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Background
System-wide molecular profiling data are often contaminated by noise, which can 
obscure biological signals of interest. Such noise can arise from both endogenous biolog-
ical factors and exogenous technical factors. These factors include reagent and protocol 
variability, researcher technique, passage number effects, stochastic gene expression, and 
cell cycle asynchronicity. This variability can mask underlying biological signals when 
measuring cell state and how it changes under different conditions, e.g., in development 
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[1, 2], cancer progression [3], and adaptive drug resistance [4, 5]. Noise has also been 
implicated in the appearance of false signals and in the non-replicability of some studies 
[6, 7]. Identifying and correcting noisy measurements before analysis is likely to improve 
the detection of subtle biological signals and enable more accurate predictions in sys-
tems biology.

If correlations between related molecular signals are stronger than correlations among 
sources of noise, then distinct but related signals can be combined to denoise biological 
measurements, at the expense of a smaller effective sample size. There are three com-
mon approaches to identifying related signals: gene sets, subspace embedding, and net-
works. In the first category, methods like GSEA [8, 9] use the enrichment of genes within 
curated sets to project the data onto biologically relevant features. While gene sets can 
increase the power to identify differentially regulated processes, they are inherently 
coarse, and can themselves be noisy, incomplete, or biased, and thus may not generalize 
to novel processes. Subspace embedding techniques include PCA [10], clustering [11], 
and neural network autoencoders [12, 13]. These methods can capture novel gene-gene 
correlations, but they rarely incorporate biological information into the feature extrac-
tion, which can limit both interpretability and generalizability.

Molecular profiling data alone does not directly inform which measurements should 
be more or less related to each other. Networks that represent a molecular system’s 
functional structure can provide this missing information. For example, protein-protein 
interaction, metabolic reaction, and gene regulation networks each encode precise and 
biologically meaningful information about which groups of measured protein expression 
levels, metabolite concentrations, or transcript levels are functionally related, and hence 
which measurements should be combined to filter out independent noise. Current net-
work approaches use computationally intensive methods to identify which entities are 
most related, which can limit their utility for large networks and general usability [14, 
15]

Among neighboring elements in the network, the underlying signals may be correlated 
(assortative) or anti-correlated (disassortative) [16]. For example, differential expression 
tends to correlate between neighboring genes in a regulatory network [17]. In contrast, 
inhibitory or compensatory interactions [18, 19] will tend to produce a disassortative 
relationship. Beyond pairs of measurements, networks can also exhibit large-scale mix-
ing patterns among these interactions, such that a network may be more or less assorta-
tive in some regions and disassortative in others [20]. Existing network-based methods 
typically do not exploit this variability, and instead assume globally assortative mixing 
by applying a single filter to the whole network [14, 15, 21]. Mismatching the filter and 
the relationship type, e.g., an assortative filter with anti-correlated measurements, can 
further obscure the underlying biological signals. Here, we describe a general network-
based method that can automatically detect large-scale mixing patterns and account for 
both assortative and disassortative relationships.

These network filters are closely related to kernel-based methods in image process-
ing [22], in which groups of related pixels are transformed together to improve their 
underlying visual signal. Most such techniques leverage an image’s underlying grid 
geometry to choose which pixels have related signals for denoising. Networks lack 
this geometry because a node’s interactions are inherently unordered, whereas the 
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left- and right-hand neighbors of a pixel are clearly defined. This connection between 
network filters and image processing is rich with potentially useful ideas that could 
be adapted to process large-scale biological data. For instance, community detection 
in networks is a clear analog of the common “segmentation” step in image analysis, in 
which pixels are first partitioned into groups that represent the large-scale structure 
of an image, e.g., to separate foreground and background, or a car from the street, and 
then different filters are applied to each segment (module).

We first describe two classes of network filters, which combine measurement values 
from neighboring nodes to calculate an assortative or disassortative denoised value, 
and we describe a general algorithm that decomposes the network into structural 
modules and then automatically applies the most appropriate filter to the nodes and 
connections within each module. When applied to synthetic data where the true val-
ues and network structure are known, these filters substantially reduce errors rela-
tive to a baseline. In addition, we show how applying the wrong filter with respect to 
the underlying biological relationship can lead to increased errors. Finally, to test the 
practical utility of these methods in a more realistic setting, we investigate the impact 
of network filtering on a machine learning task in which we predict changes in human 
protein expression data when a healthy tissue becomes cancerous. Using the network 
filters to denoise the expression data before model training increases the subsequent 
prediction accuracy up to 43% compared to training on unfiltered data.

Results
Network filters

A network filter is specified by a function f [i, x,G] , which takes as input the index 
of the measurement (node) to be denoised, the list of all measurements x , and the 
network structure G among those measurements. The output is the denoised value 
x̂i . Here, we consider only local network filters, which use the measurement values 
of i’s immediate neighbors in G, denoted by the node set νi , which are likely to be 
the most biologically relevant for denoising. Each filter is applied synchronously, so 
that all denoised values are obtained simultaneously to prevent feedback within the 
denoising process.

We note that the idea of a network filter can naturally generalize to exploit informa-
tion, if available, about the sign or strength of interactions in G. This information can 
be encoded by an edge weight wij , which can capture inhibitory or excitatory interac-
tions that are strong or weak. Below, we focus on the case in which this information is 
not available.

