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a b s t r a c t 

People suspected of having COVID-19 need to know quickly if they are infected, so they can receive appropriate 

treatment, self-isolate, and inform those with whom they have been in close contact. Currently, the formal diag- 

nosis of COVID-19 requires a laboratory test (RT-PCR) on samples taken from the nose and throat. The RT-PCR 

test requires specialized equipment and takes at least 24 h to produce a result. Chest imaging has demonstrated 

its valuable role in the development of this lung disease. Fast and accurate diagnosis of COVID-19 is possible 

with the chest X-ray (CXR) and computed tomography (CT) scan images. Our manuscript aims to compare the 

performances of chest imaging techniques in the diagnosis of COVID-19 infection using different convolutional 

neural networks (CNN). To do so, we have tested Resnet-18, InceptionV3, and MobileNetV2, for CT scan and 

CXR images. We found that the ResNet-18 has the best overall precision and sensitivity of 98.5% and 98.6%, 

respectively, the InceptionV3 model has achieved the best overall specificity of 97.4%, and the MobileNetV2 has 

obtained a perfect sensitivity for COVID-19 cases. All these performances have occurred with CT scan images. 
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. Introduction 

SARS-CoV-2 belongs to the coronavirus (CoV) family, a name linked

o the “crown ” formed by certain proteins on the surface of these viruses.

t was first identified in Wuhan, China, in December 2019. Several coro-

aviruses are already known to be capable of infecting humans and

ammals: SARS-CoV responsible for the severe acute respiratory syn-

rome (SARS), and MERS-CoV responsible for Middle East Respiratory

yndrome (MERS). SARS-CoV-2 is the seventh coronavirus pathogenic

o humans. He is responsible for the Covid-19 disease [1] . 

The Covid-2019 pandemic has subjected the world to a state of con-

ainment intending to limit contagion and the loss of lives. So far, 80% of

nfections are mild or asymptomatic, 15% are severe and require oxy-

en therapy, and 5% are critical and require respiratory support [2] .

he most common symptoms of SARS-CoV2 are fever, asthenia, dry

ough, and gastrointestinal symptoms including diarrhea, nausea, vom-

ting, and then anorexia. One in six people is subject to severe forms

f the disease including pneumonia and acute respiratory distress syn-

rome [3] . The person suspected of having a Covid-19 infection needs

o know quickly whether or not they are infected, in order to be well

solated, to receive the appropriate treatment, and to inform the people

ith whom she has been in contact. Often it is necessary to have two

T-PCR tests to confirm a diagnosis, which is time and resources con-

uming [4] . Also, the RT-PCR has high false-negative rates which cause

ometimes COVID-19 patients can be assigned as healthy people [5] ,
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hich has severe consequences. Therefore, a tool that can establish an

arlier diagnosis would help decrease the prevalence of the disease. 

Very similar to SARS and MERS, a wide variety of lung lesions

ave been described for COVID-19 on CT scan and CXR imaging [6] .

he most common CT manifestations and features include frosted glass

pacities (87%), bilateral lesion involvement (80%), peripheral distri-

ution (75%), multilobar involvement (89%), posterior lesion topogra-

hy (80%), and parenchymal condensations (33%) [ 7 , 8 ]. These ground-

lass opacities have often been reported to be rounded, nodular, or with

 crazy-paving pattern. The lower lobes are the most affected and the

iddle lobe is the least affected by this pneumonia. Pure frosted glass

pacities or those associated with condensation were one of the most

requently found patterns [9] . 

Of the full range of imaging techniques available, the most widely

sed to examine patients with COVID-19 are CXR and CT scan [ 10 , 11 ].

hese techniques help the clinicians identifying the effects of COVID-19

n different organs at various stages of the disease. They are used on the

hest and lungs because respiratory symptoms are known to be among

he first signs of COVID-19. 

This study uses artificial intelligence (AI), in particular a deep learn-

ng approach, to build an automated system for mass screening, and

arly diagnosis of COVID-19. To achieve this objective, we have used

he HUST-19 dataset containing 19,685 CT slices [12] , and the COVIDx

ataset comprising 5026 CXR images [13] . These datasets formed three

rchitectures that represent different tiers of complexity: InceptionV3,

esNet-18, and MobileNetV2. This research offers the following contri-
utions: 
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healthy persons. 
• Developing three CNN models for mass screening, and accurate early

diagnosis of COVID-19. 
• Detecting COVID-19 using CT scan and CXR imaging techniques. 
• Providing a detailed performance analysis of the proposed system in

terms of the confusion matrix, precision, sensitivity, specificity, and

F1-score. 
• Comparing the proposed method with the current RT-PCR, and high-

lighting the problems encountered in implementing AI-based models

in real clinical usage. 

