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ABSTRACT
In 2015, the world witnessed the resurgence and global spread of Zika virus (ZIKV). This arbovirus infection 
is associated with Guillain-Barré syndrome in adults and with devastating congenital malformations 
during pregnancy. Despite scientific efforts, the development of a vaccine capable of inducing long- 
term protection has been challenging. Without a safe and efficacious licensed vaccine, control of virus 
transmission is based on vector control, but this strategy has been shown to be inefficient. An effective 
and protective vaccine relies on several requirements, which include: (i) induction of specific immune 
response against immunodominant antigens; (ii) selection of adjuvant-antigen formulation; and (iii) 
assessment of safety, effectiveness, and long-term protection. In this commentary, we provide a brief 
overview about the current efforts for the development of an efficacious ZIKV vaccine, covering the most 
important preclinical trials up to the formulations that are now being evaluated in clinical trials.
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Zika virus (ZIKV) is a mosquito-borne flavivirus first isolated 
from a rhesus macaque in 1947.1 Before 2015, ZIKV infection 
was reported in a few countries and associated mostly with 
a mild disease. Thenceforth, ZIKV outbreaks spread across 
more than 80 countries, and the disease has been associated 
with severe complications.2 Although ZIKV shares many struc-
tural features with other flavivirus such as dengue virus 
(DENV), its ability to cause congenital malformations during 
pregnancy3, and rare neurological disorders in adults, such as 
Guillain-Barré syndrome,4 makes this virus uniquely dreadful. 
Given the effectiveness of some vaccines against flaviviruses 
like yellow fever virus (YFV) and Japanese encephalitis virus 
(JEV), the pursuit of an effective vaccine candidate against 
ZIKV is attainable and has been the subject of intensive 
research. Currently, there are several ongoing clinical trials 
(Phases I and II) to develop a vaccine to prevent ZIKV infec-
tion (Table 1) using different strategies (Figure 1).

DNA-based vaccine formulations are one of the most pro-
mising candidates tested in humans due to their ability to 
induce humoral and cellular immune responses, low cost, 
high stability, and safety profile,5 without infection or replica-
tion capacity. Since ZIKV outbreaks, researchers have evalu-
ated the immunogenicity and protection profiles of different 
DNA-based vaccines encoding E and prM-E proteins.6 In pre-
clinical studies, constructs encoding the full-length prM-E 
sequence showed to be the most promising candidates to 
induce neutralizing antibodies, T-cell immunity, and protec-
tion in mice6,7 and nonhuman primates.8 Passive transfer of 
antibodies induced by DNA vaccines provided sterile protec-
tion in a lethal challenge model.9 Recently, we showed that 
a recombinant protein and a plasmid DNA based on the ZIKV 
E protein induced a robust humoral and polyfunctional CD4+ 

T cell response.10 In order to increase the immunogenicity of 

DNA vaccines, several strategies have been described,11 such as 
the use of in vivo electroporation, combination with adjuvants, 
and heterologous prime-boost immunization.12 Inovio 
Pharmaceuticals developed the first ZIKV DNA vaccine candi-
date (GLS-5700) tested in clinical trials (NCT02809443 and 
NCT02887482). GLS-5700 was administered via intradermal 
injection followed by electroporation, and 62% of the volun-
teers developed neutralizing antibodies against ZIKV after 
receiving three doses of the vaccine candidate.13

Other two DNA vaccines are being tested in humans: 
VRC5283 and VRC5288, developed by the Vaccine Research 
Center14 of the National Institute of Allergy and Infectious 
Diseases (NIAID). Unlike GLS-5700, modifications have been 
made to improve protein-expression and subviral particle 
release from transduced cells. To create the VRC5283 vaccine, 
the ZIKV prM signal sequence was replaced with the analogous 
region of JEV. In VRC5288, besides the modification in the 
signal sequence, the carboxyterminal stem-anchor region of 
ZIKV protein E was also exchanged to the equivalent JEV 
sequence.15 Both vaccine-formulations elicited high titers of 
neutralizing antibodies that protected mice and nonhuman 
primates after challenge.15 For this reason, both DNA vaccines 
were selected for immunogenicity and safety evaluation in 
humans (NCT02840487 and NCT02996461). Recent func-
tional analysis revealed that despite the capacity to induce 
neutralizing antibodies, the ability to bind to the mature virion 
better predicts vaccine-induced protection and should be con-
sidered to assay new candidates.16 VRC5283 was shown to be 
safe, well-tolerated and induced T-cell immune response and 
neutralizing antibodies,14 moving forward to a Phase II clinical 
trial (NCT03110770).