When a measurement xi correlates with the values of its neighbors xνi in the net-
work (assortativity), a network filter should adjust xi to be more similar to the meas-
ured values of its neighbors (Fig. 1a). Among the many choices of functions with this 
qualitative behavior, the mean and median have useful mathematical properties, and 
connect with past work [21]. This setting is analogous to a smoothing operation in 
image processing, in which a pixel’s value is replaced by the mean or median of its 
value and its neighbors’ values. In the context of a network, the mean and median 
“smoothing” filters have the forms:
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where wij=1 and ki is the degree of node i, reflecting unweighted interactions, and

When a measurement xi anti-correlates with the values of its neighboring nodes, a net-
work filter should adjust xi to be more distant from its neighbors (Fig. 1a). This setting 
is analogous to enhancing the contrast in an image, e.g., when using the technique of 
unsharp masking to enhance the high frequency signal in an image to make it sharper. In 
the context of a network, this “sharpening” filter has the form:

where α is a constant scaling factor, and x̄ = n−1
∑

i xi is the global mean. Because α is 
a free parameter, its value should be determined de novo for each data set. For the data 
sets in this study, we empirically determined the optimal α = 0.8 using cross validation.

When a system exhibits large-scale mixing patterns of assortative and disassortative 
relationships, a network should first be partitioned into structural modules using a 
community detection algorithm, so that relationships within each module are more 
homogeneous. Let �s = A(G) denote the result of applying a community detection 
algorithm A to network G, and say that Gsi denotes the subgraph of nodes and con-
nections within the module si that contains node i. Given such a modular decomposi-
tion �s , a filter can then be applied to only the subgraph Gsi that contains measurement 
i. As a result, relationships that span the boundary between two modules will have no 
influence on the filtered values (Fig. 1b).

(1)f•,1[i, x,G] =
1

1+ ki



xi +
�

jǫνi

xjwij



,

(2)f•,2[i, x,G] = median[{xi, xνi}].

(3)f◦[i, x,G] = α(xi − f•,1[i, x,G])+ x̄

a b

Fig. 1  Schematics of network filters. Network filters are tools that denoise real-valued biological data using 
a biologically meaningful network to exploit the correlation (“smoothing”) or anti-correlation (“sharpening”) 
among neighboring measurements. a A measurement xi and its neighboring values in network, where the 
color intensity is proportional to the measured value. In applying the smooth filter, xi is adjusted to be more 
similar to its neighbors; in applying the sharp filter, xi is adjusted to be more distant from its neighbors. b 
Measurements can also first be partitioned into groups (dashed line) by detecting structural modules within 
the network, and then different filters applied to different modules, ignoring between-module edges, e.g., if 
the signals are assortative in some communities and disassortative in others
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After partitioning, the same filter can be applied to every community, or sharp and 
smooth filters can be applied to communities with more or less assortative values, 
respectively. We define such a “patchwork filter” as:

where rsi is the standard assortativity coefficient calculated over observed values within 
community si [16]. While any community detection algorithm can be used for A , here 
we use methods from three classes of algorithms: modularity maximization [23], spec-
tral partitioning [24], and statistical inference. For community detection by statistical 
inference, we use the degree-corrected stochastic block model or DC-SBM [25] or the 
“metadata-aware” version of DC-SBM [26], which are considered state-of-the-art meth-
ods [27].

Tests using synthetic data

We evaluated the performance of these network filters in two controlled experiments 
with either non-modular or modular synthetic networks, and varying structures and 
levels of noise. Also, we compare the performance of network filters to other network-
based denoising methods that combine values of nodes weighted by a diffusion matrix 
[14, 15].

In the first experiment, we generated simple random graphs with heavy-tailed degree 
distributions (see “Methods” section) and assigned each node a value drawn from a 
Normal distribution with mean µ = 100 and standard deviation σ = 10 . These values 
were drawn in such a way that the assortativity coefficient of the network ranged from 
r ∈ [−0.8, 0.8] (see “Methods” section). As a result, connected values ranged from being 
highly anticorrelated to highly correlated. To simulate independent measurement noise, 
we permuted the values among a uniformly random 25% of nodes, and then denoised 
these “corrupted” values. We find qualitatively similar results for other choices of the 
fraction permuted. Results report the mean absolute error (MAE) of a denoised value, 
averaged over 5000 replications.

Without a filter, the average error of a “denoised” value is independent of the under-
lying correlation (assortativity) among connected values, because this nearby informa-
tion is left unexploited (Fig.  2a). In contrast, applying a network filter to denoise the 
corrupted values can substantially improve their accuracy, depending on how strongly 
coupled a measurement’s true value is with its neighbors’, and what filter is applied to 
recover that information. For the particular parameters of this experiment, filtering 
can reduce the error by 37–50% over no filter, and by roughly 20% even in the case of 
uncorrelated signals ( r = 0 ), due to a regression to the mean effect. Error reductions are 
largest when a network “smoothing” filter is applied to strongly assortative signals, and 
when a network “sharpening” filter is applied to strongly disassortative signals. That is, 
denoising works best when the underlying signal structure is matched with the assump-
tions of the filter.

When the wrong filter is applied, however, error rates can increase relative to not 
filtering. In such a case, the filter creates more errors in the data than it corrects. On 
the other hand, this “mismatch” penalty only degrades the overall accuracy at very high 

(4)f [i, x,Gsi ] =

{

f◦[i, x,Gsi ], if rsi < 0
f•,1[i, x,Gsi ], if rsi ≥ 0

,
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Fig. 2  Filter performance on synthetic networks. Network filter tests on synthetic graphs with varying 
structures and known noise. The Mean Absolute Error (MAE) of a network filters, b Laplacian exponential 
diffusion kernel, and c netSmooth on the permuted nodes as a function of the assortativty coefficient of 5000 
instances of noisy non-modular graphs. The smooth filters (mean and median) perform best on assortative 
data ( r > 0 ), while the sharp filter is optimal for disassortative data ( r < 0 ). When data are neither assortative 
nor disassortative ( r ≈ 0 ), netSmooth and Laplacian exponential kernels perform best. The MAE of d network 
filters, e Laplacian exponential diffusion kernel, and f netSmooth on the permuted nodes as a function of the 
fraction of communities with assortative data values for 100 instances of noisy modular graphs. Each network 
instance has 5 communities and we vary how many communities have assortative versus disassortative data 
values with a moderate assortativity coefficient |r| ∈ [0.4, 0.7] . The shaded areas indicate 99% bootstrapped 
confidence intervals
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levels of correlation (anti-correlation) among the signals, where its magnitude exceeds 
the natural benefits of filtering at all (Fig.  2a). When the underlying correlations are 
moderate ( |r| < 0.4 ), the average benefits of network filtering will tend to outweigh the 
average error induced applying the wrong filter.

