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Abstract

Large datasets that enable researchers to perform investigations with unprecedented rigor are 

growing increasingly common in neuroimaging. Due to the simultaneous increasing popularity of 

open science, these state-of-the-art datasets are more accessible than ever to researchers around the 

world. While analysis of these samples has pushed the field forward, they pose a new set of 

challenges that might cause difficulties for novice users. Here we offer practical tips for working 

with large datasets from the end-user’s perspective. We cover all aspects of the data lifecycle: from 

what to consider when downloading and storing the data to tips on how to become acquainted with 
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a dataset one did not collect and what to share when communicating results. This manuscript 

serves as a practical guide one can use when working with large neuroimaging datasets, thus 

dissolving barriers to scientific discovery.

As a part of the open science movement in neuroimaging, many large-scale datasets, 

including the Human Connectome Project (HCP)1, the Adolescent Brain Cognitive 

Development (ABCD) study2 and the UK Biobank3, have been released to investigators 

around the world (Fig. 1; abbreviations for datasets provided in Supplementary Table 1)4–28. 

These initiatives build upon efforts dating back to the early twentieth century to collate 

large-scale brain datasets (for example, ref. 29) and have advanced efforts to understand 

human brain function. Notably, they have been collected in response to—and helped provide 

support for—the realization that many questions in the field are associated with small effect 

sizes only detectable with large samples30,31. Since adequately large samples can be difficult 

for any single lab to collect in isolation, these large datasets unlock a path to investigate 

previously inscrutable questions.

Nevertheless, use of these large datasets can be daunting. With thousands of participants and 

substantial imaging data per individual, simply downloading and storing the data can be 

difficult. The complex structure of these large datasets (for example, multiple data releases 

from HCP, multiple sites contributing to ABCD, etc.) presents considerable challenges and 

requires adherence to best practices. Even day-to-day concerns, like maintaining a lab 

notebook, take on new importance when handling such data.

Here, we present tips for those who will be handling these data as end-users. We offer 

recommendations for the entire life cycle of data use—from downloading and storing data, 

to becoming acquainted with a dataset one did not collect, to reporting and sharing results 

(Table 1). Note that we do not provide recommendations for specific analytical approaches 

using large datasets, as these topics have been discussed elsewhere30,32–34. Our intention is 

to bring together in one place accessible and general recommendations, incorporating 

practical suggestions based on our experience working with numerous large datasets. Our 

intended reader is one who might be tasked with working with a large dataset for the first 

time, and we envision this manuscript to serve as an ongoing guide throughout this exciting 

process.

Obtaining and managing data

In the first section, we discuss obtaining and managing large datasets. Careful planning can 

help ensure that preprocessing and analysis goes smoothly, saving time in the future.

Identifying research questions.

Given that large, open-source datasets consist of many different types of data, the first step is 

identifying the dataset that can address a study’s question of interest. Most large datasets 

have some combination of imaging, genetic, behavioural and other phenotypic data (Fig. 1) 

that may not be harmonized across different datasets. Some may include specific clinical 

populations and/or related measures. To more robustly address the research question, a 

researcher may leverage multiple datasets to bolster sample sizes (i.e., for a rare subset of 
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the data or for participants with a rare disease) or to demonstrate reproducibility of findings 

across samples. Whatever the intended use, giving careful thought to the scientific question 

at hand will help focus the researcher and identify which types of data are needed. At this 

stage, investigators may also wish to preregister their research question and analysis plans. 

In addition, it is important to consider the original purpose of the dataset, as it might 

influence the sort of questions that can be addressed, as well as the feasibility of using it in 

conjunction with other open-source datasets. Indeed, understanding the original purpose of a 

dataset can facilitate analyses, including in some cases analyses performed many years after 

the original data were collected35.

Once a question and dataset are identified, researchers should consult with their local 

institutional review board (IRB) and/ or human investigation committee (HIC) before 

proceeding, as human research exceptions or data-sharing agreements may be needed. We 

note that the ethics of data sharing are complex22,36–38, standards are evolving37–40, there 

are many models of what constitutes open data22,38,41,42 and standards vary by institution 

and/or country. For example, participants in the UK Biobank can elect to have their data 

withdrawn and/or deleted at any point (https://www.ukbiobank.ac.uk/withdrawal/). On the 

other hand, participants can elect to have their data withdrawn from the National Institute of 

Mental Health Data Archive, but data already distributed to research teams would not be 

withdrawn (https://nda.nih.gov/about/policy.html). Standards and regulations will continue 

to evolve (for example, the General Data Protection Regulation recently enacted by the 

European Union; https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-

eu_en), and issues associated with anonymization, participant consent and data sharing will 

continue to be refined; it is imperative researchers remain alert for possible changes in these 

issues with the large datasets they are using.

