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Abstract

This paper presents a mathematical model that provides a real-time forecast of the number of COVID-19 patients admitted
to the ward and the Intensive Care Unit (ICU) of a hospital based on the predicted inflow of patients, their Length of Stay
(LoS) in both the ward and the ICU as well as transfer of patients between the ward and the ICU. The data required for
this forecast is obtained directly from the hospital’s data warehouse. The resulting algorithm is tested on data from the first
COVID-19 peak in the Netherlands, showing that the forecast is very accurate. The forecast may be visualised in real-time
in the hospital’s control centre and is used in several Dutch hospitals during the second COVID-19 peak.
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Highlights

® A network of infinite server queues driven by a Poisson
Arrival Location Model is developed to model COVID-
19 ward and Intensive Care Unit (ICU) occupancy
forecasts.

e Data-driven forecasts are generated, fully based on data
readily available from the hospital’s data warehouse.

e Forecasts are very accurate. In particular, forecasts of
the maximum occupancy in the ward and the ICU three
days ahead are very close to their realisation.

® These forecasts are currently being used in four
Dutch hospitals during the second COVID-19 peak the
Netherlands is facing.
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1 Introduction

The COVID-19 pandemic impacts people’s health, jobs
and well-being and puts an enormous strain on healthcare
resources. This is also the case in the Netherlands,
where hospital resources are under pressure due to the
large number of hospitalised COVID-19 patients, which
moreover results in reduction of resources available for
non-COVID-19 patients [26]. An accurate forecast of the
number of COVID-19 patients being hospitalised supports
allocation of the resources required for treatment of
both COVID-19 and non-COVID-19 patients. This paper
presents a mathematical model that provides a real-time
forecast of the number of COVID-19 patients admitted to
the ward and the Intensive Care Unit (ICU) of a hospital
based on the predicted inflow of patients, their Length of
Stay (LoS) in both the ward and the ICU as well as transfer
of patients between the ward and the ICU. The data required
for this forecast is obtained directly from the hospital’s data
warehouse and the forecast is available to the hospital in
real-time.

Forecasting the number of hospitalised COVID-19
patients is required to determine the resource allocation
to COVID-19 and non-COVID-19 patients. A COVID-
19 patient’s medical condition may change rapidly and
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unexpectedly [21]. As a consequence, it is not possible
to accurately forecast the COVID-19 patients’ resource
requirements many days ahead of time [12]. We therefore
focus on forecasting the number of hospitalised COVID-
19 patients one to five days ahead of time. In particular,
we are interested in forecasting the mean number of
patients present and the risk of bed shortage, expressed as
the probability that the maximum number of COVID-19
patients in the ward and ICU exceeds a pre-specified safety
level. Several studies have demonstrated the Erlang loss
model (or M /G /c/c queue) to be suitable for dimensioning
of isolated wards (e.g., [5, 29]) and ICUs (e.g., [2, 6]).
Such models typically assume constant arrival rates and
LoS distributions. In our context, however, the LoSs of
patients may vary over time due to improved treatment,
arrivals of patients are non-stationary, and patients may
transfer between ward and ICU. In such settings with time-
varying load, a network of Erlang loss queues can well be
approximated by a network of infinite server queues [1,
19], either using a Pointwise Stationary Approximation or
a Modified Offered Load Approximation. The advantage
of this approximation is that it allows explicit evaluation
of performance measures. Hence, for our case, the most
suitable model is a network of two infinite server queues
with time-varying Poisson arrivals and generally distributed
time-varying LoSs. We build upon the results for networks
of infinite server queues as presented in [4, 19, 27] to
allow for time-varying arrival rates and patient-specific
time-varying LoS distributions.

With data on COVID-19 patients becoming more and
more available, prediction of the infection rate a few
days ahead of time [10, 31], and of the LoS [22] is
possible. Predictions of the number of hospitalised COVID-
19 patients based on regression methods are, e.g., reported
in [7, 8, 18]. The LoS distribution of COVID-19 ICU
patients in the United Kingdom is fitted to probability
distributions in [28]. Our model combines such predictions
to forecast the number of patients residing in the COVID-
19 ward and ICU. We have chosen to predict the arrival
rates and LoS directly from the hospital’s data warehouse
as external data does not represent the case mix of the
hospital. Our method requires a complete set of time stamps
for patient admissions, transfers and discharges that is made
available by the participating hospitals. We use a Richards’
curve [25] to predict the arrival rates. The Richards’
curve is a growth model that can be used to describe the
cumulative total number of hospitalised COVID-19 patients,
i.e., ward and ICU combined. The Richards’ curve was
introduced to describe processes in biological systems, but
has recently gained popularity in predicting the outbreak
of diseases. For instance, the Richards’ curve has been
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successfully applied to predict the daily number of new
COVID-19 infection cases in (provinces of) China and
countries in Europe [16, 31]. We estimate the distribution
of the LoS in both the COVID-19 ward and ICU using
a Kaplan-Meier estimator [13]. Analytical evaluation of
the exact expressions for the rates of the time-dependent
distribution of bed occupancy is prohibitive. Therefore, in
our forecasting algorithm we use a Monte-Carlo method
to sample from the LoS distributions. We forecast the
mean number of patients present and the risk of bed
shortage, expressed as the maximum number of COVID-
19 patients at the ward and ICU at a number of subsequent
days, including the corresponding prediction intervals. In
particular, we sample the patient trajectories in the Poisson
Arrival Location Model [19] that determines the queue
occupancy in our network of infinite server queues. As such,
our method may be viewed as a data-driven approach that
forecasts the number of hospitalised COVID-19 patients
based on estimated arrival rates and LoSs, justified by an
underlying queueing model. The algorithm is implemented
inR version 3.6.3 and first tested on data from the first
COVID-19 peak for four hospitals in the Netherlands. The
forecast is found to be very accurate.

Forecasting the number of hospitalised COVID-19
patients is difficult [12]. As stated above, various
approaches exist based on regression methods [7, 8, 10,
18, 31], and on estimation of the LoS [22, 28]. The key
to the accuracy of our forecast is that admissions are pre-
dicted according to a Richards’ curve, which is proven to be
an accurate predictor for the number of COVID-19 infec-
tions [16, 31], while the joint effect of the arrival rates
and the LoS is taken into account via the underlying net-
work of infinite server queues. This enables evaluation of
the future evolution of bed occupancy via the trajectories
of the Poisson Arrival Location Model, taking into account
patient admissions, transfers and discharges. The algorithm
currently runs in four hospitals to forecast the number of
hospitalised COVID-19 patients during the second peak the
Netherlands is currently facing.