We also applied two other network methods to these non-modular synthetic graphs. 
These methods denoise data by combining node values weighted by a diffusion kernel. In 
the method called netSmooth [14], every node is weighted by a personalized PageRank 
random walk vector [28], which are linearly combined to create a denoised value. The 
second method is conceptually similar, but uses a graph Laplacian exponential diffusion 
kernel to weight nodes before linearly combining them to create the new denoised value 
[15]. Both methods have an adjustable parameter that determines the smoothness of the 
resulting denoised values. For greater values of this smoothing parameter, the methods 
place less weight on the node’s original noisy value and more weight on distant nodes.

We applied both methods to the same synthetic random graphs as the network filters, 
while varying the smoothing parameters between low smoothing (parameter = 0.1), and 
high smoothing (parameter = 0.9). The Laplacian exponential kernel (Fig. 2b) and netS-
mooth (Fig. 2c) decrease the error of the noisy data as the assortativity increases. Fur-
thermore, both methods show lower error as the smoothing parameter increases. These 
diffusion-based methods perform better than the smoothing network filters at either 
highly dissassortative or weakly assortative values. Since these methods will typically use 
a larger number of node’s values to denoise, their regression to the mean effect tends to 
be more accurate than the more localized smoothing network filters. However, when a 
node’s value becomes more correlated with its neighbors’ values, the smoothing network 
filters decrease the noise more than the diffusion-based methods. And while the diffu-
sion based methods work better than the smoothing filters on disassortative data, the 
sharp filter is the best performing method for weakly to strongly disassortative data.

These tests assume that the network structure itself is not noisy. However, in real 
biological networks, there can be both missing and spurious edges [29]. We tested the 
robustness of network filters to noise in network structure. After creating a synthetic 
graph and assigning data to nodes, we add different levels of noise by replacing true 
edges with new edges between nodes chosen uniformly at random [30]. Thus, this pro-
cess simulates both cases where the network is missing edges and contains false edges. 
We find that a noisy network decreases the performance of the mean filter (Additional 
file 1: Fig. S1A) and median filter (Additional file 1: Fig. S1B) on graphs with assorta-
tive data (r > 0) , and the sharp filter on graphs with disassortative data (r < 0) (Addi-
tional file 1: Fig. S1C). However, the network filters still substantially reduce the error 
compared to the no-filter baseline. When the network is very noisy (90% rewired edges), 
applying a filter reduces the error compared to the no-filter baseline. This pattern is due 
to a regression to the mean effect, since rewiring the network effectively shrinks the 
assortativity coefficient closer to zero.

In the second experiment, we again generated simple random graphs with heavy-
tailed degree distributions, but now also with modular structure, which better captures 
the structure of empirical biological networks (see “Methods” section). These modules 
denote groups of nodes that connect to other groups in statistically similar ways. For 
instance, protein interaction networks can be decomposed into groups with similar 
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biological function, and these groups can have distinct types or levels of signal assor-
tativity [20]. In this situation, applying a single filter to all parts of the network could 
introduce bias in the denoised values, by pooling nearby measurements indiscriminately, 
compared to filtering modules independently.

Here, we plant κ = 5 modules in the same kind of synthetic network as our first 
experiment, set each module to have a different mean value, and then vary the fraction 
of modules that have a positive assortativity coefficient |r| ∈ [0.4, 0.7] versus a nega-
tive coefficient (see “Methods” section). This kind of signal heterogeneity across mod-
ules mitigates the denoising benefits of a simple regression to the mean, and provides 
a harder test for denoising methods. Given these choices, we generated values within a 
module, and simulated measurement noise as in the previous experiment (see “Meth-
ods” section). In addition to the previous filters, we also apply the “patchwork” filter in 
this experiment.

As before, the average error of a denoised value with no filter provides a consistent 
baseline against which we may assess improvements from filtering (Fig. 2d). And simi-
larly, the error for both the smooth and median filters falls steadily as the fraction of 
modules with assortative signals increases. For the particular parameters of this experi-
ment, the median filter performs roughly 20% better than the mean filter, reflecting the 
median’s well-known robustness to outliers, which arise here from the planted signal 
heterogeneity.

The global sharp filter works poorly for all ratios when applied uniformly across the 
whole network (Additional file  1: Fig.  S2). Because each module has a distinct mean 
value, the global sharp filter generates errors by assuming the global mean is a good rep-
resentation of the whole network.

In contrast, the patchwork filter with different community detection algorithms 
exhibits less dynamic range in its error (Fig. 2d). When paired with the DC-SBM, it is 
substantially more accurate than any other filter across different degrees of modu-
lar assortativity. For the particular parameters of this experiment, the patchwork filter 
paired with the DC-SBM reduces the mean error by 30–41% compared to no filtering 
and by 3–36% compared to median or mean filtering. Only when all of the modules are 
assortative does the median filter come close to the DC-SBM patchwork filter’s accu-
racy. This advantage arises because the patchwork filter avoids applying the same filter 
to different types of underlying signals, if the structure of those signals correlates with 
the structure of the network (as it does here). That is, applying a single filter to a mod-
ular network can introduce errors when denoising, if the local mixing patterns across 
modules are heterogeneous. Pairing a community detection algorithm with network fil-
ters can avoid this problem by identifying large groups of nodes that should be filtered 
together, in much the same way that different image filters can be applied after first seg-
menting an image into distinct regions.