What to download.

Typically, neuroimaging data is released in two formats: primary, raw data in the form of 

digital imaging and communications in medicine (DICOM) or neuroimaging informatics 

technology initiative (NIfTI) images; or some form of processed data (for example, 

connectivity matrices or activation maps). Both types of data possess strengths and 

limitations (for more, see ref. 41).

The first difference between raw and processed imaging data is the amount of disk storage 

required. When a sample comprises thousands of participants, storage of raw data can 

become a challenge. For example, in the ABCD2 dataset, the raw data in NifTI format takes 

up ∼1.35 GB per individual or ∼13.5 TB for the entire first release of ∼10,000 individuals. 

Note that this is simply the NifTI data—this does not include space that will be needed to 

store intermediate files, processed data or results. On the other hand, processed data from 

ABCD, such as preprocessed connectivity matrices43, would only require ∼25.6 MB of disk 

space, approximately 0.0001 percent of the space needed to store the NifTI images and 

intermediate files needed to generate connectivity matrices starting from the raw data.

One may elect to use local or cloud storage, depending on the funds available, security 

needs, ability and intent to process data on the cloud, accessibility needs, etc. Finally, these 

storage estimates do not include the need to back up the data, which will typically double the 
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amount of storage needed. To decrease the backup volume, certain intermediate files (for 

example, skull-stripped images) may be excluded from the backup. Further, some may 

choose not to back up already processed data, as these data can simply be re-downloaded.

When choosing what data to download, it is important to consider the amount of time that 

will need to be invested in obtaining the data, as well as the additional time it will take to 

process the raw data. For instance, when obtaining raw data from thousands of participants, 

it can take weeks to download the DICOM data. Depending on the computational resources 

at hand, converting the data into NifTI format can similarly take weeks. Coupled with the 

amount of time it takes to skull-strip participants’ anatomical images, register them into 

common space, motion-correct functional images and perform quality control (QC), in our 

experience, it can take 6–9 months for two or three researchers to download, process and 

prepare the data for analysis. (It should be noted that this is still far less time than it would 

take for a site to generate such a large dataset on its own.) Alternatively, some databases 

include already processed data; in principle, these are ready for use immediately. However, 

we still recommend performing QC steps on processed data before analysis begins (see 

“Getting to know your data” below for the QC steps we discuss).

With the amount of time it takes to process raw data, one might ask: why go through all this 

trouble instead of simply downloading the processed data? The main answer is that by 

choosing to use processed data, one is tied to preprocessing decisions that were made to 

generate the processed data, which may not suit a particular study. For instance, in the 

ABCD dataset, network-based connectivity matrices were released43 using network 

definitions from the Gordon atlas44. If a researcher wanted to test the generalizability of 

their results to the choice of parcellation, it would not be possible with only the processed 

ABCD data. On the other hand, having access to the raw data makes it straightforward to 

generate matrices with different parcellations. Given the impact of analytic flexibility on 

results45, this idea holds for other preprocessing steps as well: the impact of different motion 

artefact removal pipelines could be assessed46, the effect of region size on behavioural 

prediction accuracy could be investigated47, and so on. Many datasets have multiple forms 

of processed data available (for example, functional connectivity data with and without 

global signal regression), so documentation should be investigated to see what is available 

and if this coincides with analysis goals.

Organizing and keeping track of what was done to the data.

Once data are obtained, efficient management of data is key. When using raw data, it is 

becoming the norm to organize data according to the brain imaging data structure (BIDS48; 

for help with BIDS, see https://github.com/bids-standard/bids-starter-kit). It may also be 

advisable to make the raw data files read-only, so that they cannot be inadvertently modified 

or deleted. Regardless of how data are stored and managed, documentation is essential. 