This paper is organised as follows. Section 2 presents
our modelling assumptions and the network of two infinite
server queues that we propose to forecast the number
of hospitalised COVID-19 patients. Section 3 describes
the statistical forecasting approach used in our method,
and Section 4 presents forecasts using data of the first
COVID-19 peak in the Netherlands. Occupancy is most
easily forecast in a large hospital with a homogeneous
patient mix. In Section 4, we present forecasting results
for a medium-sized, academic hospital as well as for a
number of larger hospitals, and reflect on the accuracy
of our forecasts. Finally, Section 5 wraps up the paper
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with concluding remarks and our aims for further research:
extending our model to a regional model including patient
transfers between hospitals.

2 Model

Upon COVID-19 infection, some patients develop mild
or no symptoms, whereas others develop symptoms that
require hospitalisation at either the ward or Intensive
Care Unit (ICU) depending on, e.g., the need for
artificial respiration [11, 21]. While hospitalised, a patient’s
condition may worsen, resulting in a transfer from the ward
to the ICU or death, or a patient may recover, resulting in
a transfer from ICU to ward or a discharge from the ward.
Note that discharges from the ICU other than death are rare
and mainly correspond to transfer of the patient to another
hospital. Some patients admitted to the ward have treatment
restrictions that prohibit transfer from ward to ICU. As
COVID-19 is a relatively new disease, the evolution of
a patient’s condition and the effect of treatment are still
under investigation. A patient’s Length of Stay (LoS) at the
ward or ICU may depend on patient characteristics such
as age, gender, BMI and treatment restrictions, may differ
considerably between hospitals due to different treatment
protocols or differences in case mix, and may also change
over time due to, e.g., improved treatment [3, 21, 22].
Therefore, we estimate the distribution of the LoS and
the probability of patient transfers between ward and ICU
from the data on COVID-19 patients in the hospital’s data
warehouse. Arrivals of new patients are influenced by the
number of infections in the hospital’s region, and also by the
characteristics of the hospital, e.g., more severely ill patients
will be admitted to university medical centres, whereas less ill
patients may be treated in local hospitals and may be
transferred if their condition worsens. Therefore, we predict
the rate of admittance of COVID-19 patients from the
hospital’s data warehouse record of earlier admissions.
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Fig.1 Patient flows

Figure 1 depicts the flow of patients in the COVID-19 ward
and ICU.

We now develop a network of two infinite server queues
with multiple patient-types, time-dependent arrival process,
and general and time-dependent LoS that records the
number of hospitalised patients. Consider a hospital that
admits COVID-19 patients to its ward and ICU. The arrival
rate of patients is determined by the number infected in
the hospital’s region and a consequence of the infection
rate in that region. In agreement with arrivals to Emergency
Departments, the arrival process may be modelled as a
Poisson process with time-dependent rate [30]. Consider
a set C of patient characteristics, including, e.g., age,
gender, BMI, and treatment restrictions. Let patients with
characteristics ¢ € C arrive with rate A.(z), where ¢t denotes
time. A fraction p.(¢) of these patients is admitted to the
ward, the other patients are admitted to the ICU. Let random
variables L.y (¢) and L.;(¢) denote the LoS of a patient
with characteristics ¢ € C admitted or transferred to the
ward and ICU, respectively, at time ¢. Let g.w(¥), qc1(t)
denote the probability that a patient admitted or transferred
to the ward or ICU is discharged or dies, at time ¢. Then
1 — gew(t) and 1 — g7 (¢) are the probabilities of transfer
from ward to ICU and vice versa upon completion of the
LoS. We assume that patients do not interfere with each
other, hence that all random variables related to patients’
arrival, transfer, and LoS are independent.

Characteristics of a patient’s LoS and transfer probabil-
ities are related to the time the patient is admitted. As a
consequence, we may model the system as a network of two
infinite server queues with multiple job-types, time-varying
arrival rates and general LoS distribution. To this end, let
Ncw (t) and N, (t) record the number of patients with char-
acteristics ¢ at time ¢ in the ward and ICU, respectively.
These random variables have a time-dependent Poisson
distribution, for n.w,n.; =0,1,2...:

P[New (t) = new, Nep(t) = neyl
Pew "W Per (! oy 1)+ per (1)
new! ner! '

ey

where the means p.w (), pc;(t) are, in closed-form,
determined by A.(t), pc(t), Lew(t), Ler(t), qew(t) and
qc1(t), via the Poisson Arrival Location Model, as integrals
over a location function, see [19, Theorem 2.1]. If the LoSs
are exponentially distributed with rates pu.w and wo; at
the ward and ICU, then the means p.w (¢), pc7(t) may be
obtained from

1 dp.
L AW ® ) pe(t) + per (1 = ger(8)) = pew (©),
MHew dt
1 dp.
p l(t) = }L(r(t)(l - pc(t)) + ch(t)(l - QCW(I)) - p(,'I(t)’
Hel dt
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with initial conditions

pe1(0) = g, @

that reflect the current number of hospitalised patients in the
ward and ICU at the starting time 0 of our forecasting period
[4]. If the LoS has a general distribution not depending on
the arrival time of the patients, and transfer probabilities do
not depend on time, the means p.w (¢), pc7(¢) are obtained
as

pew (0) = ply,

t

pew (t) = E[ / Ajwuodu], A3)
t—Lcw
t

per () =E[ / ) Aj,w)du] @)
t—L¢y

with

Ay @ = r@pe@) +E[AL ¢ — L] (1= gep),
AL ) = A = pe®) + E 2L, ¢ —Lew)] (1—gew),

see [19, Theorem 1.2]. In our network of ward and ICU with
time-varying LoS and transfer probabilities, the expressions
for p.w (), pcr(t) are more involved. Moreover, the arrival
rates, LoS distributions and transfer probabilities are not
available in closed form, which prohibits evaluation of the
expectations in (3), (4). Therefore, we do not provide an
explicit expression for these means in the general case. In
Section 3 we provide an algorithm that predicts the arrival
rates and estimates the LoSs and transfer probabilities from
the hospital’s data warehouse. Subsequently, we use these
system parameters to sample the patient trajectories of the
Poisson Arrival Location Model resulting in a forecast of
pew (1), per(t) given the initial Poisson distribution of the
number of patients as reflected by the initial condition (2)
and the residual LoS of these patients.