However, for the modularity maximization and spectral partitioning algorithms, the 
patchwork filter does not perform as well as when paired with the DC-SBM because 
the algorithms do not partition the network as closely to the true community structure. 
Thus, the patchwork filter uses measurements from outside a single community more 
often with these algorithms. Despite imperfect partitioning, the patchwork filter paired 
with modularity and spectral partitioning algorithms performs 14–28% better than the 
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mean filter across all levels of modular assortativity. The median filter outperforms the 
spectral patchwork (9%) and modularity patchwork (15%) at the highest level of modu-
lar assortativity, but the patchwork filter still outperforms, or matches the median filter 
across the rest of the levels of modular assortativity.

We also applied the diffusion-based methods to these synthetic modular networks. 
The error for both the Laplacian exponential kernel (Fig.  2e) and netSmooth (Fig.  2f ) 
only slightly decreases as the fraction of modules with assortative signals increases. In 
contrast to the non-modular case, increasing the smoothing parameter for both methods 
increases the error across all settings. This loss of accuracy occurs because increasing the 
smoothing parameter places greater weight on more distant nodes which are more likely 
to be drawn form a different distribution. Hence, the diffusion kernels are more likely to 
combine values from nodes from different communities leading to a higher error rate.

Denoising protein expression levels in cancer

To evaluate the utility of network filters for denoising biological data in realistic settings, 
we construct a machine learning task in which we predict the precise changes in human 
protein expression levels when a healthy tissue becomes cancerous (see “Methods” sec-
tion). This task has potential applications to detecting pre-cancerous lesions [31, 32]. 
We then quantify the improvement in out-of-sample prediction accuracy when using a 
network filter to denoise the input expression data before model training, compared to 
training on unfiltered data.

For this experiment, protein expression data are drawn from the Human Protein Atlas 
(HPA) [33], which provides large-scale immunohistochemistry (IHC) measurements for 
over 12,000 human proteins in 20 tissues, each in both healthy and cancerous states. 
Antibody based methods like IHC are known to be noisy and prone to variation from 
uncontrolled experimental parameters [34], which makes this data set a realistic example 
of noisy molecular profiling data. A standard principal component analysis (PCA) of the 
raw HPA expression data reveals that the first component correlates with variations in 
tissue type, while the second correlates with differences between tissue state (healthy vs. 
cancerous) (Fig. 3a). Some tissues, however, change more than others, and the changes 
are not always in the same direction. Hence, predicting the precise changes represents a 
useful and non-trivial machine learning task that network filtering may improve.

For the network filters and diffusion-based methods, we use a comprehensive map of 
the human protein-protein interaction network (PPIN) [35], which combines data from 
several interactome databases and is curated for biological interactions with high levels 
of evidence. While this network represents a broad collection of authoritative interac-
tome data, the completeness of the human PPIN is still uncertain [29], and we do not 
regard this network as itself noise-free. Taking the intersection of proteins contained 
in both expression data and interaction network (see “Methods” section) yields data on 
n = 8199 proteins in a network with m = 37,607 edges.

In the machine learning task, we perform a K-nearest neighbor regression on an 
embedded representation of the protein expression data to learn how expression 
levels change with tissue state (see “Methods” section). We evaluate the trained 
model via the MAE between the predicted and the actual changes in protein expres-
sion under leave-one-out cross validation (in which we train on 19 tissue pairs, and 
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predict on the 20th) with or without denoising the expression data with a network 
filter or diffusion-based method prior to model training. Because the number K is 
a free parameter that controls the complexity of the learned model, we evaluate the 
robustness of our results by systematically varying K. For the patchwork filter, we par-
titioned the graph into 10 modules using the DC-SBM [25] or spectral algorithm [24], 
while the modularity maximization algorithm [23] automatically chooses the number 
of modules. Then, we apply the mean filter within each module. In this data, most 
measured values are weakly assortative across protein interaction edges, and only a 
few detected modules exhibit any disassortative signal, and even then their internal r 
is relatively close to zero (Additional file 1: Fig. S3). In this situation, the smooth filter 
typically outperforms the sharp filter (Fig. 2a).

We used the method proposed by Ronen and Akalin to optimize the smooth-
ing parameter for the diffusion based methods by maximizing the entropy of points 
embedded in a 2-dimensional PCA space [14]. Since the distributions of the healthy 
tissue and delta vector data are quite different, we optimized the smoothing param-
eters of each individually.

Across model complexities, we find that denoising before model training using any 
type of network filter or diffusion-based method provides a substantial reduction in pre-
diction error relative to training on unfiltered data (Fig. 3b, Additional file 1: Fig. S4). The 
median filter and netSmooth have very similar performance with around 22% improve-
ment in MAE from no filter. The Laplacian exponential diffusion kernel, patchwork filter 

Cancerous Tissue

Healthy Tissue

-20

0

20

-60 -30 0 30 60
PC1 (23.8% Variance Explained)

P
C
2

(1
1.
1%

Va
ria

nc
e

E
xp

la
in
ed

)