Keeping track of what was done to the data should also include documenting how it was 

done (i.e., what code and software were used; see the “Communicating results” section for 

tips on sharing code), who performed each step and the motivation for each choice. As in 

other areas of research, the aim of documentation is that a knowledgeable researcher within 

the field should be able to exactly recreate the workflow that is described. Although exact 
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formats may vary by lab and by needs, examples include keeping track of progress in shared 

Google Docs and Jupyter notebooks. In addition, using a platform like Slack can facilitate 

communication between project members and might be useful for some teams. Whatever the 

method, a record needs to be accessible to others who will use the data in the future, and it is 

helpful to avoid jargon—a point especially pertinent given that junior personnel, who are 

often responsible for obtaining and managing the data, have a high turnover rate as they 

progress with their training. While these steps take time to implement, careful organization 

and documentation saves time in the long run when performing analyses and writing up 

results.

Closing thoughts.

Investigators need to regularly check for updates to a dataset—it is not enough to simply 

download the data and forget about it. Besides checking for new data releases, other 

important information is released: scanner updates, different preprocessing pipelines, QC 

issues that were noticed and corrected, etc. In addition, it is not unusual for data collection 

sites to discover errors in acquisition or processing that could significantly impact down-

stream findings (see “Getting to know your data” for issues to be on the lookout for). Each 

large dataset typically has a QC wiki, a forum where issues can be discussed or an email list 

that users can subscribe to. In the case of the UK Biobank and ABCD, research staff 

includes members dedicated to help investigators as issues arise. It is important that 

researchers utilize these resources frequently.

If multiple labs at the same institution are interested in the same dataset, working together to 

download, manage and store the data helps to reduce duplicate efforts, saving time and 

resources. Team members can work together to handle different aspects of the workload. 

However, sharing between labs across different institutions can be more difficult, as privacy 

laws and other regulations can vary by institute, region or country. A researcher’s local IRB 

and/or HIC should be consulted when sharing curated data across labs. Whatever the 

solution, the point is to work together and be collaborative whenever possible, whether this 

involves formal collaborations with clearly delineated roles (and specified in grants, 

perhaps) or more informal working agreements that are still conducted in accordance with 

data usage agreements (DUA). For more on working together effectively in science, see ref. 
49. At the same time, it is particularly important to be prudent with write permissions (for 

example, read-only is sufficient for team members performing visual inspection of skull-

stripping results); while raw data can always be re-downloaded and re-processed, this can be 

unpleasant, to say the least.

As noted above, each large dataset typically has a channel where problems can be explained 

and potential solutions can be offered (i.e., forums, a contact person dedicated to QC issues, 

etc.). In addition, social media platforms (for example, Twitter) are increasingly popular for 

obtaining advice from colleagues for using large datasets. Whatever the resource, asking 

questions (and making the solutions known to the community) is an essential part of 

working with any open resource, including large datasets.
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Getting to know your data

Once all data are downloaded, the next step is becoming acquainted with the raw data. This 

is particularly important when using large, open-source datasets; as these data have not been 

collected by the end-user, it may be easier for the user to overlook subtle issues.

Demographic and participant factors.

The first factors that should be considered are sample demographics and other basic 

participant attributes. Depending on the analyses planned, one should investigate factors like 

age, sex, race and family structure within the dataset. In addition, datasets like the Autism 

Brain Imaging Data Exchange (ABIDE) samples10,11 and ABCD2 comprise data collected at 

multiple sites, so this step enables users to understand characteristics of the data collected at 

various sites, allowing them to plan analyses that account for potential site effects and/or 

generalizability of results across sites50–52. ComBat is one method of removing between-site 

and between-sample effects and has been used in both structural and functional MRI 

analyses51,53–56. (See ref. 57 for a recent review of data harmonization of diffusion MRI 

data.) Given that potentially uninteresting sources of variance (i.e., variance unrelated to the 

question at hand) can be amplified in large datasets, other possible factors—like smoking 

status, the time of day a participant was scanned58 or the time of year a participant was 

scanned—could be explored to determine whether they might act as confounds. The exact 

confounds investigated will depend on attributes of the dataset, as well as the reason the data 

were initially collected.

Imaging measures.