Another promising, low-cost, and safe vaccine approach is 
based on non-replicating mRNA. The main advantage is that 
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the mRNA vaccine can be directly translated in the cytoplasm 
upon cell transfection, contrary to a DNA vaccine which needs 
to enter the nucleus to start transcription.17 In recent years, 
lipid-encapsulated or naked forms of sequence-optimized 
mRNA candidates elicit potent immunity against several 
pathogens and cancer.18–21 A single dose of lipid-nanoparticle- 
encapsulated mRNA encoding prM- E-induced potent neutra-
lizing antibodies and protected mice and nonhuman primates 
from viremia.21 Similarly, other encapsulated mRNA vaccine- 
conferred neutralizing antibodies and consequently sterilizing 
immunity in mice. This engineered vaccine encodes mutations 
into the conserved fusion-loop epitope in the E sequence that 
reduces the production of antibodies enhancing DENV 
infection.22 Two mRNA vaccine candidates for ZIKV devel-
oped by Moderna Therapeutics are being tested in Phase 
I clinical trials, named mRNA-1325 (NCT03014089) and 
mRNA-1893 (NCT04064905). In preclinical trials, mRNA- 
1893 protected against ZIKV transmission during pregnancy 
in mice.23

Efforts to develop a whole inactivated virus vaccine against 
the ZIKV vaccine began immediately after the 2015 outbreak. 
This platform has been successfully developed against other 
flaviviruses such as Tick-borne encephalitis virus (TBEV) and 
JEV. The first preclinical studies using a purified inactivated 
ZIKV vaccine (named as ZPIV) were described by Larocca 
et al.6 A single dose of formalin-inactivated ZIKV vaccine, adju-
vanted with aluminum hydroxide, protected mice from different 
ZIKV challenge strains (Brazil and Puerto Rico ZIKV isolates).6 

In addition, an extra dose of the ZPIV vaccine was also effective 
in rhesus macaques,8 and afforded robust protection even after 
1 year of vaccination.24 The safety and immunogenicity evalua-
tion of this vaccine candidate conducted by NIAID/WRAIR/ 
BIDMC was confirmed in three clinical trials (NCT02963909, 
NCT02952833 and NCT02937233). Fourth trial in an endemic 
area is still ongoing (NCT03008122).

In a collaboration between WRAIR and Sanofi Pasteur, the 
vaccine was optimized using Pasteur’s experience in flavivirus 
vaccine development. A modified and optimized ZIKV-vaccine 
(ZPIV-SP) showed improved immunogenicity compared with 
the first-generation vaccine in mice,25 supporting advancement 
of the ZPIV-SP candidate toward clinical development. Other 
formalin-inactivated ZIKV candidates were developed by 
Takeda Pharmaceuticals, Valneva Austria GmbH/Emergent 
BioSolutions and Bharat Biotech, Hyderabad (NCT03343626, 
NCT03425149, and CTRI/2017/05/008539, respectively). In 
preclinical trials, TAK-426 (alum-adjuvanted PIZV) by 
Takeda Pharmaceuticals induced high levels of neutralizing 
antibodies that were able to confer passive protection to naive 
mice against lethal challenge.26 Similarly, an alum-adjuvanted 
inactivated-vaccine (BBV121. Bharat Biotech) conferred pro-
tection against Asian and African ZIKV strains in immunode-
ficient mice.27

First-generation live-attenuated vaccines (LAV) against other 
flavivirus diseases, like YFV and JEV, have also been evaluated as 
potential ZIKV-vaccine candidates. There are few ways to reduce 
the virulence of the pathogen for vaccine production – differ-
ently from that used for the 17D YF vaccine, genetic manipula-
tion of the viral genome has been used for ZIKV attenuation. 
Strategies are based on the removal of specific carbohydrate Ta
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addition sites, site-directed deletions on 3′-UTR region or pro-
duction of chimeric-attenuated flaviviruses that encode the 
ZIKV prM and E sequences.28 A ZIKV- 3′UTR-LAV candidate 
induced protective immunity in mice and rhesus macaques, also 
preventing pregnancy transmission and testis damage in mice.29 