. Literature review 

A range of deep learning models has been proposed to address the

OVID-19 epidemic [ 10 , 11 ]. Based on clinical images, these models

ave shown promising results in the detection of COVID-19. Zhao et al.

14] have conducted a study to investigate the relationship between

hest CT imaging and COVID-19 pneumonia. They have used a dataset

ollected from four institutions in Hunan, China. The results have shown

ypical imaging features for confirmed COVID-19 pneumonia cases, that

an help in early screening and tracking the disease. Bernheim et al.

15] have analyzed the chest CTs images of 121 symptomatic coron-

virus patients. The hallmarks of COVID-19 infection as seen on the

T scan images were bilateral and peripheral ground-glass and con-

olidative pulmonary opacities. Zhao et al. [16] have developed an

I-based CT scan image model to diagnose COVID-19, using an open-

ource dataset called COVID-CT, containing 812 CT images; 349 pos-

tive COVID-19, and 463 non-COVID-19 cases. Gozes et al. [17] have

chieved an accuracy of 95%, by a model tested on 157 international

oronavirus patients. The model is used to detect, quantify and track

he evolution of the disease. Yasin et al. [18] have conducted a study

o correlate patients’ age, sex, and outcome with COVID-19 disease evo-

ution and severity using a CXR scoring system. Zheng et al. [19] have

uilt an automatic software deep learning-based system to predict the

OVID-19 infections, using a pre-trained UNet and a 3D deep neural

etwork. Ai et al. [20] and Fang et al. [21] have shown a sensitivity su-

erior to 97% of chest CT images in suggesting COVID-19, compared to

1% of the RT-PCR. Wang et al. [13] have proposed a COVID-NET con-

olutional neural network designed to detect COVID-19 cases from CXR

mages. They also introduced COVIDx, an open-access dataset that con-

ains 13,975 CXR images from 13,870 COVID-19 patients. We have used

he latest update COVIDx V7A from this dataset, by combining COVID-

9 Radiography Database, Actualmed-COVID-chestxray-dataset , -COVID-

hestxray-dataset , and covid-chestxray-dataset [22] , and we have kept an

qual number of observations for the three classes to avoid classification

ias and improved the training performance by k-fold cross-validation

echnique. 

. Methods 

The images are collected from two datasets, HUST-19 for CT scan

mages, and the CXR images from the COVIDx dataset, the total number

f images is 24,711 (19,685 CT scan, and 5026 CXR). The HUST-19

ataset has 5705 non-informative CT (NiCT), 4001 positive CT (pCT),

nd 9979 negative CT (nCT) slices, randomly selected from persons with

nd without COVID-19 pneumonia Figure 1 . 14,765 images are used for

he models’ training, 2460 for the validation, and 2460 for the test, with

 ratio of 75%, 12.5%, and 12.5%, respectively. 

The COVIDx has 5026 CXR images: 1778 CXR COVID-19 patient

mages, 1530 who have no pneumonia (i.e., healthy), and 1718 non-

OVID19 pneumonia patients Figure 2 . The dataset is divided into two

ets: 70% of the data to build the models, and 30% to test them. The

odels are built with a 5-fold cross-validation technique: 70% of the

ataset is divided into 5 folds roughly equal, alternately, 4 folds are

sed for the training, and the remaining one is used as a validation set.

o, each observation is used 4 times in the training, and one time in the

alidation. 
2 
The CT scan test set has 692 positive, 1020 negative, and 748 NiCT

bservations. Whereas the CXR test set consists of 533 COVID-19, 515

iral pneumonia, and 459 healthy persons Figure 3 . 

The main task is to label CXR and CT images into three prede-

ned categories. So, the models learn to classify CT slices as NiCT, pCT,

nd nCT. Or COVID-19, non-COVID-19 pneumonia, healthy persons, in

he case of CXR images. Input images within specific categories are fed

o the networks, and the softmax function is applied to the output to gen-

rate probabilities corresponding to these categories. The architectures

sed in this study belong to three tiers of complexity; InceptionV3 with

8 layers 29.3 million parameters, ResNet-18 with 18 layers deep and

1.7 million parameters, and MobileNetV2 with 53 layers and 3.5 mil-

ion parameters. So, when comparing classification performances of our

odels, their complexity was taken into consideration, thus their ability

o be implemented in mobile devices for real-world clinical practice. 