After considering sample demographics and other participant characteristics, the next step is 

getting to know the imaging data. To start, researchers should determine which participants 

have complete scans that are needed for a given analysis. For example, some participants 

may have had scans cut short for technical reasons, some may have multiple scans (i.e., if a 

scan had to repeated to obtain quality data), etc. The scanner type, software and acquisition 

parameters that were used should also be considered, as sometimes scanner software is 

updated during a study13. Scanning site has also been shown to introduce systematic bias 

into measures of functional connectivity, especially for multivariate analyses59, as has 

scanner manufacturer60. (For a full discussion of the quantitative effects of factors like site, 

software upgrades and changes in hardware in the UK Biobank, see ref. 61) Further, general 

aspects of study design should be taken into account: it should be noted whether all scans for 

a participant were conducted on the same day (as in the Philadelphia Neurodevelopmental 

Cohort (PNC)23) or were split into back-to-back days (as in HCP)1, in addition to whether 

the scan or task order was counterbalanced or fixed across participants. We note that tools 

designed with large datasets in mind are available to aid imaging QC (for example, https://

mriqc.readthedocs.io/en/stable/)62.

Most of the datasets mentioned have released task-based functional scans; these data must 

be thoroughly investigated before use. In our own experience, in the HCP S900 release, we 

observed that at least 30 participants had a different block order in the working memory task 

during the right–left phase-encoding run than that reported for a majority of the other 
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participants. Possible discrepancies in task timing should be examined as well. In the 

emotion task in HCP, a bug in the E-prime scripts resulted in the last block ending 

prematurely for some participants. Nevertheless, the task regressors released do not reflect 

this incongruity (http://protocols.humanconnectome.org/HCP/3T/task-fMRI-protocol-

details.html). In addition, issues with the stop-signal task have also recently been reported in 

the ABCD sample, including different durations of stimuli across trials and stimuli 

occasionally not being presented63. While none of these discrepancies preclude using the 

data per se (though analyses might have to be adapted considerably), we use these as 

examples of possible issues to be on the lookout for.

In addition, there are potential differences in similar tasks across datasets. For instance, 

many datasets have a working memory task (Table 2). In the HCP, a two-back and zero-back 

paradigm was used with places, faces, tools and body parts as stimuli64, whereas in the PNC, 

zero-, one- and two-back conditions were used with fractals as stimuli23,65. Along with other 

differences in task design (duration of blocks, other timing parameters, etc.), these must be 

kept in mind when planning analyses and when comparing results to those obtained in other 

samples.

Behavioural measures.

Another important category of data with which researchers should familiarize themselves is 

measures collected outside of the scanner, which we refer to as ‘behavioural measures’. 

Specifically, we are referring to participant measures obtained beyond demographic 

information (i.e., performance on cognitive tests, self-report measures or clinician 

assessments).

Measures within a dataset may differ. For instance, different versions of the autism 

diagnostic observation schedule (ADOS) were released by different sites in the ABIDE 

samples. In addition, only some sites had the ADOS administered by research certified 

clinicians, the gold standard for multisite reliability in diagnosing autism spectrum 

disorder66,67. Both of these factors could introduce unaccounted-for variance into the 

sample. In the same dataset, different instruments, and versions of instruments, were used to 

assess full-scale intelligence quotient (IQ) at different sites—some used the Wechsler Adult 

Intelligence Scale, some used the Differential Abilities Scale, while others used different 

versions of the Wechsler Intelligence Scale for Children10,11.

Measures across different datasets may differ as well. For instance, in the HCP dataset, fluid 

intelligence was measured using a 24-item version of the Penn Progressive Matrices 

assessment64, whereas in the PNC dataset, both 24- and 18-item versions of the Penn Matrix 

Reason Test were used23,65. As with task design, these differences must be acknowledged 

when interpreting previous findings or planning future analyses—specifically when trying to 

use specific datasets as validation samples68. In addition, it should be noted that multiple 

measures can typically be reported for each behavioural scale—a raw score, a standardized 

score, scores on specific subscales, etc.—so it is important to ensure that one is using the 

behavioural score that is intended.
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Closing thoughts.

We encourage investigators to calculate descriptive statistics, visualize distributions and 

explore bivariate—or even multivariate—associations of the variables in a dataset. 

Additionally, outliers, higher-leverage data points (i.e., a data point with an extreme 

predictor value) and missing data should be identified. (See http://uc-r.github.io/gda for 

examples of factors to investigate, as well as R packages and toy data.) All of these steps can 

help detect potential issues with the data that might preclude planned analyses. If potential 

issues are found, steps should be taken to address them. Exact solutions will differ 

depending on analysis goals61,69–72, and other resources exist to understand confounds in 

more detail61. Nevertheless, the main point of this section is that getting to know all aspects 

of an open-source dataset and how it was acquired are key, especially as an end-user who did 

not collect the data.