Let Nw(t) = Y .New() and N;j(t) = ) . Nc(?)
record the total number of patients in the ward and ICU,
respectively, at time ¢. The distribution of Nw(f) and
Nj(t) is now readily obtained. These random variables
have a time-dependent Poisson distribution, for ny,n; =
0,1,2...
pw O™ pr )" e~ (owO+p1(@)

P[Nw () =nw, N;(t) =n;] = . | %)
ny! ny!

with

pw(®) =Y pew(®). pr(t) = per(t).

ceC ceC

Observe from (5) that at each time ¢ the random variables
Nw (t), Ny(t) are independent. However, for different time
points, say #; and t,, the random variables Ny (¢1), Nj(t2)
are correlated, see [19, Theorem 2.2].

The Poisson distributions for the number of hospitalised
patients (1), (5) allow us to evaluate various performance
measures. Let L(s) be a tuple that contains information on
the number of patients in the ward and ICU, their patient
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characteristics ¢, and the realised LoSs (up to time s) of
patients residing the ward and ICU at time s. First, we
forecast the occupancy at the ward and ICU at time s + ¢
given the LoSs of the residing patients at time s:

E[Nw (s +1) | L(s) = €],
E[N;(s +1) | L(s) = £]. (©6)

Furthermore, for a confidence level o € [0, 1], we are
interested in the quantiles

law (s + 1), raw(s +1), lar(s +1), rar(s +1) (N

such that
IP’[NW(S 1) € Uaw(s + 1), raw(s + 1)) | L(s) = e] > a,

P[NiG+0) € llarG+ 0 rars+0) L) =] 20 @)

These quantiles give level o prediction intervals for the
occupancy of the ward and ICU at time s + ¢, conditional
on all LoS information of the currently residing patients.
Second, we forecast the expected maximum occupancy at
the ward and ICU from time s up to time s + ¢ given the LoS
of the residing residents at time s:

]E|: max Nwy(u) | L(s) = Z] ,

uels,s+t]

]E[ max Nj(w) | L(s) = e} . ©)

uels,s+t

For some confidence level o € [0, 1], we are interested in
the quantiles

lamw (s +1), Tamw (s +1), lami(s +1), rami(s +1), (10)
such that

P|: max ]NW(M) € Uamw (s + 1), ramw(s +1)) | L(s) = e:| >a,

UE(s,s+t
IP’[ max Ni() € Uami(s +1), rami(s +1)) | L(s) = i] >a.(11)
uels,s

These quantiles give level o prediction intervals for the
maximum occupancy of the ward and ICU during the
interval [s,s + t], conditional on all LoS information of
the currently residing patients. This is of particular interest
for the decision to accept new COVID-19 patients. Other
performance measures, including the mixture of patients
in the ward and ICU at each time ¢, may be obtained
from (1).

3 On-line forecasting method

This section provides a procedure to predict the arrival
rates (Section 3.1) and estimate the LoS distribution and
transfer probabilities (Section 3.2) from the hospital’s
data warehouse. In Section 3.3 we use these system
parameters to sample the patient trajectories of the Poisson
Arrival Location Model resulting in forecasts of the daily
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occupancy and the maximum occupancy, including their
prediction intervals.

3.1 Richards’ curve to predict the arrival rate

Our forecasting method requires A(¢), the expected number
of arrivals of patients to the hospital at time #. In accordance
with literature [16] the cumulative rate follows a 5-
parameter Richards’ curve:

t
At) =/

where all parameters R, 4§, k, o are positive, resulting in
an S-shaped growth curve for the expected number of
arrivals up to time ¢t. The parameters have the following
interpretations: R represents the total number of arrivals
(indeed lim;_,oc A(#) = R), k is a scale parameter related
to the growth rate, #y determines the offset along the 7-
axis, § is a shape parameter that introduces asymmetry
and L is a left asymptote of A(¢z). While the proposed
method for estimating the arrival process is essentially data
driven, it also has links to epidemiological models. For
instance, if § = 1, the resulting growth curve is the logistic
growth curve that describes the fraction of infected people
in a Susceptible-Infected-Susceptible (SIS) compartmental
model [9].

The Richards’ curve is fitted on the cumulative number of
arrivals using the R package FlexParamCurve, version
1.5-5 [23] via the following procedure. Our goal is to
forecast the occupancy of the ward and ICU on a daily
basis. To this end, the number of arrivals of COVID-19
patients is determined for each day from the hospital’s
data warehouse. The parameters of the Richards’ curve
are estimated by minimising the sum of squared errors
between the cumulative number of arrivals on each day
and the expression in the right-hand side of (12) at
that day using the Levenberg-Marquardt algorithm, i.e.
the exact same procedure as in [31]. The Levenberg-
Marquardt algorithm is implemented in the R package
minpack.lm, version 1.2-1 [20].

For some sets of arrival data, the nonlinear least squares
method fails to converge due to over-parameterisation.
In this case, the procedure first fixes the parameter L
to 0 (leading to a 4-parameter Richards’ curve). If this
also does not lead to convergence, the parameter & is
fixed to 1, in which case the procedure fits a logistic
growth curve on the arrival data. This procedure results
in an estimate [\(d) for the expected cumulative number

R-L +L
[1+ §exp(—k(t — 19))]'/? '
(12)

A(s)ds =

of arrived COVID-19 patients on any given day d. This
daily estimate is then linearly interpolated to generate a
cumulative arrival intensity f\(t) which can be evaluated at
each time point 7. Let p denote the empirically estimated
probability p.(z) that a patient with characteristics ¢ is
admitted to the ward at time ¢, which is assumed stationary.
Let fc(t) be the empirically estimated fraction of patients
with characteristics ¢ that arrive directly to the hospital
at time r. The cumulative arrival rate [\c(t) of patients
with characteristics ¢ arriving directly to the hospital is
then estimated as Ac(t) = fc(t)f\(t) for all ¢, and the
cumulative arrival rates to the ward and ICU are estimated
as pe fo(OA@) and (1 — pe) fo () A(t) for all 1.