No Filter
Mean Filter
Median Filter

Patchwork Filter, Spectral
Laplace Exponential
netSmooth

0.3

0.4

0.5

0.6

1 2 3 4 5 6

# of K-Nearest Neighbors

M
ea

n
A
bs

ol
ut
e
E
rr
or

(M
A
E
)

breast

normal-carcinoid

cervixcolorectal

endometrium

glia

head.and.neck liver

lung

lymph

melanocyte

ovary

pancreas

prostate

kidney

skin

stomach
testes

thyroid

urinary

a b

Fig. 3  Denoising to predict protein expression changes in healthy and cancerous tissues. Tests of the 
network filters on a cancer protein expression prediction task. In this test, we predict the protein expression 
changes that occur when a healthy tissue becomes cancerous, quantified by the out-of-sample prediction 
accuracy with and without using network filters to preprocess the data before training. a The first two 
principal components of immunohistochemistry data of healthy and cancerous tissues in the Human Protein 
Atlas. Arrows connect a healthy tissue (blue) to the corresponding cancer (red). The first component captures 
variations across tissues, while the second captures variation in state (healthy vs. cancerous). Predicting 
the precise changes between healthy and cancerous tissues is a non-trivial task. Therefore, we perform a 
K-Nearest Neighbors regression on the HPA data, with and without preprocessing with network filters. We 
evaluate the model by leave-one-out cross validation, and calculating the MAE of the predicted and actual 
data values for the left out healthy-cancerous pair. b All network filters and diffusion methods improve 
the MAE compared to the no-filter baseline. We compare this across different choices of K, as it is a free 
parameter. The shaded areas represent 95% bootstrapped confidence intervals
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paired with spectral community detection, and mean network filters have the lowest 
MAE, improving upon the raw data by 32%, 37%, and 43%, respectively.

Error rates tend to decrease with greater model complexity K, suggesting that more 
complex models are better able to capture variations in the precise expression level 
changes between tissue states. This decrease in error also occurs without first filtering 
the expression data. However, the improvement in prediction accuracy from increas-
ing the model complexity without filtering is modest (5.2% at K = 6 ) compared to the 
improvement from first applying the best network filter (42% at K = 1 , and 43% at 
K = 6).

We note that in this real-world setting, the patchwork filter, which first partitions 
the protein interaction network into protein groups, performs better with the spectral 
or modularity maximization algorithms than with the DC-SBM. The patchwork filter 
paired with these algorithms performed very well, but the mean filter still performed 
better than them. This behavior suggests that the partitions produced by the community 
detection algorithms did not correlate sufficiently strongly with the underlying variation 
in biological signals to correctly localize the most relevant adjacent measurements, in 
contrast to our controlled experiments (Fig. 2d). Developing community detection algo-
rithms that choose more biologically relevant partitions may be a useful direction of 
future work.

Discussion
Large data sets of biological signals, such as system-wide measurements of molecular 
concentrations, are often noisy. However, these measurements are not fully independent 
because they reflect the dynamics of a single interconnected system. Using a network 
to represent the underlying biological relationships among a set of measurements, we 
can leverage the size of these data sets to systematically denoise many measurements at 
once, improving the data’s utility for understanding the structure and dynamics of com-
plex biological systems or making accurate predictions in systems biology.

Experiments using synthetic data with realistic biological network structures and a 
variety of underlying signals indicates that network filters can substantially reduce noise 
in large biological data sets across a broad range of circumstances (Fig. 2a, d, Additional 
file 1: Fig. S1). The greatest benefit is obtained when the type of filter is matched to the 
underlying relationship among the signals, e.g., smoothing for assortative signals (cor-
relation) and sharpening for disassortative signals (anti-correlation). However, for mod-
est levels of correlation, even the wrong kind of filter yields some benefit because of a 
regression to the mean effect, in which combining several related signals filters out more 
noise than it introduces through bias. When signal types are heterogeneous across the 
network, so that the strength or direction of the correlation differs in different parts of 
the network, a “patchwork” filter often performs better. In this approach, we first par-
tition the network into smaller, more homogeneous modules (groups of interrelated 
measurements) and then apply filters independently to the measurements now localized 
within each module (Fig. 2d).

In a more realistic setting, in which we train a machine learning algorithm to predict 
changes in human protein expression levels when healthy tissue becomes cancerous, 
applying a network filter based on a high-quality protein interaction network before 
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model training substantially improves prediction accuracy, compared to training on 
unfiltered data (Fig. 3b). In this experiment, the protein interaction network itself is not 
noise-free [29], indicating that filtering using an imperfect network can be better than 
not filtering at all. Our experiment on rewiring network edges further supports that net-
work filters still work well on noisy network structures (Additional file 1: Fig. S1).

In each experiment, we compared our network filters to techniques relying on network 
diffusion algorithms to weight the nodes before combining them. Both netSmooth and 
the Laplacian exponential diffusion kernel have similar characteristics to the smooth-
ing network filters. In the non-modular synthetic graphs, they perform better with more 
assortative underlying data. However, on modular graphs with heterogeneous data val-
ues, the performance only slightly increases as more communities have assortative data 
values, and decreases when communities have disassortative values.

We find an apparent trade-off between the size of the local area of nodes used to 
denoise a value and the range of values that can be recovered. The diffusion-based 
techniques outperform local smoothing network filters when there is no correlation or 
anti-correlation between neighboring values. This improvement is caused by a larger 
regression to the mean effect from using many more neighbors to denoise any given 
value. While this effect is beneficial in the experiment with non-modular synthetic 
graphs, it strongly hinders their performance on modular graphs with heterogenous 
data values because the diffusion-based techniques tend to use values outside their com-
munity, which are drawn from different underlying distributions. Furthermore, increas-
ing the smoothing parameter increases the weight of values outside of the community, 
strongly deteriorating their performance. Thus, regression to the mean is not beneficial 
in this experiment since each community has a different distribution of data values. On 
the other hand, the mean and median filters are more localized and hence make fewer 
errors due to combining neighbors’ values from different communities.

