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Abstract

Purpose of review: The purpose of this review is to summarize the evidence supporting a role 

of short chain fatty acids (SCFAs) as messengers facilitating crosstalk between the host and gut 

microbiota and discuss the effects of altered SCFA signaling in obesity and hypertension.

Recent findings: Recent evidence suggests there to be a significant contribution of gut 

microbiota-derived SCFAs to microbe:host communication and host metabolism. SCFA 

production within the intestine modulates intestinal pH, microbial composition, and intestinal 

barrier integrity. SCFA signaling through host receptors, such as PPARγ and GPCRs modulate 

host health and disease physiology. Alterations in SCFA signaling, and downstream effects on 

inflammation are implicated in the development of obesity and hypertension.

Summary: SCFAs are crucial components of the holobiont relationship; in the proper 

environment, they support normal gut, immune, and metabolic function. Dysregulation of 

microbial SCFA signaling affects downstream host metabolism, with implications in obesity and 

hypertension.
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Introduction:

The human gut microbiome has coevolved as a vital determinant of host health, and has 

been linked to multiple diseases, including obesity and hypertension (HTN). Gut microbiota 
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are indispensable to digestion and biosynthesize nutrients essential to host health. 

Microbiota enhance and develop the host immune response, confer resistance to infection, 

and are emerging as key drivers of host metabolism. Yet large gaps remain in our 

understanding of the bidirectional microbiota:host relationship, physiology, and related-

disease etiology. The composition, health, and functionality of the gut microbiota is 

dependent on the host, and in return, the gut microbiota’s functions as an endocrine organ 

can have diverse and clinically significant effects on host health. This bidirectional 

relationship, comprising the holobiont [1], is of great interest for its significance to human 

health and disease.

A consensus definition of a ‘healthy’ gut microbiota remains elusive due to substantial inter- 

and intra-individual variability, with complex interplay of the gut-host macroenvironment. 

Current evidence, primarily derived from observational studies, suggests that characteristics 

of a ‘healthy’ gut microbiota include greater diversity and microbial richness, greater 

abundance and functionality of short-chain fatty acid (SCFA)-producing bacteria, and a 

relatively stable-community of obligate anaerobes in larger abundance as opposed to 

facultative anaerobes [2–6]. Communication between microbiota and their host is facilitated 

by signaling messengers, such as metabolites and small molecules. The SCFAs, acetate, 

propionate, and butyrate, have received particular attention for their role in microbiota:host 

communication, with distinctive effects on both local intestinal and systemic host-

physiology. Within this review we summarize the evidence supporting a role of SCFAs as 

messengers facilitating crosstalk between the host and gut microbiota, and discuss the 

effects of altered SCFA signaling on obesity and hypertension.

Host diet regulates availability of SCFA precursors and exerts selective pressure on 
microbial community composition

There are three primary SCFAs which have been studied for their relevance in human health: 

acetate, propionate, and butyrate. These are present at differing concentrations in the body, 

and are thought to have distinct effects on host metabolism. However, as the specific 

individual and combinatorial effects have not been fully elucidated, and the SCFAs are often 

studied together, we primarily describe mechanisms that have been attributed to SCFAs in 

general. The primary source of SCFAs in humans is gut microbial synthesis from dietary 

precursors, with some SCFAs obtained directly from dietary intake of microbial-fermented 

foods [7] and de novo synthesis by the liver or other metabolic organs [8]. Prebiotics or 

microbe-accessible carbohydrates, including plant-derived oligosaccharides, 

polysaccharides, resistant starch, and inulin, are selectively fermented by commensal SCFA-

producing bacteria (Fig 1.A.a), including those within the Clostridium cluster IV and XIVa, 

and more specifically: Clostridium Leptum, Coprococcus spp., Faecalibacterium prausnitzii, 
Eubacterium spp., Anaerostipes, and Roseburia spp [9,10]. Some bacteria, such as those 

within the Lactobacillus and Bifidobacteria genus, which don’t produce SCFAs themselves, 

contribute to the SCFA pool indirectly via metabolic cross-feeding – in which their 

breakdown of dietary fiber provide the necessary substrate (i.e. oligosaccharides, lactate, and 

acetate) for other SCFA-producing bacteria [9,11]. Diet shapes the gut microbiota by 

selecting for microbes which preferentially digest specific nutrients or dietary substrates. 