Based on GoogleNet architecture, InceptionV3 was presented to re-

uce the computational cost by replacing large (5 × 5) and (7 × 7) filters

ith small asymmetric (1 × 5) and (1 × 7) filters, and using (1 × 1) con-

olution before the large filters as bottleneck [22] . This architecture

as inception blocks that are stacked on top of each other, allowing

he network to choose in each block between multiple filters with dif-

erent sizes. In 2015, ResNet introduced the concept of residual units

ith shortcut connections, that skips one or more layers [23] . These

esidual connections improve the efficiency and reduce the effect of

he vanishing gradient problem. The ResNet architecture was developed

ith different numbers of layers: 18, 34, 50, 101… We used ResNet-18

hich represents a good compromise between the complexity and per-

ormance. Then we tried the MobileNetV2 [24] . It is an architecture that

ims to perform well on mobile devices. This model uses depthwise sep-

rable convolution and has inverted residual building blocks, where the

esidual connections are between the bottleneck layers. We trained the

odels with 10 epochs using adam optimizer and a learning rate of (1 ∗ 

 − 3), mini-batch size of 16, L2 regularization was set to (1 ∗ e − 4),

nd we activated shuffling in every epoch. 

. Results and discussions 

The models are evaluated with precision, sensitivity, specificity, and

1-score metrics. This allows us to compare the models’ performances

ithin a dataset, and the effectiveness of the CXR and CT scan tech-

iques in the detection of COVID-19, non-COVID-19 pneumonia, and

ealthy cases 

Table 1 shows the resulted confusion matrix of the InceptionV3

odel. For the CT scan images we have: 

• 669 pCT were correctly classified, and 23 are considered nCT. The

sensitivity of this model in detecting positive COVID-19 cases is

96.7%. 
• As for the 1020 nCT, 1002 were correctly detected, and the remain-

ing 18 were wrongly classified, 3 as pCT and 15 as NiCT cases, re-

sulting in a specificity of 98.2%. 
• And for the 748 NiCT cases, 723 were correctly classified, 20 cases

are considered nCT, and 5 as pCT. 

As for the CXR images classification, the model has achieved: 

• In the case of the 533 COVID-19 cases, 530 were classified as posi-

tive, and 3 were wrongly classified, 2 as normal, and 1 as viral pneu-

monia. So, the model has achieved a sensitivity of 99.4% in detecting

positive COVID-19 cases. 
• Out of 459 healthy persons, 456 persons were correctly classified, 1

person was diagnosed as COVID-19, and 2 were considered as pneu-

monia cases. Thus, the specificity is 99.3%. 
• And for the 515 viral pneumonia cases, 403 were correctly classified,

101 cases as COVID-19, and 11 were considered by the model as
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Fig. 1. CT scan images. 

Fig. 2. CXR images. 

Table 1 

Confusion matrix for InceptionV3 model. 

3 
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Table 2 

Confusion matrix for ResNet-18 model. 

Fig. 3. Test sets for the CXR and CT scan datasets. 
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Table 2 shows the ResNet-18 confusion matrix. The results of CT scan

lassification are: 

• 685 images out of 692 pCT were correctly classified, 4 were consid-

ered as nCT, and 3 as NiCT. The sensitivity resulted is 99%. 
• 999 nCT images were correctly detected, and 21 were wrongly clas-

sified as NiCT cases, meaning the model has achieved a specificity

of 97.9%. 
4 
• As for the 748 NiCT cases, 741 were correctly classified, 5 cases were

diagnosed as nCT, and 2 cases as pCT. 

As for the CXR images classification, ResNet-18 has achieved: 

• 506 COVID-19 cases were classified as positive, 5 cases were diag-

nosed as healthy, and 22 were considered other pneumonia, indicat-

ing a sensitivity of 94.9%. 
• 455 healthy persons were correctly detected, 3 diagnosed positive

and 1 case considered as other pneumonia. So, we have a specificity

of 99.1% using this model 
• For the viral pneumonia cases, 408 were correctly classified, 100

cases as COVID-19, and 7 were considered by the model as healthy

persons. 

MobileNetV2 confusion matrix is illustrated in Table 3 . By classifying

T scan images, we have: 

• All 692 COVID19 positive CT scan images (pCT) were correctly clas-

sified. So, we have perfect sensitivity. 
• As for the 1020 nCT images, 937 were correctly detected, and the

remaining 47 were classified as 67 pCT and 16 NiCT cases. The speci-

ficity achieved is 91.9%. 
• And for the 748 NiCT cases, 731 were correctly classified, 9 cases

are considered nCT, and 8 as pCT. 

And by classifying CXR images, we obtain: 
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Table 3 

Confusion matrix for MobileNetV2 model. 

Table 4 

The overall precision, sensitivity, specificity, and f1-score. 

