
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Biomedical Engineering
Recent advances in carbon nanomaterials for
biomedical applications: A review
Parand R. Riley1 and Roger J. Narayan2
Abstract

With the emergence of new pathogens like coronavirus dis-
ease 2019 and the prevalence of cancer as one of the leading
causes of mortality globally, the effort to develop appropriate
materials to address these challenges is a critical research
area. Researchers around the world are investigating new
types of materials and biological systems to fight against
various diseases that affect humans and animals. Carbon
nanostructures with their properties of straightforward func-
tionalization, capability for drug loading, biocompatibility, and
antiviral properties have become a major focus of biomedical
researchers. However, reducing toxicity, enhancing biocom-
patibility, improving dispersibility, and enhancing water solubi-
lity have been challenging for carbon-based biomedical
systems. The goal of this article is to provide a review on the
latest progress involving the use of carbon nanostructures,
namely fullerenes, graphene, and carbon nanotubes, for drug
delivery, cancer therapy, and antiviral applications.
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Introduction
Selecting the appropriate materials for drug delivery,
cancer therapy, and antiviral applications has been a
challenge for biomedical researchers. Carbon nano-
materials have appealing properties for many biomedical
applications because of the diversity in their structures,
www.sciencedirect.com
large ratios of surface area to volume, facile functional-
ization, unusual optical properties, and biocompatibility
[1]. The diversity of nanoscale carbon structures is

impressive. In nanoscale dimensions, carbon nanotubes
(CNTs), graphene, fullerenes, carbon dots (CDs),
graphene quantum dots (GQDs), carbon fibers (CFs),
nanodiamonds, carbon nanoonions, and amorphous
carbon nanostructures represent alternative structures
and allotropes of only one element, carbon [2,3]. The
classification of carbon nanomaterials is typically deter-
mined by the number of dimensions exceeding nano-
scale (100 nm) [4]. Accordingly, CDs, GQDs, and
fullerenes are zero-dimensional nanomaterials. CNTs
and CFs are classified as one-dimensional nanomaterials,

and layered structures like graphene are classified as
two-dimensional nanomaterials. Finally, nanodiamonds
are classified as three-dimensional carbon
nanostructures.

Fullerenes were first discovered in 1985; the inventors of
this new carbon allotrope won the 1996 Nobel Prize in
Chemistry [5]. This achievement is considered as rev-
olutionary in the synthesis of carbon allotropes [2].
Fullerenes are sp2-carbon-atom cages of different sizes
with single or double bonds (Figure 1) [6]. Fullerenes

enjoy the highest symmetry among the various carbon
nanostructures and thus exhibit a high structural and
chemical stability. Fullerene surfaces can be decorated
with various functional groups for targeted delivery in
drug delivery, diagnosis, imaging, and biosensing appli-
cations [1,6]. The photoelectrochemical properties of
fullerenes, particularly C60, make them suitable for
photodynamic therapy [7]. Fullerenes are hydrophobic;
the low solubility of fullerenes in polar solvents such as
water is an obstacle to their use in biomedical applica-
tions, and numerous methods, including synthesizing

fullerene derivatives, have been used to overcome this
obstacle [6,7].

Graphene is an individual layer of densely packed sp2

carbon atoms. The hexagonal arrangement of this ma-
terial is indicated in Figure 1 [1]. Geim and Novoselov
described the synthesis and characterization of this
carbon nanostructure in 2004 [8]; thy were recognized
for this effort with the 2010 Nobel Prize in Physics. In
comparison with bulk structures, this nanostructure has
a large relative surface area. Graphene can be func-
tionalized chemically and dispersed in different sol-

vents, including water. It has a great electrical and
thermal conductivity as well as unique optical properties
Current Opinion in Biomedical Engineering 2021, 17:100262
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Figure 1

The schematic of main carbon nanostructures: fullerenes (C60, C70), graphene, and carbon nanotubes (SWCNTs and MWCNTs).
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[1,9]. In graphene, all the atoms are located on the
surface, which provides locations for attachment for
many types of biomaterials [9]. Graphene endowed with
all these features is a great candidate for biosensing,
drug delivery, tissue engineering, genetic engineering,
bioimaging, and therapeutics [1,9].

CNTs, as the cylindrical form of fullerenes, are rolled
graphene sheets (Figure 1); these materials consist of
single or multiple graphene layers called single-walled
carbon nanotubes (SWCNTs) and multiwalled carbon
nanotubes (MWCNTs), respectively [1]. Initially, CNTs
were reported in 1991 by Iijima, who synthesized ful-
lerenes through the arc discharge method [10]. CNTs
are stretchable and flexible with excellent strength [11].
They have high electrical and thermal conductivity as
well as significant chemical reactivity. There are some

barriers that impede CNTs from large scale use such as
the absence of a technique to synthesize CNTs with a
repeatable structure for mass production [11].

