Skip to main content
. 2020 Oct 6;59(3):245–250. doi: 10.1097/MLR.0000000000001421

TABLE 2.

Performance Metrics of Machine Learning Models

Model Dataset Sensitivity (%) Specificity (%) PPV (%) NPV (%) TPP (n) AUC
LR Training* 7.2±0.7 99.6±0.1 50.2±7.4 95.4±0.2 73.6±16.5 0.842±0.011
Testing 9.7 99.6 53.3 95.7 107 0.836
RF Training 15.0±0.8 99.2±0.1 50.3±2.6 95.7±0.2 149.6±13.0 0.859±0.007
Testing 15.1 99.1 46.1 96.0 193 0.848
ANN Training 18.8±10.2 98.9±0.8 50.0±7.3 95.9±0.6 202.8±121.6 0.867±0.005
Testing 3.6 99.9 53.8 95.5 39 0.845
SGD Training 4.2±2.5 99.8±0.2 50.0±7.2 95.2±0.4 43.0±26.3 0.826±0.010
Testing 2.2 100.0 72.2 95.4 18 0.819
NB Training 8.5±1.3 98.9±0.3 28.4±3.4 95.4±0.2 151.8±33.5 0.824±0.011
Testing 8.3 98.5 21.0 95.6 223 0.800
SVM Training 0.1±0.1 100±0.0 16.7±21.1 95.1±0.3 1.6±0.8 0.755±0.010
Testing 0.2 100 25 95.3 4 0.729
DT Training 24.2±1.5 95.0±0.3 20.1±0.9 96.0±0.3 600.4±37.0 0.596±0.008
Testing 24.9 94.6 18.5 96.3 793 0.598

Data are presented as mean±SD unless indicated otherwise.

*

Performance metrics are obtained from 5-fold cross-validation.

ANN indicates artificial neural network; AUC, area under the receiver operating characteristic curve; DT, decision tree; LR, logistic regression; NB, naive Bayes; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; SGD, stochastic gradient descent; SVM, support vector machine; TPP (n), total positive prediction number.