Alterations in diet can lead to rapid and significant modifications in gut microbial 

Overby and Ferguson Page 2

Curr Hypertens Rep. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



composition and diversity in as little as 2–3 days [12], though these changes tend to be 

transient with extensive interindividual variability [13–16]. Plant-based diets, rich in 

complex carbohydrates, are associated with increased abundance of SCFA-producing 

bacteria [17–20], while greater intake of saturated fat, animal products, and simple sugars 

associates with an increase in facultative anaerobic bacteria and diminished SCFA 

abundance due to both a reduction in SCFA-producing bacteria and enhanced excretion of 

SCFAs (Fig 1.B.a) [2,12,21–25]. Interestingly, although very-low-carbohydrate diets may 

reduce SCFA-substrate availability, they may contribute to the SCFA-pool and mimic SCFA-

functionality by increasing production of ketones, which can be utilized as a fuel source for 

colonic epithelial cells (CECs) and participate in similar signaling pathways [26]. However, 

diet alone is not a consistent predictor of SCFA production or abundance. The considerable 

interindividual variability observed in the response to dietary interventions may be due to 

differences in gut microbial composition. Individuals with lower microbial richness and 

diversity are shown to have a more robust response to a variety of interventions [16,27,28]. 

Still, some evidence suggests variability in the change in bacterial composition and 

metabolite production in response to dietary intervention, regardless of baseline microbial 

richness and diversity [28–30]. Whether this is related to host genetics, or other factors, is 

unknown, and more research is needed to define the determinants of response to dietary 

interventions. However, baseline gut microbial composition has been successfully used to 

predict a subject’s response to an intervention, establishing feasibility for precision nutrition 

approaches aimed at altering SCFA production [31–36••].

SCFAs are metabolically active, and interact with host signaling at local and systemic 
levels

SCFAs are key players in the holobiont relationship. Their production, absorption, and 

distribution into systemic circulation are critical determinants of their functionality as 

secondary messengers. They are primarily produced in the cecum and ascending colon 

where they alter gut pH, indirectly regulate gastrointestinal (GI)-motility and blood flow, 

influence nutrient bioavailability, foster normal immune-function, and promote GI-health 

and stability [37,38]. SCFAs not utilized for fuel by colonocytes or metabolized by other 

microbes are either absorbed or excreted. Due to their relatively short-carbon-chain length 

(less than 6-carbons), both dietary and gut microbiota derived SCFA do not require 

micellarization to be absorbed nor re-esterification once inside cells [39]. Absorption occurs 

through several mechanisms within the colon depending on the SCFA-hydronation state. 

Protonated-SCFA are absorbed in the colon-epithelium via simple diffusion down a 

chemical gradient; whereas nonionic forms operate under carrier-mediated transport [40]. 

These transporters include monocarboxylate transporters (MCT1 and MCT4) which require 

an ancillary chaperone protein, CD147, for translocation to the cell-surface, and sodium-

coupled-MCTs (SMCT1 and SMCT2) (Fig 1.A.b) [40]. MCT1, SMCT1, and SMCT2 

transporters are expressed on the apical membranes of intestinal epithelium, whereas, MCT1 

and MCT4 are expressed basolaterally (Fig 1.A.b) [40]. Transporter expression is regulated 

by SCFAs and by inflammation, and SCFA uptake may be altered in the setting of obesity 

and certain disease states [6,41–43].
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After absorption, SCFAs are taken up directly into the portal vein en route to the liver, where 

they can be used as an energy source, incorporated into endogenous molecules (i.e. 

cholesterol, fatty acids, glucose), or function as signaling molecules (Fig 1.A.h) [44]. 