Network filters are ultimately systems-level tools applied to a group of related bio-
logical measurements to reduce the overall noise in the system of measurements. On 
balance, applying network filters reduces the noise in a system of measurements, as evi-
denced by our tests on synthetic and real datasets. However, there is no guarantee that 
every individual node’s measurement is less noisy after applying a network filter. Fur-
thermore, network filters increase the correlation (or anti-correlation) between the set 
of denoised values, which reduces the effective sample size. Thus, narrowing the focus to 
individual nodes after filtering the whole dataset is not the intended use case of network 
filters. Network filters have the greatest potential for answering questions that take the 
dataset as a whole, like our machine learning example, rather than considering data of 
single nodes, such as differential gene expression analysis. Such problems will require 
more specialized tools specifically suited to the input data.

Network filters could be useful for datasets beyond the ones we describe here, as they 
only require that a network explains the causal structure of a system of measurements. 
But some input data may not benefit in its raw form by using network filters particu-
larly if it does not make sense to average together a set of the raw values. For example, 
in the IHC data from the HPA, each protein is on the same scale of none, low, medium, 
or high expression level which we converted to a numeric value between zero to three. 
Since the values of each protein are on the same scale, averaging them together in the 
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smooth filter is reasonable and will produce a value that has shifted to look more like its 
neighbor nodes. However, other types of data such as intensities from mass spectrom-
etry based proteomics or raw read counts from RNA-seq can have wildly different scales 
between proteins and transcripts, which is inherent in the measurement platform. Tak-
ing the average of these measurements could create nonsensical values that are largely 
different from the raw values, and thus may not denoise the data very well. In these 
cases, transformations of the raw data, like z-score standardization of a node’s values 
across different samples, may be more appropriate.

There are a number of potentially valuable directions for future work on network fil-
ters, which may improve their error rates or adapt them to more complicated settings or 
tasks. Techniques from image processing, both simple and advanced, represent a par-
ticularly promising direction to explore [36–38]. For instance, here, we only considered 
the network filters combine measurements associated with directly adjacent nodes. As 
a result, the denoised values associated with low degree nodes in the network derive 
from a relatively smaller number of measurements, and hence are likely to have larger 
residual noise than will higher degree nodes. Modifying the network filter for low degree 
nodes to look beyond nearest neighbors, e.g., to ensure a minimum number of pooled 
measurements per node, may provide better guarantees on the accuracy of the denoised 
value. An example of this type of technique in image processing include the Gaussian 
filter [39].

Image segmentation, in which an image is first partitioned into visually distinct pieces, 
e.g., separating the foreground from the background, is a common preprocessing step in 
image analysis. The patchwork filter considered here is a simple adaptation of this idea, 
but it relies on off-the-shelf community detection algorithms to partition the nodes, 
considers different modules independently, and ignores connections that run between 
modules. While this approach should retain the most informative relationships among 
the measurements it also serves to reduce the degrees of many nodes, which may lessen 
the benefits of filtering, as described above. Furthermore, the patchwork filter will not 
work well on networks with disassortative community structure where nodes in the 
same community tend to not form edges between each other. In such cases, the patch-
work filter would significantly reduce the degree of all nodes and limit the potential for 
network filters to denoise their data. Thus, the patchwork filter may perform best with 
community detection algorithms that return assortative community structures and sever 
the least number of edges within communities.

Developing filters that utilize the edges between modules could mitigate the induced 
low-degree effects that come from applying a patchwork filter to account for signal het-
erogeneity in the system. Such between-module edges should likely be considered sepa-
rately from within-module edges, e.g., by adjusting their weights wij to more accurately 
capture the character of the particular signal relationship between the modules contain-
ing nodes i and j.

The benefits of a patchwork filter necessarily depends on how closely the network 
partition correlates with the underlying biological structure of the system. Off-the-shelf 
community detection algorithms may not always provide such partitions [40]. While 
the DC-SBM was able to recover partitions that were good for denoising in the syn-
thetic data task, it did not perform as well as the modularity maximization and spectral 
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algorithms on the real world data example. Since the assortativity coefficients for the 
Human Protein Atlas range from 0 to 0.1, the benefit is dominated by the regression to 
the mean effect, which does better on higher degree nodes to reduce the noise. Thus, 
the community detection method that finds partitions optimal for denoising may dif-
fer network to network [27]. Trying a few different community detection methods like 
we did here should aid in finding network partitions that best correlate with the sys-
tem’s underlying structure. In some settings, developing application-specific partitioning 
algorithms, or algorithms that can exploit biologically meaningful node attributes [26], 
may improve the behavior of a patchwork filter. For data sets where the data is relatively 
homogenous, a smoothing or sharpening filter applied to the network as a whole may 
provide more benefits than the patchwork filter.

Finally, the network filters defined here make few specific assumptions about the 
underlying noise-generating process itself. In specific applications, much more may be 
known about the direction, magnitude, and clustering of errors across large-scale meas-
urements. For instance, in molecular profiling data, endogenous biological factors like 
cell cycle effects likely induce distinct noise patterns compared to exogenous technical 
factors like sample preparation or instrument variation. Developing more application 
specific error models that could be combined with network filters may provide more 
powerful denoising techniques than the general filters described here.

Conclusion
Network filters are a flexible tool and can exploit a variety of network data, including 
networks of molecular binding interactions. Network filters can be extended to exploit 
information about the sign or strength of interactions or to allow the type of interaction 
to vary across different modules within the network. These filters can also be applied to 
networks of any size, ranging from local signaling pathways to entire protein interaction 
networks. In fact, any network that correlates with the underlying causal structure of a 
set of measured variables could potentially be used as a filter. By exploiting these under-
lying relationships, a network filter pools correlated information, which mitigates inde-
pendent noise, in much the same way that image processing techniques use information 
from nearby pixels to denoise an image. Overall, our study demonstrates that network 
filters have the potential to improve the analysis of system-level biological data.

