male and female gonads.
(A) In the Drosophila testis, Hub cells secrete the ligand Unpaired (Upd), which activates 

Janus Kinase and Signal Transducer and Activator of Transcription (JAK-STAT) signaling in 

the GSCs and CySCs. In the CySCs, JAK-STAT activation is sufficient for stem cell self-

renewal, while the GSCs are maintained by signaling from both the hub cells and CySCs. 

Activated pStat92E in the CySCs activates expression of zn finger homeodomain 1 (zfh1) 

and chronologically inappropriate morphogenesis (chinmo), which are important for CySC 

self-renewal and identity. Activation of Zfh1 turns on expression of the BMP ligands glass 
bottom boat (gbb) and decapentaplegic (dpp) in the CySCs, which activate BMP signaling in 

the GSCs, important for GSC self-renewal and maintenance. Activation of BMP signaling in 

the GSCs by the hub cells and CySCs also inhibits expression of bag of marbles (bam) to 

prevent differentiation. Activation of pStat92E in the GSCs promotes GSC adhesion to the 

hub. Activation of pStat92E in the CySCs also activates expression of suppressor of cytokine 

signaling at 36E (socs36E), a negative regulator of the JAK-STAT pathway. In addition, EGF 

from the GSCs to the CySCs regulates their abilities to encapsulate germ cells and GSC 

divisions. (B) In the Drosophila ovary, JAK-STAT acts in the cap cells to activate BMP 

ligand, dpp. Dpp/Gbb activates BMP signaling in the GSCs, resulting in phosphorylation of 

Mothers against dpp (pMad) and activated transcription of dads against dpp (dad). pMad and 

its partner Medea translocate to nucleus and repress transcription of bam, inhibiting GSC 

differentiation (Hudson et al., 1998). This repression is relieved once the GSC daughter cell 
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leaves the niche. Brain tumor (Brat) reduces BMP responsiveness in the CB. EGF from the 

CB activates EGF signaling in the neighboring escort cells, where it represses the 

transcription of dally (Liu et al., 2010). This ensures that BMP ligands Dpp/Gbb are 

restricted to the cap cells and BMP activation only occurs in the GSCs. Adapted from 

Matunis et al., Spermatogenesis 2012.
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Figure 3: Epigenetic Regulation of GSC maintenance and differentiation in the male and female 
Drosophila germline.
Chromatin regulators and histone modifying enzymes are placed where they regulate GSC 

maintenance or differentiation in the male (A) and female (B) early germline. Schematic 

drawings of niche and somatic cells regulating GSC maintenance, GSC self-renewal, and 

GSC differentiation.
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