3.2 Kaplan-Meier estimation of the LoS distribution
and transfer probabilities

Our forecasting method requires the LoS distribution F,.w
at the ward and F,; at the ICU for all patient characteristics
c. We use the Kaplan-Meier estimator [13] for the survival
function that takes right-censored observations into account,
which occur when a patient is still at the respective
department or when a patient is transferred to another
hospital. Our goal is to forecast the occupancy at the ward
and ICU on a daily basis. The estimated LoS distribution
gives the probability that a patient is at the department at
most a certain number of days. Let e.w (v), resp. ecr(v),
denote the number of patients with characteristics ¢ at
the ward, resp. ICU, with a realised LoS equal to v. Let
new (v), resp. ney(v) denote the number of patients with
characteristics ¢ at the ward, resp. ICU, with a LoS at least
equal to v. These numbers are aggregated over arrival times
at the department to increase the sample size for the Kaplan-
Meier estimates. The Kaplan-Meier estimates for the LoS
distribution at the ward and ICU are then given by [13]:

14

A ecw (V)
Fow@) =1— 11— ),
w(t) g( ncW(U))
l
- ecr(v)
Fa)=1- 1— )
10 11( ncz(v>>

The Kaplan-Meier estimates are calculated using the R
package survminer, version 0.4-6 [14].

Our method also requires an estimate of the probabilities
gew (£) (gc1(£)) that a patient with characteristics ¢ and LoS
£ at the ward (ICU) is discharged or dies. Let FC 1w denote
the empirical probability that a patient with characteristics ¢
is transferred from the ICU to the ward after at most a LoS
of ¢ days at the ICU, and let ﬁCW 1(£) be defined similarly
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for transfers from ward to ICU. The probabilities g.w (£)
and g.j (¢) are estimated as

Fewi(€) — Fowr (€ = 1)

Gew(®) =1— — ~ ,
Few (&) — Few (£ — 1)
Ger(@) = 1— Ferw () — Feqw (£ — 1)
c - .

Fer(8) — For(€ —1)

3.3 Generation of the Poisson Arrival Location
Model and forecasting ward and ICU bed occupancy

This section presents our method to sample the patient
trajectories of the Poisson Arrival Location Model (PALM)
resulting in, for instance, forecasts of the conditional means
shown in (6). Our method simulates the PALM using Monte
Carlo sampling of arrivals, transfers and departures of
patients over the forecasting period [s, s +¢]. We restrict the
trajectories to:

1. patients admitted to the ward that leave the hospital
from the ward,

2. patients admitted to the ICU that leave the hospital from
the ICU,

3. patients admitted to the ICU, then transferred to the
ward and leave the hospital from the ward,

4. patients admitted to the ward, then transferred to the
ICU and leave the hospital from the ICU.

As a consequence, in our simulation method a patient may
visit at most two departments. This restriction is introduced
to reduce computational complexity as it avoids a large
number of possible patient trajectories. The restriction has
a minor effect on our results, as data shows that multiple
transfers are very rare during our forecasting horizon of at
most one week. In the description of our method below, we
identify the patient characteristics ¢ with the trajectories (i.e.
c € {1,2,3,4}). Note that randomly assigning patients to
these trajectories is probabilistically equivalent to random
selection of transfer or discharge/death upon completion of
the LoS at a department, see, e.g., [15, p. 64].

All parameters required for our sampling method are
obtained from the hospital’s data warehouse as presented in
Sections 3.1 and 3.2.

For each time u in the forecasting period [s, s+t], arrivals
of new patients with characteristics ¢ are sampled according
to a non-homogeneous Poisson process with cumulative rate
equal to ﬁcfc(u)f\(u) for the ward and (1 — ﬁc)fc(u)[\(u)
for the ICU, where the cumulative total arrival rate A(u)
is extrapolated from the Richards’ curve based on the
hospital’s data up to the start of the forecasting period at
time s. The sampling procedure is executed until the next
arrival time exceeds s 4 ¢. Sampling of inter-arrival times is
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executed by inverse transformation sampling based on the
cumulative arrival rates (see, e.g., [24, p. 312]).

Departure times are generated upon the arrival/transfer of
patients and is done by inverse sampling with replacement
under the estimated empirical LoS distributions for that
combination of patient characteristics and department.
These LoS distributions are estimated on all LoS data
obtained before the start of the forecasting period at time s.
Note that for this specification of patient characteristics, the
probability g.; (resp. gew) of transfer from the ICU to the
ward (resp. ward to ICU) is either always equal to zero or
equal to one, depending on the characteristics (trajectory) ¢
for that patient.

For patients residing at the hospital at time s, the
trajectory is first sampled based on the patient’s current
realised LoS ¢. Conditional sampling is based on the
ratio between Kaplan-Meier Survival function estimates of
general patients residing in the current department and the
Kaplan-Meier Survival function estimate of patients being
transferred to the other department. For instance, for a
patient currently residing at the ICU with current LoS equal
to £, the probability that this patient follows trajectory 3 is
equal to

prw (1 — F3pw (£0))
1 — Fr(Lo)

where F; isa Kaplan-Meier estimate of the LoS distribution
at the ICU for a general patient, i.e., estimated on all LoS
data at the ICU and p;w is the empirical (unconditional)
probability of going from the ICU to the ward.

The LoS for these currently residing patients is then
sampled from the empirical conditional LoS distribution for
the sampled patient’s type, where conditioning is based on
the already realised LoS. For example, if the patient follows
trajectory 3 and has a current LoS of ¢y days at the ICU,
the total LoS of this patient at the ICU is sampled from the
cumulative distribution:

F31w (€) — F3w (€o)
1 — F3rw(£o)

In order to keep track of the PALM, N;(s) and Nw (s) are
first determined. Then, at each simulated arrival, transfer
or departure before time s + ¢, the counters are updated
according to the nature of the event. This results in a
registered occupancy for both departments at each day
and time point in the forecasting period [s,s + #]. The
realisation and forecast of the occupancy at a given day at
a department is now calculated as the number of patients at
the department at the start of that day (i.e., at that day at
midnight, but another time point may easily be incorporated
in our method).

Frw (€]€o) = Ve > .
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The simulation procedure is repeated 1,000 times in order
to accurately estimate the statistics mentioned at the end of
Section 2. In order to estimate the expected values at day
s + t in (6), the average of the number of patients on day
s + ¢ at both departments is taken over all simulations runs.
Next, in order to estimate the boundaries in (7) for a given
day s 4+ ¢, the respective empirical quantiles are taken over
the simulated occupancy on that day for both departments.
Furthermore, in order to determine the expressions in (9)
and (10), the maximum occupancy is determined for both
departments from the forecast day (time s) until the end of
the forecasting horizon (time s + ¢). Then, to determine (9)
and (10), the empirical mean and quantiles are determined.