Communicating results

The last phase of working with large datasets is reporting and sharing results. In addition, it 

might be appropriate for researchers to share processed data at the conclusion of their study.

What to report.

Ideally, a manuscript should include all needed details for another researcher in the field to 

reproduce the work. A good start is the Committee on Best Practices in Data Analysis and 

Sharing (COBIDAS) guidelines for reporting neuroimaging methods, which include both 

‘mandatory’ and ‘not mandatory’ recommendations39. When working with big data, some of 

this information may have been reported elsewhere. It can be cumbersome to repeat this 

information in every manuscript, so it may be sufficient to include a reference to the original 

studies following the guidelines established by the creators of the database. When taking this 

route, we also advise researchers to include a brief summary of critical details to facilitate 

comprehension by reviewers and readers.

To ensure transparency, the data release version should be reported. Similarly to software 

releases, datasets will be updated to include new participants, new preprocessing pipelines or 

fixes for QC issues (see “Obtaining and managing data”). Reporting is straightforward when 

data are released as discrete packages with specific names (i.e., the HCP 1200 Subjects Data 

Release). For data released in a continuous fashion (i.e., the ABCD Fast Track Data releases 

data from new participants monthly), reporting when the data were obtained will allow other 

researchers to see how results fit into the context of previous findings using the same dataset. 

If details about the data release are less clear, as much information should be provided as 

possible, including the date the dataset was downloaded, the number of participants 

downloaded and a URL detailing the location of the release. In addition, when there are 

multiple releases available (i.e., HCP 900 Subjects release, 1200 Subjects release, etc.), we 

recommend that the most recent release should be downloaded to ensure that the highest 

quality data are used, as well as the greatest number of participants. However, if older 

releases are used, reasons for doing so should be reported (i.e., when an issue has been 

discovered in the latest release).
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Reporting participant IDs of the individuals used, as well as those excluded from final 

analyses (and reasons for exclusion), can help aid transparency. This information can be 

included in supplementary material. It should be noted, however, that datasets often have 

different systems regarding participant IDs. Some datasets have IDs that are consistent 

across all downloads (for example, ABIDE) and straightforward to share with others, 

whereas other datasets have unique IDs generated for each group working with the sample 

(for example, UK Biobank). In addition, DUAs for each dataset often dictate what can and 

cannot be published in a manuscript. Researchers should check their DUA to determine 

whether publishing participant IDs is allowed.

What to share.

There has been an increased push to share resources among the neuroimaging community in 

recent years, and open-source datasets are a prime example of how sharing has accelerated 

progress in the field73. Hence, users of large datasets should pay it forward by sharing 

materials related to their study, which will further help progress and allow other researchers 

to attempt to replicate and extend their findings.

As with participant IDs, researchers should check their DUA to determine whether sharing 

processed forms of data is allowed (for example, skull-stripped anatomical images, motion-

corrected images, connectivity matrices, etc.). For example, when accessing data through the 

Consortium for Reliability and Reproducibility28, once a user has registered, they can share 

all forms of data with other labs. On the other hand, datasets like ABCD require that all 

users who interact with the data be approved and listed on the DUA. In this case, sharing 

with others would necessitate that the researchers being given data are approved in advance. 

Some datasets, like the HCP, stipulate that derivative data be shared only if it is impossible 

to infer anything about any particular participant from the data. Before sharing data, 

researchers should consult with their local IRB and/or HIC. When sharing data with the 

larger community is appropriate, there are many options to do so (Table 3). Shared data 

should be released with a clear license, so that other investigators know what restrictions are 

placed on reuse of the data, if any. Specialized tools have been developed to facilitate 

working with many of these datasets (for example, DataLad, https://www.datalad.org/

datasets.html and OpenNeuro21,22).