Precision in% Sensitivity in% Specificity in% F1-score in% 

CT scan CXR CT scan CXR CT scan CXR CT scan CXR 

InceptionV3 97.5 93.4 97.2 92.3 97.4 88.8 97.3 92.8 

ResNet-18 98.5 91.7 98.6 91 97 89.1 98.5 91.4 

MobileNetV3 95.7 88.2 96.5 87.5 91.5 85.4 96 87.8 
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• In the case of the COVID-19 class, 488 were correctly detected, 5

mislabeled as normal, and 22 were diagnosed as other non-covid-19

pneumonia. The sensitivity resulted using this model is 91.6%. 
• 420 healthy CXR images were correctly classified, the remaining 39

are considered as 6 normal, and 33 other pneumonia. Leading to a

specificity of 91.5%. 
• Finally, 409 other viral pneumonia cases were correctly classified,

102 diagnosed as COVID-19, and 4 were identified by the model as

healthy persons. 

To compare models’ performances within a dataset, and show the

XR and CT scan imaging techniques’ effectiveness, we calculated the

verall precision, sensitivity, specificity, and F1-score. The results are

ustrated in Table 4 . 

The highest precision using CXR dataset is 93.4% achieved by Incep-

ionV3, and 98.5% by ResNet-18 using the CT scan dataset. With a low

umber of false positives, these models can correctly label the observa-

ions with the minimum overlapping between classes. As for sensitivity,
5 
he same models have achieved 92.3% and 98.6%, respectively. To cal-

ulate the specificity, we focused on non-COVID-19 true positive and

OVID-19 false-positive, InceptionV3 and ResNet-18 have very close

erformances; for the CT scan dataset, we got 97.4% and 97% advantage

nceptionV3, whereas, for the CXR images, we had 89.1% and 88.8% in

avor of ResNet-18. Finally, we provide the F1-score, a metric that takes

nto account the precision and the sensitivity, ResNet-18 has obtained

he highest F1-score of 98.5%, using the CT scan dataset, while Incep-

ionV3 classifying CXR images has 92.8%. 

For binary COVID-19 non-COVID-19 classification, the specificity re-

ulted from CT scan InceptionV3, ResNet-18, MobileNetV2 is 99.5%,

9.8%, and 95.75%, respectively. Whereas the sensitivity is 96.7%,

9%, and 100%, respectively. ResNet-18 offers the best sensitiv-

ty/specificity compromise. MobileNetV2 model has a perfect sensitiv-

ty but sacrifices the specificity, in real-world usage, where the positive

OVID-19 rate is lower and the resources are limited, having a high

alse alarm rate is time and resources consuming, meaning people with

OVID-19 may not have the proper treatment. 
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These findings outperform saliva sample RT-PCR conducted by Pa-

omsub [25] , where they get a sensitivity, specificity, and a precision of

4.2%, 98.9%, and 88.9%, respectively, and the findings of [26] , where

he authors got a 100% specificity of the diagnostic assay, and the sen-

itivity achieved was 90.7%. Compared to the current RT-PCR method,

ur results are provided quickly and accurately, suggesting that chest

maging could be a reliable method, allowing efficiency in recognizing

nd detecting COVID-19 patients. 

From the confusion matrix, all three models, built by CXR images,

isclassify approximately 20% (100 observations) of viral pneumonia

ases as COVID-19, this consistency in false positive could be due to the

uality of image compression (the COVIDx was not published in stan-

ard DICOM), so the models could not distinguish extracted features for

oth classes from the compressed images. Also, it could be that 100 vi-

al pneumonia observations have close CXR symptoms to COVID-19, so

he models have confused them both. Or there is a bias in the dataset

ince COVIDx is a combination of different datasets collected in com-

letely different environments. This misclassification rises the problem

f implementing CNN models in real clinical usage, where we could en-

ounter a bias in merging multiple datasets with different contrast, reso-

ution, and signal-to-noise ratio. While the results obtained in this study

re encouraging, the occurred issue noted must be addressed before we

ould confidently use deep learning models in clinical routine. 

. Conclusion 

Combining Chest imaging with deep learning models provides an

ccurate and efficient method to detect, quantify, and track the evolu-

ion of the COVID-19 disease. This study has revealed a positive out-

ome distinguishing COVID-19 patients from other pneumonia and neg-

tive cases. The method used is easy to implement by clinicians for mass

creening of the patients. It will yield a faster rate as compared to the

urrently used RT-PCR method. Comparing CT scan and CXR images,

T scan has shown better performances detecting the positive cases us-

ng the same CNN models. This imaging technique offers better contrast

nd creates detailed quality images over CXR, which helps the models

o extract pertinent information from the images. Although the findings

ncourage more chest imaging diagnosis for COVID-19, the downside

s that image quality and merging multiple datasets could lead to poor

lassification performances. 
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