4 COVID-19 bed occupancy: case studies
and evaluation

This section presents the results of our forecasting method
detailed in Section 3 for four Dutch hospitals. Section 4.1
presents results for the Leiden University Medical Cen-
tre (LUMC), a medium-sized academic hospital. Subse-
quently, we present results for the larger general hospi-
tals HagaZiekenhuis (Section 4.2), Rijnstate (Section 4.3),
and Elisabeth-TweeSteden Ziekenhuis (Section 4.4). In
Section 4.5, we compare these forecasts, elaborate on the
quality of our forecasts and provide a statistical evaluation
of our forecasting method.

Our forecasting method requires a complete record of
time stamps for patient admissions, transfers and discharges
that we obtained from all hospitals included in this paper.

Figure 2 shows an extract of the input table, where the
name of the hospital, patient identification number, as well
as patient characteristics have been removed for privacy
reasons. The rows of this table describe the trajectory of
the patient at either the ward or the ICU. The patient ID
is replaced by a number in the first column. The next two
columns describe the Origin and Destination of the patient
before and after his/her stay at the current department, while
the last column indicates whether the current department is
ICU (yes) or ward (no). The fourth and fifth columns give
information about the start and end time of the patient’s stay
at the current department. In this table, the trajectory of the
patient is explicitly characterised. For example, patient nr. 5
is admitted to the ICU on March 15 at 22:15 from his/her
own home environment, transferred to the ward on March
16 at 13:51 and discharged from the ward to return to his/her
home environment on March 18 at 14:49.

Using the method described in Section 3.3, the PALM is
simulated 1,000 times. In Figs. 3, 4, 5 and 6, performance
measures of the true occupancy (at the start of each
day, depicted in red) are compared with these measures
forecast by our method. Figures 3—6 report estimates of the
following performance measures:

1. Forecasts of the daily bed occupancy at the ward and
ICU:

E[Nw (s +1) | L(s) = 4],
BNy (s + 1) | L(s) = 4]. (13)

These forecasts are obtained by taking the average of
the occupancy at time ¢ 4 s for both departments over

Patient Origin Destination | datetime start datetime end stay at ICU
1 Home Care facility (other) 5-3-2020 22:06 3-4-202011:13 no
2 Home Care facility (rehabilitation) 15-3-2020 16:38 6-4-2020 11:42 no
3 Home Home 15-3-2020 16:21 16-3-2020 18:39 no
4 Home ICU 15-3-2020 20:19 18-3-2020 10:43 no
4 Ward Deceased (without autopsy) 18-3-2020 10:43 6-4-2020 23:03 yes
5 Home Ward 15-3-2020 22:15 16-3-2020 13:51 yes
5 ICU Home 16-3-2020 13:51 18-3-2020 14:49 no
6 Home Care facility (other) 16-3-2020 18:58 27-3-202011:11 no
7 Home ICU 17-3-2020 02:00 24-3-2020 10:23 no
7 Ward Other hospital 24-3-2020 10:23 26-3-2020 03:27 yes
8 Home Home 18-3-2020 01:15 22-3-2020 14:00 no
9 Home Deceased (without autopsy) 18-3-2020 03:10 5-4-2020 03:00 yes
10 Home Home 18-3-2020 21:52 19-3-2020 21:08 no
11 Home ICU 19-3-2020 00:16 30-3-2020 00:08 no
11 Ward Deceased (without autopsy) 30-3-2020 00:08 7-4-2020 12:25 yes
12 Home Home 19-3-2020 11:54 27-3-2020 21:43 no

Fig.2 Extract of the input data for our model, where the name of the hospital, patient identification number, as well as patient characteristics such
as age, gender and BMI have been removed for privacy reasons. Care facility denotes a long term care facility outside the hospital
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all 1,000 PALM simulations, given all information L(s)
on the LoSs up to time s.

A forecast of the daily bed occupancy can be
used by the hospital to obtain insight in the expected
occupancy at both COVID-19 ward and ICU at any
given day. Furthermore, when considering multiple
forecast horizons ¢, the forecasts give insight into the
expected evolution of the occupancy over time.

2. A 95% prediction interval for the daily occupancy at
ward and ICU.
This is the estimator of the expressions in (8) for o =
0.95. The quantiles are estimated by calculating the
empirical quantiles for level 97.5% and 2.5% of the
occupancy at both departments at time ¢ + s over all
1,000 PALM simulations.

This performance measure gives insight into how
much capacity is needed for COVID-19 patients on a
given day s 4 ¢ at both departments and can hence be
used for daily capacity planning. In this paper, the level
95% is chosen, which can be modified according to the
hospital’s risk preferences.

3. Forecasts of the maximum bed occupancy at the ward
and ICU within the forecasting period:

E [ max Nw @) | L(s) = z} ,

u€ls,s+t]
fE[ max N,(u)|L(s)=e]. (14)
uels,s+t]

These forecasts are obtained by taking the average of
the maximum occupancy realised for all 1,000 PALM
simulations in the forecasting period [s, s + ¢] for both
departments.

The expected maximum occupancy in a certain
forecasting period [s,s + t] expresses the risk of
overcrowding of the ward and ICU in the next ¢
days. These forecasts can be used to forecast the
required number of available beds in the coming days.
The expected maximum occupancy is an important
performance measure to control admittance of COVID-
19 patients to a hospital at both ward and ICU.

4. A 95% prediction interval of the maximum bed occupancy
at the ward and ICU within the forecasting period.
This is the estimator of the expressions in (11) where
a = 0.95. The quantiles are estimated by calculating
the empirical quantiles for level 2.5% and 97.5% of the
realised maximum occupancy at both departments in
the forecasting period over all 1,000 PALM simulations.

Similar to the expected maximum occupancy, the
prediction interval for the maximum occupancy gives
insight into the risk of overcrowding the ward and ICU.
It can be used to control admittance or plan capacity at
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both departments during the forecasting period. In this
paper, the level 95% is chosen, which can be modified
according to the hospital’s risk preferences.