Excretion of remaining SCFA from the body occurs in the stool, urine, and breath [44]. As a 

consequence of rapid and efficient splanich-extraction, relatively little SCFAs make it into 

circulation [44–46], which is especially the case for butyrate. After meeting approximately 

70–90% of the CECs’ energy needs, filtration of butyrate by the liver is upwards of 100%, 

with little reaching systemic circulation [44–46]. In spite of this, circulating SCFAs are still 

shown to play some role in cardiometabolic health [47], suggesting concentration- and 

receptor-dependent effects. Furthermore, evidence suggests differential effects of individual 

SCFAs, with potentially opposing or synergistic activity [48]. Additional studies are needed 

to better clarify this relationship.

SCFAs modulate gut barrier health

Butyrate has beneficial effects on various organ-systems, including the brain, skin, immune 

system, and most notably, the GI-tract. Within the gut, butyrate exerts beneficial effects by 

suppressing colonic inflammation, regulating cell cycle, and improving gut-barrier integrity 

(Fig 1.A.) [9]. The structural integrity of the gut and the mucus layers which protect it are 

paramount for maintaining symbiotic homeostasis. Butyrate boosts mucus production via 

epigenetic regulation of mucin (Muc2) expression in goblet cells by either promoting histone 

acetyl transferase (HAT) activity at low concentrations or inhibiting histone deacetylase 

(HDAC) activity at higher concentrations (Fig 1.A.g) [49,50]. Enhanced mucus-production 

within the dense inner-layer along the apical membrane of CECs protects the gut-lining from 

infiltration and exposure to both pathogen and commensal bacteria alike, tamping down the 

innate immune response, and reducing overall inflammatory-tone [15]. Enhanced production 

of mucus within the ‘outer-layer’ provides bacteria with a semi-stable home and for some, a 

glycoprotein substrate for fermentation [51]. The reduction of luminal pH as a byproduct of 

dietary-fiber fermentation and commensal SCFA production adds an additional layer of 

protection from pathogenic bacterial infiltration and colonization [52].

Host G-protein coupled receptors mediate SCFA secondary signaling actions

SCFAs are potent signaling molecules which bind to G-protein coupled receptors (GPCRs), 

including Gpr41 (FFAR3), Gpr43 (FFAR2), Olf78 (OR51E2), Gpr91, Gpr109A (HCAR2), 

and Gpr164 [53–55]. The GPCRs are widely expressed in many cell- and tissue-types and 

demonstrate varying affinity for SCFA-ligand activity [54]. Through HDAC regulation and 

GPCR signaling, SCFAs stimulate the production of anti-inflammatory mediators, enhance 

the differentiation and activation of regulatory T-cells in both the intestines and peripheral 

organs, and can attenuate the migration and subsequent inflammatory response in 

macrophages and neutrophils (Fig 1.A.f) [56]. Interestingly, this pathway may have multi-

generational effects on metabolic disease. Gut microbiota-derived SCFAs cross the 

placental-barrier during pregnancy, and modulate metabolic and sensory neural development 

in murine offspring via Gpr43 and Gpr41, respectively [57••]. This represents an additional 

“hidden” mechanism whereby gut microbial SCFA signaling modulates disease risk and 

may confound our ability to identify consistent and reproducible associations between gut 

microbiota and hosts within a single generation.
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Butyrate - PPARγ signaling maintains healthy intestinal function

In the healthy gut, butyrate and to a lesser extent propionate and acetate, act as ligands 

which bind to and selectively activate peroxisome proliferator-activated receptor gamma 

(PPARγ) [58,59]. This signaling in mature CECs transcriptionally regulates and activates 

mitochondrial β-oxidation (Fig 1.A.d) [59]. Metabolism of both short- and long-chain fatty 

acids enhances oxygen consumption via oxidative phosphorylation. The subsequent 

reduction of oxygen available to freely diffuse across epithelial membranes procures an 

optimal partial pressure of <1% oxygen, maintaining physiological hypoxia [60]. 

Additionally, butyrate-mediated oxygen-depletion in CECs helps to stabilize hypoxia-

inducible factor 1 (HIF1) which in turn upregulates expression of genes critical to gut-

barrier function, such as occludin, zonula occludens, and junctional adhesion molecules (Fig 

1.A.e) [61,62].