Methods
Synthetic data with known noise and structure

In the first experiment, we generate simple non-modular random graphs using the 
Chung-Lu (CL) model [41–43] with n = 100 nodes and a degree distribution that, in 
expectation, follows a power law distribution Pr(k) ∝ k−α with parameter α = 3 for 
k ≥ 1 . If the generated degree sequence included a node with degree k > 17 , a new 
degree sequence was sampled. This choice ensured that no star-like subgraphs were cre-
ated. In our analysis, only nodes in the largest connected component were included. This 
choice mitigates the bias experienced by low degree nodes, which are the most likely 
nodes to exist outside the largest component.

For each CL synthetic network, we generate node values using the procedure described 
below. We vary the assortativity coefficient r ∈ [−0.8, 0.8] while drawing values from a 
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Normal distribution with mean and variance µ = σ 2 = 100 . We simulate measurement 
noise by taking a random permutation of a uniformly random 25% of the node values. 
We then apply each of the networks filters (mean, median, sharp) to these noisy val-
ues, and calculate the mean absolute error (MAE) of the original and denoised values. 
We also apply netSmooth and Laplacian exponential kernel methods varying smoothing 
parameter values to this data, and calculate the MAE of original and denoised values. 
Results are averaged over 5000 repetitions of this process.

To create noisy non-modular networks, we performed a random rewiring procedure 
previously described [30]. After generating a non-modular random graph using the CL 
model and generating metadata, we select a given proportion of edges to remove from 
the graph. Then, we placed the same number of new edges between any two nodes cho-
sen uniformly at random, while ensuring that there were no multi-edges in the graph. 
Then the filters were applied to the noisy network as normal.

In the second experiment, we generate simple modular random graphs using the 
degree-corrected stochastic block model (DC-SBM) [25], with κ = 5 communities of 
nr = 100 nodes each ( n = 500 nodes total), and the same degree distribution as the 
non-modular case. The network’s modular structure is specified using the standard 
“planted partition” model [25], in which the community mixing matrix ωrs is given by a 
linear combination of a perfectly modular graph and a random graph, and has the form 
ωrs = �ω

planted
rs + (1− �)ωrandom

rs  , with � = 0.85.
For each DC-SBM network, we generate node values with the following properties: 

(i) the distribution of values within each module are drawn from a module-specific Nor-
mal distribution with mean µ = {110, 80, 60, 40, 20} and variance σ 2 = 25 , (ii) κ ′ ∈ [0, 5] 
communities are assigned to have negative assorativity coefficients, and (iii) the within-
community assortativity coefficients are chosen uniformly at random on the interval 
|r| ∈ [0.4, 0.7] . These choices construct a hard test in which a filter’s accuracy is effectively 
penalized if it uses nodes outside a given community to denoise a particular value. For 
the patchwork filter, we partition the network using three different classes of community 
detection algorithms. The “metadata-aware” DC-SBM [26] and spectral algorithm [24] 
partitioned the graph in κ̂ = 5 communities. Modularity maximization partitioned the 
graph into the number of clusters that maximizes the modularity function [23]. Noise is 
induced and accuracy is assessed as in the non-modular case, except that the nodes are 
randomly permuted within each module rather than the whole network.

Generating synthetic correlated measurements

We generate node values with a specified assortativity coefficient r∗ , for a specified adja-
cency matrix A, using Markov chain Monte Carlo (MCMC). The assortativity coefficient 
r is defined as

where ki is the degree of node i, xi is the value associated with node i, 2m =
∑

ij Aij is 
twice the number of edges in the network, Aij is the entry in the adjacency matrix for 
nodes i and j, and δij is the Kronecker delta function.

r =

∑

ij

(

Aij − kikj/2m
)

xixj
∑

ij

(

kiδij − kikj/2m
)

xixj
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Given a network A, a desired assortativity coefficient r∗ , and a node value distribution 
Pr(x) , we generate a set of node values as follows. 

1	 Assign each node a value drawn iid from Pr(x).
2	 Calculate the current assortativity coefficient r0.
3	 Set t = 1.
4	 While the difference between the desired and current assortativity coefficient 

� = |rt − r∗| > β , a specified tolerance, do:

•	 Pick a node i uniformly at random and assign it a new value x′i drawn iid from 
Pr(x).

•	 Calculate the corresponding assortativity coefficient rt and difference 
�′ = |rt − r∗|.

•	 If the new value does not improve the assortativity, i.e., �′ > � restore xi . Other-
wise, increment t.

5	 Return the node values x with the desired assortativity coefficient, r∗.

In our experiments, we set β = 0.009.

Diffusion‑based denoising methods

We benchmark the network filters against two comparison methods that weight nodes 
based on different diffusion kernels. The Laplacian exponential diffusion kernel [15] Sβ 
is defined as

where β is a real valued smoothing parameter, and L is the graph Laplacian. The denoised 
data vector is found by multiplying the matrix and noisy data vector

The netSmooth method [14] uses the personalized Pagerank [28] vector to weight each 
node. This kernel K is defined as

where B is a adjacency matrix that is degree normalized by column such that Bij =
1
kj

 if 

there exists and edge between i and j, α is the smoothing parameter (also known as the 
restart probability), and I is the identity matrix. The denoised data vector is found by 
multiplying this kernel and the noisy kernel as such

For simplicity, we call both β and α “smoothing parameter” throughout as they have a 
similar function for their respective methods.

Sβ = e−βL

xLaplacian,β = Sβx.