In the following sections, six graphs are shown for
each hospital. The left-hand graphs consider occupancy
at the ICU and the right-hand graphs consider occupancy
at the ward. For all graphs, the patients transferred
from other hospitals are excluded from the calculation
of the occupancy. This is because the predicted arrival
rate only pertains to autonomous arrivals to the hospital.
The forecasts are obtained using an expanding window
procedure. This means that for each day, forecasts are
generated using only the available data (e.g. arrivals,
transfers and departures) up to that day. After calculating
the performance measures given all information up to day s,
the forecast day is incremented by one day, i.e., s — s + 1
and new forecasts are generated using all data up to that
new day. This procedure is continued until the end of the
pre-specified range of s is reached.

In the graphs in the top row, expanding window
forecasts of the daily occupancy are shown for each day s.
Furthermore, for each day s, the forecast at day s — ¢ of the
occupancy at day s is shown for forecast horizons ¢. The
realised occupancy at those days is shown in red. In the top
row, the forecasts are shown without prediction intervals.
For the LUMC, forecasts for horizons t = 1, 2, 3 and 5 days
are shown. For the other hospitals, forecasts for the horizons
t = 1 and 3 are shown only, to enhance the clarity of the
graphs. The colours for forecast horizon t = 1,2,3 and 5
are orange, cyan, blue and purple, respectively. The graphs
in the middle row display the expanding window forecasts
for daily occupancy at forecast horizon ¢+ = 3 including the
95% prediction interval. The graphs in the bottom row show
the expanding window forecasts of the expected maximum
occupancy, including the 95% prediction interval for a
forecast horizon of t = 3 days.

4.1 Leiden University Medical Centre

Leiden University Medical Centre (LUMC) is an academic
hospital in Leiden. Together with the other general hospitals
in the region, it serves a community of around two million
people in an urban area in the south-west of the Netherlands.
The main focus of the LUMC is top clinical and highly
specialised care. It is the smallest and oldest of the eight
academic hospitals in the Netherlands.

Figure 3 presents our forecasts for the LUMC for the
period April 15,2020 until July 10, 2020, the second part of
the first COVID-19 peak in this region. The first COVID-
19 patient arrived at the LUMC on March 3, 2020. Hence
at the start of the forecast interval, 1.5 months of data
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Fig. 4 HagaZiekenhuis March 30, 2020 until July 10, 2020. Top row:
expanding window forecasts 1 and 3 days ahead at the COVID-19
ICU (left) and ward (right). Middle row: expanding window forecasts
3 days ahead at the COVID-19 ICU (left) and ward (right), along with
a 95% prediction interval. Bottom row: expanding window forecasts
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Fig.5 Rijnstate March 30, 2020 until July 10, 2020. Top row: expand-
ing window forecasts 1 and 3 days ahead at the COVID-19 ICU (left)
and ward (right). Middle row: expanding window forecasts 3 days
ahead at the COVID-19 ICU (left) and ward (right), along with a
95% prediction interval. Bottom row: expanding window forecasts of

the maximum occupancy, including the 95% prediction interval and
realised maximum occupancy of patients at the COVID-19 ICU (left)
and ward (right) over the last 3 days. The realised occupancy is shown
in red, while the forecasts for 1 and 3 days ahead are shown in orange
and blue respectively
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Fig. 6 Elisabeth-TweeSteden Ziekenhuis March 23, 2020 until July
10, 2020. Top row: expanding window forecasts 1 and 3 days ahead
at the COVID-19 ICU (left) and ward (right). Middle row: expanding
window forecasts 3 days ahead at the COVID-19 ICU (left) and ward
(right), along with a 95% prediction interval. Bottom row: expanding
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is available on the arrival rates and LoSs of COVID-19
patients, including 99 (30) COVID-19 patients that had left
the ward (ICU) before then.

4.2 HagaZiekenhuis

HagaZiekenhuis (Haga) is a top clinical hospital in The
Hague with 600 beds and approximately 29,000 inpatient
admissions per year. Next to secondary care, top clinical
hospitals in the Netherlands also provide tertiary care for
particular patient groups that the hospital specialises in.
Moreover, top clinical hospitals play an important role in
the education of medical professionals, and perform clinical
research. Haga is located in the same urban area in the
south-west of the Netherlands as the LUMC.

Figure 4 presents our forecasts for Haga for the period
March 30, 2020 until July 10, 2020, the second part of the
first COVID-19 peak in this region. The first COVID-19
patient arrived at Haga on March 5, 2020. Hence at the start
of the forecast interval, 25 days of data is available on the
arrival rates and LoSs of COVID-19 patients, including 40
(5) COVID-19 patients that had left the ward (ICU) before
then.

4.3 Rijnstate

Rijnstate is a top clinical hospital in Arnhem with 766 beds
and approximately 33,000 inpatient admissions per year.
Rijnstate serves a community of 450 thousand people in and
around Arnhem, a city in the east of the Netherlands.

Figure 5 presents our forecasts for Rijnstate for the period
March 30, 2020 until July 10, 2020, the second part of the
first COVID-19 peak in this region. The first COVID-19
patient arrived at Rijnstate on March 3, 2020. Hence at the
start of the forecast interval, approximately one month of
data is available on the arrival rates and LoSs of COVID-19
patients, including 157 (7) COVID-19 patients that had left
the ward (ICU) before then.

4.4 Elisabeth-TweeSteden Ziekenhuis

Elisabeth-TweeSteden Ziekenhuis (ETZ) is a top clinical
hospital in Tilburg with 782 beds and approximately 37,000
inpatient admissions per year. Tilburg is a city in North-
Brabant, the province that experienced the initial outbreak
of COVID-19 in the Netherlands at the end of February,
2020. As a consequence, ETZ was the first Dutch hospital
to admit a COVID-19 patient. Just like HagaZiekenhuis and
Rijnstate, ETZ is a top clinical hospital.

Figure 6 presents our forecasts for ETZ for the period
March 23, 2020 until July 10, 2020, the second part of
the first COVID-19 peak in this region. The first COVID-
19 patient arrived at ETZ on February 28, 2020. Hence at

the start of the forecast interval, almost one month of data
is available on the arrival rates and LoSs of COVID-19
patients, including 104 (24) COVID-19 patients that had left
the ward (ICU) before then.

4.5 Evaluation of our method

In this section, we discuss the results presented in
Sections 4.1-4.4. Moreover, we compare the performance
of our forecasting method to the performance of a moving
average forecaster for all four hospitals.