Conversely, reduced abundance and bioavailability of butyrate may be a common link in 

many of the disorders of the gut and creates a vicious feed-forward cycle. Whereas normal 

PPARγ-butyrate signaling would downregulate production of pro-inflammatory cytokines 

via inhibition of the nuclear factor-κB pathway (Fig 1.A.f), diminished production or 

impaired uptake of butyrate and inadequate expression or activation of PPARγ induces 

inflammation (Fig 1.B.f) [63–65]. Inflammation and lack of microbially-derived substrate 

drives metabolic reprogramming in CECs, forcing them to pull glucose from the 

bloodstream as their primary fuel source, utilizing glycolysis in lieu of fatty acid β-oxidation 

(Fig 1.B.d) [38]. This switch to anaerobic respiration significantly reduces oxygen 

consumption, prompting loss of luminal hypoxia and creating a selective advantage for 

pathogenic facultative anaerobes, such as Proteobacteria [38]. Within the Proteobacteria 

phylum, the Enterobacteriaceae are a family of rapidly dividing, aerotolerant, and simple-

sugar-oxidizing bacteria including several notorious pathogens, such as E. Coli, Salmonella, 
Enterobacter, Shigella, and Yersinia, of which are well documented to induce pro-

inflammatory responses and are now considered to be a signature of gut microbiota 

dysbiosis [24,64,66]. Left unchecked, these pathogens will exhaust exogenous-nutrient 

availability and turn to metabolizing, and therefore diminishing, the protective mucus layers. 

This allows bacterial interaction with the mucosal barrier, inciting immune-cell activation 

and pro-inflammatory cytokine release (Fig 1.B.e–f). Ultimately, this impairs gut-barrier 

integrity allowing leakage of luminal contents into systemic circulation – further 

exacerbating inflammatory conditions and inducing metabolic endotoxemia (Fig 1.B.f, h) 

[67].

The inflammatory cascade resulting from direct exposure of bacteria to the mucosa or 

intestinal damage stimulates colonic-crypt stem cell proliferation [68]. However, butyrate 

deficiency impairs PPARγ-mediated growth and differentiation; therefore, these 

transitionally suspended cells ascend from the crypts to the luminal surface without fully 

developing into mature colonocytes or goblet cells [38,61].This cell-developmental stunting 

results in reduced PPARγ expression and impaired cellular-functionality in colonocytes as 

well as reduced mucus production by goblet cells – initiating a positive feedback loop for 

further detrimental effects (Fig 1.B.c–g). PPARγ is also a critical mediator of the host-innate 

immune system within the colon, maintaining expression of the major microbial ‘defense’ 
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system, β-defensin [69], and preventing diminution of the anti-inflammatory 

immunoglobulin A in response to acute stress (Fig 1.A.f) [70]. Therefore, activation of 

PPARγ is required to activate aerobic metabolism and maintain luminal hypoxia, properly 

differentiate CECs, and to support immune system and gut-barrier function.

Microbial-derived SCFAs are an important energy source, with relevance for energy 
homeostasis and obesity

The gut microbiome in the obese state is typically characterized by inflammation, dysbiosis, 

and in many reports, a relative increase in Firmicutes to Bacteroidetes [71–75]. However, 

data regarding the Firmicutes to Bacteroidetes ratio are inconsistent, and measurement at the 

phylum level likely vastly over-simplifies the relationship, given the huge variability in 

function at the species and strain level [76,77]. Evidence is currently lacking in humans to 

determine whether this ratio is a driving force for obesity, a reflection of host genetics or 

diet, or caused by disease itself [15]. In support of a causal role for gut microbiota in obesity, 

germ-free mice tend to gain less weight than wild-type mice on the same diet [78], possibly 

from the reduced production of SCFAs, while fecal material transfer (FMT) from obese mice 

and humans result in significant weight gain [3,78,79]. Furthermore, obesity-related 

alterations in the gut microbial composition has been implicated in contributing to weight 

regain greater than baseline during yoyo dieting [35]. SCFAs have significant local and 

systemic effects on host metabolism, energetics, and appetite control, making them a 

compelling factor in the study of obesity pathophysiology [80]. Gut microbiota derived 

SCFAs are primarily used to meet the energy needs of cells lining the mucosa and provide 

an additional source of calories to the host. The ‘in vs out’ theory of energy flux is thus an 

overly simplified model which disregards the metabolic complexities of the holobiont [81]. 