Kα = (1− α)(I− αB)−1

xnetSmooth,α = Kαx.
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Human protein expression and interaction

Protein expression data were drawn from the Human Protein Atlas (HPA) version 16 
[33], which details protein expression in human tissues by large scale immunohisto-
chemistry (IHC), for over 12,000 proteins in 20 tissue types, each in a healthy and can-
cerous state. We represented the IHC scores of not detected, low, medium, and high as 
numerical values of 0, 1, 2, and 3, respectively. In cases where a protein had scores from 
multiple patients, the numerical values were averaged together. Human protein interac-
tion (PPIN) data were drawn from the HINT database [35], which combines data from 
several interactome databases and is curated for biological interactions with high lev-
els of evidence. The HINT network contains n = 12,864 proteins and m = 62,435 undi-
rected, unweighted edges.

To construct the network filter, we first map the data from the HPA to the PPIN. HPA 
proteins are indexed by their Ensembl IDs, while HINT proteins are indexed by their 
Uniprot IDs. A map from Ensembl IDs to Uniprot IDs was constructed using the HGNC 
BioMart tool. If a node had multiple mapped expression values, we averaged them. We 
allow protein expression values from HPA to map to multiple nodes if the Ensembl ID 
maps to multiple nodes in the PPIN. If the gene expression value does not map to any 
nodes in the PPIN, we discard these as they cannot be  denoised by the network filters. 
There is one protein in the cancer dataset and 283 proteins in the healthy tissue dataset 
missing protein expression values in no more than 2 cancers or healthy tissues. For these 
cases, we impute the missing data from the same protein in another cancer or healthy 
tissue uniformly at random (impute healthy from healthy, and cancer from cancer).

After keeping the largest connected component of nodes with associated HPA data 
values, these preprocessing steps produce a network with n = 8199 proteins with IHC 
expression information across all 20 tissue types and both healthy and cancerous states, 
and m = 37,607 edges. The included healthy-cancerous tissue pairs are: breast, glioma, 
cervix, colorectal, endometrial, testicular, thyroid, renal, liver, lung, lymphoma, pan-
creas, prostate, skin, stomach, melanocyte, urinary, head and neck, ovary, carcinoid. 
For the healthy tissues, the protein expression values of specific cells types that can give 
rise to the corresponding cancer were averaged together to form one vector (Additional 
file 1: Table S1).

Predicting expression changes in human cancer

The machine learning task is to predict the changes in protein expression levels when 
a human tissue changes types from healthy to cancerous. We use K-nearest neighbors 
regression to learn a model that can predict these changes when given the expression 
levels of a healthy tissue (Fig. 4). We train and evaluate the model using leave-one-out 
cross validation, in which the model is trained on the observed changes in 19 healthy-
cancerous tissue pairs, and is tested on one unobserved pair. We first train and evaluate 
the model on unfiltered data, and then compare its accuracy to a model where we apply 
a network filter to the expression data prior to training.

First, we applied principal component analysis (PCA) on the training set of 19 healthy 
tissue protein vectors as a feature extraction method. Next, using the embedded PCA 
space learned from the training set, we project the held-out healthy sample into the same 
PCA space. We then determine the K-nearest neighbors of the held-out healthy tissue by 
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calculating the Euclidean distance of the first four principal components between this 
point and all other healthy tissues.

Given this identification of which healthy tissues are most similar to the left-out 
healthy tissue, we predict the protein expression changes for the held-out observation. 
We calculate the expression changes between cancerous and healthy tissues, which we 
call a “delta” vector. Then, we perform PCA on the 19 delta vectors to extract features. 
The weighted average of the delta vectors corresponding to the K-nearest neighbors 
learned from the healthy tissues are averaged together, where the weight is proportional 
to the inverse of the Euclidean distance to the held-out healthy tissue. Finally, we project 
the predicted delta vector from four principal components back to the n = 8199 proteins 
and calculate the mean absolute error (MAE) of this vector and the actual delta vector.

The basic networks filters evaluated in this task have the form given in the main text. 
For the patchwork filter, the DC-SBM or spectral algorithms partition the PPIN into 
κ = 10 communities, and modularity maximization automatically chooses the number 
of communities that maximizes the modularity function. Then, we apply the mean filter 
within each community.

For the diffusion-based methods, we choose optimized smoothing parameters for 
the human protein expression data set using a method described by the netSmooth 
authors [14] to maximize the entropy of a 2D embedding of the data. As the healthy 
data and delta vectors have different data distributions, we choose optimized smooth-
ing parameters for each data set separately. Briefly, the healthy tissue protein expres-
sion or delta vectors were embedded in a PCA space with the first two principal 
components. This space was discreteized into a four by four grid, equally spaced from 
the data points at the minimum and maximum of each PC. We calculated the Shan-
non entropy, H(x) = −

∑

i P(xi) log P(xi) , of this discretized embedding, and chose the 

Fig. 4  Schematic of K-nearest neighbors regression framework. We designed a weighted K-nearest 
neighbors regression framework to predict the protein expression changes a healthy tissue would undergo 
when becoming cancerous, given a vector of protein expression profile of a healthy tissue. First, we extract 
features from the training set of 19 healthy tissue protein expression vectors by PCA. Second, we project 
the left out healthy vector down to the same PCA space, and third, determine K-nearest neighbors to use 
for the prediction task. Fourth, we extract the features from the 19 delta vectors by PCA, and fifth, predict 
the delta vector for the left-out healthy sample by taking the weighted average of the K-nearest neighbors’ 
delta vectors. Finally, sixth, we project the predicted delta vector from PCA space back to a vector of protein 
expression values to calculate the error
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smallest smoothing parameter that maximized the entropy. For netSmooth, the smooth-
ing parameter was 0.2 for the healthy tissues and 0.3 for the delta vectors. And for the 
Laplacian exponential diffusion kernel, it was 0.2 and 0.1 for healthy tissues and delta 
vectors, respectively.
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