When investigating trends in the COVID-19 occupancy
during the first peak, we see a very similar trend for the LUMC
(Fig. 3) and Haga (Fig. 4), which is natural as these two
hospital are located in the same region. ETZ (Fig. 6) has
the earliest and highest peak and also admitted the highest
total number of COVID-19 patients, because ETZ is located
in North-Brabant, the region that was hit first and hardest
during the first COVID-19 peak in the Netherlands. In
Rijnstate (Fig. 5) the first COVID-19 peak ended the latest.

Naturally, the accuracy of forecasts increases when
forecasts are made at a point in time that is closer to the
actual realisation. This can clearly be seen in the top rows
of Figs. 3-6. In particular, the top row of Fig. 3 shows
that our expanding window forecasts 1 day ahead are very
accurate, while the accuracy reduces for forecasts 5 days
ahead. One of the reasons is that the 1-day forecast is able
to pick up sudden changes in the trend the next day, whereas
this obviously takes five days for the 5-day forecast. This
is, for example, visible in the top-right graph of Fig. 3
when, mid-May, the downward trend changes to a sudden
peak. Similar effects are visible in the same graph end-
May and also in Figs. 4-6 with a sudden decline in the
number of hospitalised patients. This delay in picking up
sudden changes in the trend also results in larger over- or
undershoots for the forecasts further into the future.

The top and middle rows of Figs. 3—6 also show clearly
that the accuracy of forecasts increases for larger population
sizes. ETZ has seen the highest number of COVID-19
patients on its ward and ICU during the first peak, and
indeed the middle row of Fig. 6 displays narrow confidence
intervals that often contain the realisation. LUMC (Fig. 3)
and Rijnstate (Fig. 5) saw the smallest number of COVID-
19 ward and ICU patients, respectively, resulting in
broader confidence intervals that contain the realisation less
often.

In contrast to the forecasts of the daily occupancy that we
just discussed, the forecast of the maximum occupancy 3 days
ahead of time is very close to the realisation, as displayed in
the bottom rows of Figs. 3—6. This is exactly the forecast that
is most valuable for hospitals, as it provides quantitative sup-
port for several decisions, for example on the admittance of
additional COVID-19 patients, the necessity of COVID-19
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patient transfers to other hospitals, and the (im)possibility
of providing care for non-COVID-19 patients.

Table 1 displays error measures for our forecasting
method and also for a moving average forecaster, which
enables us to compare the results. For the moving average
forecaster, the average occupancy over the last week is used
as forecast of the daily occupancy for several horizons ?.
Error measures for the expected maximum bed occupancy
are not displayed, as it is not straightforward to forecast the
maximum occupancy using a moving average.

To increase the reproducibility of the comparison, the
results for our forecasting method are averaged over 10 eval-
uations, i.e., 10 repetitions of the expanding window pro-
cedure. The maximal standard deviation in the results,
taken over all departments and hospitals, was 0.02, which
shows that there is little variation over different evaluations.

Using a 95% two sided confidence interval based on
Student’s t-distribution (df = 9), it holds that a difference in
error values between the moving average forecaster and our
forecast method exceeding 1.833 ~0.02/\/1_ ~ (0.012 is sta-
tistically significant with respect to the noise over different
evaluations.

The columns ‘CR’ (coverage rate) indicate how often
the realised bed occupancy was covered by the 95% pre-
diction interval. For the ICU, this happened in 78 — 99%
of cases. The lower coverage rate at the ward, resulting
from narrow prediction intervals, is most likely due to the
fact that we do not incorporate the uncertainty about the
estimated LoS distributions and predicted arrival rates in
our prediction intervals, which would widen these intervals
resulting in increased coverage rate. Most of the occupancy
in the ward is due to direct arrivals to the hospital, while

Table 1 Results for our forecasting method (average over 10 simulation runs of 1,000 replications per hospital) compared to a moving average

forecaster for the occupancy at the departments of the hospitals

Forecast Mov. av. forecaster

ICU Ward ICU Ward

CR bias MAE CR bias MAE bias MAE bias MAE
LUMC
1 day ah. 0.96 0.07 0.30 0.57 —0.34 1.04 0.41 0.73 0.37 1.52
2 days ah. 0.94 0.10 0.51 0.64 —0.69 1.29 0.47 0.86 0.58 1.67
3 days ah. 0.90 0.12 0.67 0.67 —0.99 1.66 0.53 0.98 0.71 1.85
5 days ah. 0.95 0.11 0.91 0.65 —1.47 1.96 0.66 1.22 0.98 2.14
Max. 3d. ah. 0.84 0.26 0.53 0.21 —0.35 1.33 - - - -
Haga
1 day ah. 0.93 0.13 0.62 0.76 —-0.76 1.54 0.50 0.94 1.29 2.68
2 days ah. 0.94 0.16 0.89 0.75 —1.54 243 0.65 1.11 1.60 3.05
3 days ah. 0.94 0.15 1.03 0.66 —2.23 3.09 0.78 1.26 1.93 3.46
5 days ah. 0.94 0.21 1.41 0.58 —-3.03 4.25 1.03 1.52 2.54 4.26
Max. 3d. ah. 0.78 0.31 0.76 0.19 —0.18 1.69 - - - -
Rijnstate
1 day ah. 0.98 0.19 0.59 0.80 —0.27 3.58 0.50 0.85 2.68 475
2 days ah. 0.97 0.32 0.84 0.77 —1.05 4.78 0.63 1.00 3.26 5.21
3 days ah. 0.99 0.42 0.96 0.70 —1.68 5.79 0.77 1.13 3.85 5.69
5 days ah. 0.97 0.55 1.18 0.72 —3.30 6.93 1.01 1.36 5.09 6.55
Max. 3d. ah. 0.81 0.45 0.94 0.40 0.48 4.00 - - - -
ETZ
1 day ah. 0.97 —0.13 0.88 0.84 0.22 1.77 0.49 1.70 2.60 3.56
2 days ah. 0.94 —0.28 1.29 0.81 0.43 3.07 0.68 1.99 3.21 4.19
3 days ah. 0.94 —0.44 1.69 0.78 0.75 4.34 0.92 2.25 3.82 4.72
5 days ah. 0.90 —0.82 2.39 0.72 0.65 6.10 1.44 2.65 5.17 5.73
Max. 3d. ah. 0.78 0.24 1.13 0.28 1.74 2.84 - - - -