When possible, we also advocate for sharing aspects of results that might not be included in 

manuscripts. Unthresholded statistical maps, as well as parcellations, can be shared via 

NeuroVault12. If performing a predictive modelling study, there is currently no standard for 

sharing. However, Python’s pickle protocols (https://docs.python.org/3/library/pickle.html) 

and MATLAB’s MAT-files are popular options. Platform-independent formats, such as 

JavaScript object notation (JSON) files and comma-separated value (CSV) files, can also be 

shared and do not tie investigators to the use of a specific programming language. Once 

converted to these file formats, models can be shared via GitHub (for example, https://

github.com/canlab/Neuroimaging_Pattern_Masks).

With the availability of online platforms such as GitHub, sharing code has become 

straightforward. Ideally, all code used for preprocessing and analysis should be shared, and a 

link to a project repository should be included in each manuscript. It is necessary to keep 
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code well-documented and well-structured. This includes adding proper readme files, adding 

comments to the code describing what is being done, maintaining a well-structured project 

repository and regularly checking and fixing ‘open issues’ (i.e., bugs). Some useful 

resources can be found in GitHub Guides (https://guides.github.com/) or by following the 

standards adopted by popular open-source projects, such as Scikit-learn (https://github.com/ 

scikit-learn/scikit-learn)74.

Reproducible inference.

When writing up the results of a study, it is also important to keep in mind some of the 

statistical issues associated with common null-hypothesis statistical testing using large 

datasets. (For a deeper discussion, see ref. 30). While a large number of participants permits 

a closer estimate of how sample effect sizes map onto true population effect sizes75–77, even 

small effects with potentially little practical importance can be ‘statistically significant’. For 

instance, in the UK Biobank sample (n = 14,500), a correlation of r = 0.017 would be 

considered significant at P < 0.05. Hence, such findings must be interpreted with caution, 

particularly when relying on a single P-value to determine significance78,79. Reporting 

multiple lines of converging evidence—through the use of effect sizes or Bayesian analyses, 

in addition to P-values—will help determine the practical significance of a given result. See 

refs.80–83 for more on alternatives to P-values.

Finally, negative results can be particularly informative when derived from large datasets. 

Much has been written about the importance of publishing null findings and how the 

literature can be skewed by not doing so84–89. Because of the statistical power associated 

with large datasets, reporting such negative results can help clear up potentially conflicting 

effects obtained with smaller samples. Reporting negative findings can also save time and 

reduce duplicate efforts as other labs may be planning similar analyses.

Closing thoughts.

When communicating results from large datasets, transparency is essential. Clearly reporting 

what version of the dataset was downloaded, which participants were used in analyses and 

the practical significance of associations should drive what is included in manuscripts. 

Sharing materials is a key step as well and should be performed wherever possible.

Emerging issues and final remarks

We close with arising issues with large datasets to alert first time users to these potential 

concerns. The first issue is known as data decay, or the fact that having multiple 

investigators analyse the same dataset inadvertently increases the number of false positives. 

This problem increases as the number of researchers analysing the data increases90. In 

essence, the utility of the dataset decays as the number of users increases. A related notion 

has been advanced before: it has been suggested that a lack of generalizability might begin 

to be seen in the Alzheimer’s Disease Neuroimaging Initiative19 dataset, given that more and 

more Alzheimer’s disease researchers have based their conclusions on the same data30 and 

results began to become overfit to sample noise. The issue of over-fitting is well-known to 

the machine learning community and is discussed elsewhere91–93.
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Because of issues like data decay and a potential for decreasing generalizability, continuing 

to collect new data—that might be of smaller size than the samples highlighted here—is 

essential. Generating new datasets with varied characteristics and sharing them can help 

ensure conclusions are not based on idiosyncratic quirks of samples30. Environments will 

continue to change and evolve—from the exposures affecting an individual to the way they 

interact with technology.

Also, conducting a smaller-scale study allows unique training opportunities for younger 

personnel. Taking part in the data collection process can provide a fuller appreciation of 

neuroimaging as a whole, from strengths of the technique to potential weaknesses. Finally, 

smaller samples can also be contributed to larger consortiums and become a part of the big 

data ecosystem—indeed, efforts like ABIDE, the Enhancing NeuroImaging Genetics 

through Meta-Analysis (ENIGMA) Consortium94 and the International Neuroimaging Data-

sharing Initiative (INDI)18 have taken this approach to much success. We need to continue to 

collect datasets, large and small, to ensure results are generalizable and also to ensure that 

neuroimagers are studying factors relevant to society at large. An important consideration in 

this process will be properly crediting investigators who generated the original dataset. One 

solution is assigning a specific ID to each dataset, facilitating the citation of the original 

dataset generators, as well as potentially allowing easier searches for existing datasets95. 

