Skip to main content
. 2021 Mar 25;16:19. doi: 10.1186/s13024-021-00443-6

Fig. 3.

Fig. 3

scRNAseq reveals transcriptional skewing in hCD33m microglia. a Unsupervised and iterative machine-learning based clustering using SCCAF of 13,485 cells in the merged analysis of control, hCD33m and hCD33m datasets from Experiment 1. A total of 12 clusters were identified. b Bar graphs showing the absolute number of cells from each isoform present in each cluster (top) and their respective proportions (bottom). c UMAP projection of the individual Control, hCD33M, and hCD33m datasets. d Heatmap demonstrating the cluster based differential expression of key stratifying genes. e Violin plots of genes from cluster 0. Expression levels in hCD33m+ microglia are significantly higher (P < 0.05) than the other two other genotypes for each gene