CR: coverage rate of the occupancy by the 95% prediction interval, bias:
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the uncertainty was seen to be highest for the arrival rate
predictions. Observe from Figs. 3-6 that when the predic-
tion interval does not cover the realisation, it is mostly
very close to the realisation. The bias is calculated as the
average of ‘forecast minus realised’. Hence, the closer to
zero the better. For the ICU, the absolute bias of our fore-
cast is always lower than 1, and lower than the bias of
the moving average forecaster. For the ward, the negative
bias indicates that our forecast is slightly too low on aver-
age. For the wards at ETZ and Rijnstate, which admitted
the highest numbers of patients, the bias of our forecast
is much lower than that of the moving average forecaster.
The mean absolute error (MAE) of our forecast is again
close to zero for the ICU, and lower than that of the
moving average forecaster for all hospitals. For the ward,
the MAE of our forecast is lower than that of the moving
average forecaster, except for horizons 3,5 at Rijnstate and
horizon 5 at ETZ. In conclusion, our forecasting method
often outperforms the moving average forecaster. Moreover,
our forecasting method is richer as it also produces pre-
diction intervals and generates forecasts for the maximum
occupancy that are very close to the realisation.

To summarise, our forecasting method shows to be very
accurate, which has convinced hospitals to embrace our

CovID-19

o8 Netwerk
,& Acute Zorg

Datum filter Bedbezetting COVID-19 LUMC

forecasting method and incorporate it in their COVID-19
control or capacity dashboard (see Fig. 7).

5 Discussion and conclusion

In this paper, we have presented a data-driven approach that
forecasts the number of hospitalised COVID-19 patients
in the ward and the ICU based on predicted arrival rates
and estimated LoSs, justified by an underlying network of
infinite server queues driven by a Poisson Arrival Location
Model (PALM). As demonstrated in Section 4, that reports
the results of our method for the first COVID-19 peak,
the forecasts produced by our method are very accurate.
In particular, the forecasts of the maximum occupancy in
the ward and the ICU three days ahead are very close to
the realisation. This enables hospitals to make informed
decisions about whether or not to admit additional COVID-
19 patients at their ward or ICU. Indeed, our forecasts
are currently being used in four Dutch hospitals during
the second COVID-19 peak the Netherlands is facing.
For example, the LUMC has incorporated our forecasting
graphs in their capacity dashboard (see Fig. 7), which is now
being reviewed on a daily basis by their physicians.
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Fig. 7 The LUMC capacity dashboard, with our forecasts of the bed occupancy incorporated in the darker (right) part of the top-left graph

provided with the prediction interval (green and red)
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Fig.8 Left: the number of daily infections in ROAZ region NAZ West
and the trend given by our prediction method using the Richards’
curve fitted on the (cumulative) daily number of infections. Right: the
daily number of autonomous direct arrivals to the LUMC. The trend

We have modelled the ward and ICU as a network of
infinite server queues. Clearly, the number of beds at the
ward and ICU are finite so that a network of Erlang loss
queues seems a more natural model. However, as we are
interested in forecasting the risk of bed shortage due to
autonomous patient arrivals, expressed as the probability
that the maximum number of COVID-19 patients in
the ward and ICU exceeds a pre-specified safety level,
a network of infinite server queues without capacity
restrictions on the maximum number of patients present in
the ward and ICU is more natural. In addition, also for
the forecast of the number of patients present in the ward
and ICU the network of infinite server queues yields a
good approximation of the network of Erlang loss queues,
as supported by literature and by the accuracy of our
forecasts.

The daily number of autonomous arrivals is predicted
using a Richards’ curve estimated using the Levenberg-
Marquardt algorithm. Just as in [31], we observed that for
early stage data, the algorithm suffers from instability due
to the fact that some of the characteristics of the curve
cannot be estimated well for such data sets. The proposed
solution in [31] is to forecast very early stage arrivals using
an exponential curve, and to forecast the other early stage
arrivals using the logistic curve. For all of the scenarios
evaluated in this paper, the algorithm was able to estimate
parameters for either the Richards’ or the logistic curve,
hence exponential extrapolation was not implemented.
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and 80% prediction interval given by our forecasting method using
the Richards’ curve fitted on this arrival data is also shown for the
LUMC. Both plots are shown for the period starting from 8-07-2020
until 14-10-2020

Our model takes into account patient characteristics.
However, in practice, patient characteristics are often
not available or only available for a subset of patients.
Therefore, in our generation of the PALM, the patient
characteristics only describe the paths these patients will
follow through the system, and hence do not take further
patient characteristics and entrance times into account.
Despite the fact that we do not incorporate further patient
characteristics such as age, gender, and BMI, our results
yield accurate forecasts of the number of patients in
the ward and ICU. Additional patient characteristics are
included in our model. The impact of additional patient
characteristics on the LoS and transfer probabilities is an
interesting topic for future research.

Now that we have developed a forecasting method that
enables informed decision-making for individual hospitals,
in future research we aim to build on this method to develop
a regional model. Our regional model will not only forecast
the COVID-19 occupancy in several hospitals, but also use
these forecasts to provide decision support for proactively
transferring COVID-19 patients from one hospital in the
region to another when the first faces a risk of overcrowding.
In our regional model, we will apply a Richards’ curve to
predict the daily regional number of COVID-19 patients
that require hospitalisation, instead of autonomous direct
arrivals to each of the hospitals, as this provides an accurate
approximation at the regional level. Figure 8 shows the
Richards’ curve for the LUMC and for the region NAZ
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West that contains the LUMC. As we aim for a model
that provides decision support for patient transfers between
hospitals in the region, interaction between the hospitals
clearly plays a major role. Therefore, we plan to combine
our current research with earlier work on managing the
overflow of ICU patients within a region [17], where we
may invoke the Modified Offered Load approximation [,
19] to take into account the capacity constraints on the
number of available beds in the hospitals.

Given the quality of our forecasts and the swift
implementation of our forecasting method in four Dutch
hospitals, we are confident that hospitals will also embrace
our regional model. As such, the outlook is that we can
provide decision support for one of the major COVID-
19 challenges in the Netherlands — transferring COVID-19
patients between hospitals.

More information on the forecasting method, access to
the code and related research can be found on: www.
utwente.nl/en/choir/research/Covid19-wardICU/.
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