Such a system would thus allow the original data generators to receive recognition for their 

contribution and encourage others to publically share data.

The use of large datasets is becoming more and more common in human neuroimaging. 

While these datasets can be a powerful resource, their use introduces new issues that must be 

considered. We have detailed practical tips that investigators can use as they download and 

manage their data, potential confounds to be aware of, as well as what to share when 

communicating results. Careful consideration of the many challenges associated with these 

datasets and ways to deal with these issues will allow researchers the chance to make new 

discoveries and push forward our understanding of the human brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A list of large, open-source datasets and open repositories.
a, For each dataset listed in the leftmost column, sample size is indicated, along with the 

type of data included (‘Data modalities’). ‘Data level’ refers to the level of preprocessing: 

white circle, raw data; grey circle, some level of preprocessed data; black, processed data 

(for example, statistical maps, connectivity matrices, etc.). b, For each open repository (i.e., 

a collection of open datasets) listed in the leftmost column, an estimate of the number of 

open datasets is listed. Datasets of particular interest are highlighted (‘Featured large 

datasets’). Sample sizes and the number of open datasets are current as of October 2020. 
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Users are encouraged to visit the website associated with each dataset before use, as sample 

sizes, access conditions, etc. may change. YA, HCP Young Adult study; COINS, 

Collaborative Informatics and Neuroimaging Suite24; LORIS, Longitudinal Online Research 

and Imaging System9; NITRC-IR, NeuroImaging Tools & Resources Collaboratory Image 

Repository15; NDA, National Institute of Mental Health Data Archive; ADNI, Alzheimer’s 

Disease Neuroimaging Initiative; HBN, Healthy Brain Network; PPMI, Parkinson’s 

Progression Markers Initiative; GSP, Brain Genomics Superstruct Project; AOMIC, 

Amsterdam Open MRI Collection; NKI-RS, Nathan Kline Institute Rockland Sample; 

OASIS-3, Open Access Series of Imaging Studies; ADHD-200, Attention Deficit 

Hyperactivity Disorder 200 sample; Cam-CAN, Cambridge Centre for Ageing Neuroscience 

dataset; 1000 FCP, 1000 Functional Connectomes Project; MCIC, MIND Clinical Imaging 

Consortium.
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Table 1 |

Key references and resources for working with large, publically available datasets

References

Obtaining and managing 
data

Barron and Fox41: describes strengths and limitations of raw and processed imaging data
Gorgolewski et al.48: describes brain imaging data structure

Getting to know your 
data

Alfaro-Almagro et al.61: examination of confounds in the UK Biobank, along with recommendations for 
confound modelling in large datasets
http://uc-r.github.io/gda: tips for exploring a new dataset, along with code and toy data

Communicating results Weston et al.96: suggestions for analysing pre-existing datasets
Mennes et al.18; Poldrack and Gorgolewski42: discussions of how and why to share data, along with issues and 
opportunities accompanying data sharing

Further reading Milham and Klein97: practical suggestions for practicing open science
Nowogrodzki98: tips from a variety of fields for working with large datasets
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Table 2 |

Differences in working memory task across datasets

HCP ABCD PNC

Type Zero-back, two-back Emotional zero-back, two-back Zero-back, one-back, two-back

Stimuli Places, faces, tools and body 
parts

Happy, fearful and neutral facial 
expressions; place stimuli

Fractals

Run duration 5 min 5 min 11.6 min

Task cue at start of each 
block

2.5 s 2.5 s 9 s

No. of task blocks per run 8 × 25 s per block (4 for each n-
back)

8 × 25 s per block (4 for each n-back) 9 × 60 s per block (3 for each n-
back)

No. of trials per block 10 × 2.5 s per trial 10 × 2.5 s per trial 20 × 3 s per trial

Target to non-target trials 
ratio

1:5 1:5 1:3

Each trial 2 s stimulus + 0.5 s ITI 2 s stimulus + 0.5 s ITI 0.5 s stimulus + 2.5 s ITI

No. of fixation blocks per 
run

4 × 15 s per block 4 × 15 s per block 3 × 24 s per block

Reference Barch et al.64 Casey et al.2 Satterthwaite et al.23

ITI, intertrial interval.
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