Unlike closed thermodynamic systems, humans are complex and dynamic metabolic 

systems, where gut microbiota contribute up to 10% of the host’s total daily energy needs 

with variable energy extracting efficiency [3]. Whether this enhanced harvesting is a 

function of gut microbiota composition independent of energy intake, or if composition 

changes occur to compensate for excessive energy intake requires further examination.

Beyond providing energy directly, SCFAs stimulate enteroendocrine L-cells to produce 

satiety hormones such as peptide YY (PYY) and glucagon-like peptide (GLP-1) locally (Fig 

1.A.c), while in circulation they epigenetically regulate expression of adipokines such as 

leptin, adiponectin, and resistin (Fig 1.A.h) [82–86]. In addition, SCFAs may indirectly 

contribute to obesity through modulation of intestinal and systemic inflammation, promoting 

or exacerbating cardiometabolic dysfunction (Fig 1.A.h & 1.B.h) [15]. Obese individuals 

have been reported to have a greater abundance of fecal-SCFAs, yet relatively low plasma-

SCFA levels (Fig 1.B.h) [3,6,87,88]. This may suggest defects in absorption into the 

colonocyte and systemic circulation [47]. Alteration of epithelial cell gene expression 

networks within the gut coordinating nutrient metabolism and inflammation, as well as 

SCFA and cytokine-mediated downregulation of SCFA-transporters may at least partially 

explain the reduced uptake and increased fecal excretion (Fig 1.B.b) [43,63]. Thus, in the 

setting of inflammation and obesity, SCFAs produced in the intestine may be less able to 

mediate their systemic-second messenger effects. Interestingly, several human clinical trials 

demonstrated SCFA-supplementation to enhance resting and total energy expenditure as 
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well as augment fat-oxidation (Fig 1.A.h) [89,90]. Although administration location and 

method or SCFA type may have differential effects on metabolic outcome, most studies 

demonstrate beneficial effects of SCFAs in human obesity studies [89–92]. Taken together, 

these data suggest that SCFAs may modulate the development of obesity via caloric 

availability and appetite regulation; however, there may be paradoxical effects in the setting 

of established obesity. The increased fecal levels of gut microbiota-derived SCFAs in obese 

individuals may reflect overall greater substrate availability, reduced absorptive capacity, or 

a state of “SCFA-resistance”. Further studies are needed to resolve these questions.

The unique interplay of the gut microbiota and hypertension

The GI-tract is the gatekeeper for many of the primary modifiable risk factors contributing to 

HTN, including an excess intake of sodium, alcohol, lipids, and simple carbohydrates. 

Conversely, fiber is a well-known cardioprotective-agent shown to lower arterial blood 

pressure [93], which also has direct interaction with the GI-tract. These interactions provide 

a compelling link, bridging the effects of the gut microbiota and HTN. As with several other 

diseases, the mechanisms linking the gut microbiota to HTN include dysbiosis, 

inflammation, intestinal permeability, and reduced production of SCFAs, especially butyrate 

[94–96]. A recent large multi-ethnic cohort describes an association of altered gut microbial 

composition and blood pressure while demonstrating large discrepancies among different 

ethnic groups [97••]. Studies using metabolomic and metagenomic sequencing of stool 

samples from either prehypertensive or hypertensive subjects observed diminished microbial 

diversity and richness, reduced butyrate producers and abundance, and prominent intestinal 

inflammation and permeability versus their normotensive counterparts [94–96]. Similar 

observations were recently made in pregnant women diagnosed with preeclampsia [98•]. 