Similarly, a single-dose of plasmid-launched live-attenuated 
ZIKV vaccine-induced seroconversion, T-cell immune response, 
and sterile immunity in mice.30

Furthermore, a chimeric-attenuated vaccine swapping the 
prM-E sequence between DENV-2 and ZIKV into DENV-2 
backbone or into ZIKV backbone was highly immunogenic 
and prevented viral infection by DENV-2 or ZIKV after chal-
lenge, respectively.31 Another chimeric-attenuated candidate 
using ZIKV prM-E in a DENV-4 backbone has been developed 
by NIAID, and recently completed a Phase 1 trial 
(NCT03611946). Different viral vectors that express ZIKV 
genes have been tested as a delivery platform in pursuit to 
develop an effective ZIKV-vaccine. Adenovirus-based vaccine 
vectors have been tested in preclinical settings and demon-
strated high immunogenic potential.32–36 A single-shot of 
a rhesus adenovirus serotype 52 vector vaccine candidate 
expressing the ZIKV prM-E elicited neutralizing antibodies 
and long-term protection against viral challenge in rhesus 
monkeys.8,24 A replication-deficient chimpanzee adenoviral 
(ChAdOx1) ZIKV-vaccine candidate also provided protection 
and long-lasting anti-envelope immunity in mice, and will be 
next evaluated in a clinical trial (NCT04015648).34 Other stra-
tegies using a vaccinia-based construct against both ZIKV and 
Chikungunya virus (CHIKV) induced neutralizing antibodies 
in mice and protected against viremia and arthritis or fetal/ 
placental infection and testis damage after CHIKV or ZIKV 
challenges, respectively.35 Furthermore, a vesicular stomatitis 
virus (VSV) vector expressing ZIKV prM-E induced strong 
cellular and humoral immune responses that protected mice 
from lethal challenge.37 Preclinical evaluation with a measles 
virus-based vaccine candidate expressing the ZIKV prM-E 

reduced plasma viremia and ZIKV load in distinct organs, 
preventing fetal infection during pregnancy.38 Now, two 
measles-based ZIKV-vaccine candidates developed by Themis 
Bioscience have been tested in Phase I clinical trial 
(NCT02996890 and NCT04033068).

Until now, substantial breakthroughs have been achieved 
toward the development of vaccine platforms to prevent ZIKV 
infection and effectively limit congenital syndrome. Without 
an effective-licensed ZIKV-vaccine, we are still susceptible to 
another epidemic equal or even worse than the 2015 outbreak, 
reminding that we are still dealing with the consequences of 
children born with neurological problems from the previous 
outbreak.

For this reason, the pursuit of a safe, effective, and long- 
term immunogenic vaccine against ZIKV continues.
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Figure 1. ZIKV vaccine-based approaches. (1) Live-attenuated vaccine: in this approach, the virus is attenuated by different methods and loses its effectivity to replicate 
and promote disease. The live-attenuated virus induces a potent immune response, but despite of being active the virus in the formulation is not able to induce sickness 
in an immunocompetent individual. The attenuated vaccine usually guarantees long-term protection and only requires a single dose, for example, in the widely 
described YF vaccine. (2) Whole inactivated: the virus becomes noninfectious using chemical agents such as formalin, β-propiolactone or heat; therefore, the virus is 
unable to cause disease nor to infect the cells or replicate. (3) Viral vector: viral vectors are genetically engineered viruses without pathogenicity, that retains their 
capacity to infect host cells but not causing any disease. Through genetic engineering techniques, it is possible to add antigens of interest into the genetic material of 
the virus. There are many viral vectors like adenovirus and vaccinia virus. (4) DNA vaccine: this vaccine is based on delivery of genes encoding a specific antigen that is 
subsequently transcribed and translated in proteins by host cells. Furthermore, DNA vaccines are able to induce cellular and humoral immune responses safely, with low 
cost and are easily manufactured. (5) mRNA: as DNA vaccines, the strategy of vaccination with mRNA can induce a potent cellular and humoral immune responses. 
Figure created with BioRender.com.
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