Broad-spectrum antibiotic use is also implicated in contributing to gut dysbiosis and either 

directly causing or exacerbating the hypertensive response, possibly in an individual or 

genetic-dependent manner [99,100]. The SCFA-paradox seen in obesity is recapitulated in 

recent HTN-studies. SCFA-producing bacteria and plasma-SCFA levels were inversely 

proportional to blood pressure while fecal SCFA content was positively associated with 

blood pressure [97, 101••]. Furthermore, mice humanized with stool samples from 

hypertensive-subjects displayed donor-symptomology, establishing a gut microbiota-

transferrable augmentation in blood pressure, and a possible direct effect in this model [95]. 

Similar studies conducted in rodent-analogous models obtained comparable results [102–

105].

The intestinal microbiome was recently demonstrated to play a role in circadian rhythm 

coordination of water retention and diurnal variation in blood pressure [106,107]. Temporal 

dynamics and sympathetic nervous system activity of the gut microbiota and its metabolites 

have also been implicated in obstructive sleep apnea-induced HTN [102,106–110]. This was 

primarily contributed to gut dysbiosis, inflammation, and permeability [102,106–110] and 

can be exacerbated by excessive dietary salt intake (Fig 1.B.h) [107,109]. In some cases, 

commensal gut bacteria-derived peptides confer anti-inflammatory benefits while also 

modulating host hypertensive hormones, such as angiotensin converting enzyme and renin 

[111]. The neuro-gut-immune axis and its interactions with hormone-related compounds in 

regards to blood pressure regulation has been recently reviewed [112].
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SCFAs have therapeutic potential for hypertension

Normal production and function of SCFAs have been considered beneficial in most diseases, 

including HTN. SCFAs signal through GPCRs in the kidney, heart, gut, immune cells, and 

vasculature to modulate blood pressure primarily through regulation of vascular tone and 

inflammation (Fig 1.A.h) [113–115]. Biologically, this mechanism may be used to enhance 

blood flow and exchange of nutrients after digestion and absorption; however, this has 

alternatively elicited advantageous effects on blood pressure regulation [116]. Prebiotic and 

probiotic supplementation associated with enhanced SCFA-production reduce blood 

pressure in both genetic and diet-induced HTN experimental models [110,117–119]. 

Manipulation of SCFA abundance, production, and function either via modulation of the gut 

microbiota through dietary supplementation with prebiotics, targeted microbiota therapy 

with antibiotics and probiotics, or via direct supplementation with SCFA are promising 

strategies still requiring further study. Experimentally, supplementation with SCFA was 

shown to reduce blood pressure, as demonstrated by using specialized oral formulations 

[94,98,115,117,120,121], as well as intraperitoneal [94] and intragastric infusions [110]. The 

composition of SCFA oral supplementation for therapeutic use must be carefully considered; 

controlled-release systems such as pH-sensitive polymers or coatings, time-release capsules, 

or covalent connections with colonic bacterial-degrading compounds are required to 

promote bioactive signaling and avoid utilization by the host as energy substrates in the 

proximal small intestine [44]. While additional experimental studies and well-designed 

clinical trials are required to obtain a better understanding of SCFA-kinetics in health and 

disease states, SCFAs remain a promising target for future management of hypertension and 

inflammatory cardiometabolic disease.

Bridging the Gap:

The bidirectional relationship of the gut microbiota and human health is still a nascent area 

of research with many questions that remain to be addressed. Although relatively well 

studied, much of the individual SCFAs direct, opposing, synergistic, and off-target effects in 

humans remain largely unknown. Discrepancies in SCFA quantification methodologies, as 

well as large interindividual variation, exacerbate difficulties in cross-study comparability. 

Due to the low relative concentrations and dynamic nature of SCFAs in circulation, it 

remains unclear whether measurement of SCFAs in serum or plasma, as is commonly 

implemented in epidemiological studies, is informative for health status. Fecal or tissue 

measurements may be required to better understand the physiological effects of SCFAs in 

clinical and population studies, but these introduce logistical challenges. Rigorous and 

standardized methodologies are needed to better assess dietary intake, define microbiome 

composition, and quantify individual SCFAs at relevant sites of action. Multidisciplinary 

collaborative approaches may be needed to better understand and predict gut microbiota 

functionality, and move towards mechanistic understanding [122].

Conclusions:

In conclusion, SCFAs are bioactive microbiota-derived signaling molecules, which play 

diverse roles in human health, and represent a key mechanism whereby microbiota 
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communicate with their hosts. Understanding the mechanisms of SCFA signaling, and their 

association with obesity, hypertension and cardiometabolic disease risk is an active research 

area, which promises to shed light on disease pathophysiology and may open new 

therapeutic avenues for disease prevention and treatment.
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FIGURE 1. Gut microbiota-derived short chain fatty acids modulate host health with 
implications in obesity and hypertension
A.

a) Dietary fibers provide substrate for commensal bacteria to produce short chain fatty acids 

(SCFAs), acetate, propionate, and butyrate. Bacterial fermentation of dietary fibers reduces 

luminal pH. b) Protonated-SCFAs can passively diffuse through the membrane, while 

anionic-SCFAs require carrier mediated transport (by MCT1, MCT4, SMCT1 and SMCT2) 

c) SCFAs bind to and activate Gpr41/43, causing secretion of anorectic hormones, peptide 

YY (PYY) and glucagon-like peptide (GLP)-1, d) Within fully differentiated colonocytes, 

SCFAs activate peroxisome proliferator activated receptor gamma (PPARγ) which activates 

mitochondrial fatty acid beta-oxidation (FAβO), reducing luminal availability of oxygen. e) 

Within colonocytes, hypoxic conditions activate hypoxia-inducible factor 1 (HIF1), which 

upregulates expression and function of tight junction proteins, maintaining gut barrier 

integrity. f) Butyrate activation of PPARγ upregulates anti-inflammatory immunoglobulin A 

(IgA) and beta-defensin (β-defensin) expression and inhibits nuclear factor kappa b (NFκB) 

signaling. Butyrate enhances activation of regulatory T-cells and suppresses migration, 

activation, or release of pro-inflammatory mediators from resident immune cells via histone 

deacetylase (HDAC) inhibition and GPCR-signaling. g) Fully differentiated and functional 

goblet cells with sufficient PPARγ expression allows butyrate-mediated histone 

acetyltransferase (HAT) or HDAC-inhibition-mediated upregulation of mucin, or MUC2, 

maintaining a healthy mucus layer. h) SCFAs which are not used in colonocyte metabolic 

processes, are sent to the periphery via portal circulation where they elicit beneficial 

systemic effects.

B.
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a) Excess dietary saturated fat, sodium, and simple sugars provide nutrient advantage for 

facultative anaerobic bacteria. b) Inflammation downregulates SCFA-transporters, reducing 

colonocyte uptake and systemic circulation of SCFA. c) Reduced SCFA signaling and 

activation of PPARγ within intestinal crypts dysregulates normal growth and proper 

differentiation of cells. d) Diminished abundance and uptake of SCFAs limit substrate 

available to fuel colonocytes, and may prompt a metabolic switch from high oxygen-

consuming mitochondrial FAβO to anaerobic glycolysis, forcing cells to pull exogenous 

carbon-sources from blood-supply (i.e. glucose) resulting in lactate production. e) Loss of 

cellular and luminal physiological hypoxia reduces HIF1 expression, resulting in loss of 

tight junction and adhesion molecule expression and function. This allows bacterial 

translocation, triggering the innate immune response. f) Release of endotoxin 

lipopolysaccharide (LPS) induces pro-inflammatory NFκB signaling. g) Immature goblet 

cells lacking proper PPARγ and SCFA-signaling produce less mucin, leading to a reduced 

mucus layer. Nutrient selection, reduced bacterial competition, and increased luminal 

oxygen availability provide a selective advantage for pathogenic overgrowth. h) Local 

intestinal inflammation leads to organ-specific and systemic inflammation, increasing 

cardiometabolic risk.
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