The use of carbon nanostructures for treating new vi-
ruses such as coronavirus disease 2019 (COVID-19) and
established ones such as Ebola virus along with cancer
has been a focus of recent research activity. Several
studies on the use of carbon nanostructures for COVID-
19 therapy have recently been published. Numerous
researchers have tried to bring the carbon-based mate-

rials closer to clinical drug delivery applications through
functionalization and conjugation of carbon nano-
structures with biological molecules. In this article, we
will focus on the latest studies that involve the use of
Current Opinion in Biomedical Engineering 2021, 17:100262
graphene, fullerene, and CNTs for advanced drug de-
livery, cancer therapy, and antiviral applications.

Drug delivery and cancer therapy
The biodistribution, pharmacokinetics, and excretion
properties of the compound play a vital role in the ef-
ficacy of the drug delivery system [12]. Carbon nano-
structures are attractive candidates for drug delivery
systems because of their dimensions being close to

those of viruses and other biological structures. Carbon
nanostructures may linger inside biological structures
with poor drainage (e.g. tumors), whereas they may not
linger inside healthy cells with normal drainage [13]. As
carbon nanostructures may be functionalized in a
straightforward manner, they may be conjugated with
chemotherapeutic agents, antibodies, antitumor drugs,
and other therapeutic agents [3,13].

Fullerenes
Numerous derivatives of fullerenes with improved water

solubility for advanced drug delivery systems have been
developed. The size of fullerenes together with their
amphiphilicity enable them to penetrate almost all
biological entities and barriers. Conjugated fullerenes
may be used for localized drug delivery, which avoids
damage to other body organs. For instance, ibuprofen is a
common prescribed drug for pain relief and inflamma-
tion with side effects such as gastrointestinal hemor-
rhage, ulcer, digestive aggravation, and vomiting when it
is consumed orally. Recent density functional theory
(DFT) calculations show that C60 fullerenes with a

porphyrin-like transition metal-N4 can be used as
www.sciencedirect.com
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Carbon nanomaterials for biomedical applications Riley and Narayan 3
ibuprofen carriers. Quantum studies confirmed the
release of the drug in the acidic environment of un-
healthy cells [14].

The use of fullerenes for nucleic acid delivery systems
has receiving attention recently. In a recent
in vitro study, tetra(piperazino)[60]fullerene epoxide
(TPFE) was used for stabilization and delivery of un-

stable siRNA molecules [15]. In vivo studies have
already shown that TPFE is nontoxic, unlike the
commonly used lipofectamine 2000, for siRNA delivery
and has a higher knockdown efficiency [16]. As depicted
in Figure 2, the in vitro study involved the use of TPFE-
siRNA particles with a submicrometer size to deliver
siRNA to the lung cells; an immediate agglutination
with the plasma proteins occurred. TPFE-siRNA-
plasma protein materials were initially stable and accu-
mulated in the lung capillaries; they later became un-
stable after blocking the lung capillaries, which

culminated in the release of siRNA into the cells. The
TPFE residues in the form of micelles were under
10 nm and were removed from the lung capillaries with a
high clearance rate [15].

The bloodebrain barrier (BBB) contains tight junctions
that serve as a barrier to the delivery of highly polar
drugs to the central nervous system (CNS). Fullerenes-
based carriers have been shown to enable penetration of
the BBB. For example, the effect of fullerene com-
pounds on penetration of the BBB by polar hexame-

thonium benzosulfonate was explored. In this study,
“virtually solvent-free planar lipid bilayer” phos-
phocholine membranes were prepared [17]. Without
the fullerene, the addition of hexamethonium benzo-
sulfonate to the lipid bilayer membrane did not produce
any observable transmembrane current. However, with
Figure 2

Schematic of producing TPFE-siRNA-plasma protein for siRNA delivery (ada

www.sciencedirect.com
the presence of the fullerene compounds (IEM-2143
and IEM-2144), ion permeability through the phos-
phocholine bilayers, lipid disorder in the phosphocho-
line membranes, and movement through the lipid
bilayers were enhanced [17].

Studies of the COVID-19 pandemic indicate that
chloroquine (CQ) may be an efficient medicine to

combat the COVID-19 infection [18]. DFT studies
show that Al- and Si-doped C60 are stable CQ carriers for
COVID-19 treatment because of the well-matched en-
ergetics between these species; fullerene serves as the
electron acceptor and CQ serves as the electron donor
[18].

Lung cancer chemotherapy methods suffer from an
inadequate concentration of the drug interacting with
the tumor cells and the toxicity of the drug. Various
water-soluble fullerene derivatives for drug delivery

were investigated for their anticancer potential as an
alternative to conventional lung cancer chemotherapy
[19]. It was found that a stronger cytotoxic ability of
fullerene derivatives against lung cancer cells corre-
sponds to the presence of less aliphatic single bonds
attached to the fullerene cage, the absence of chlorine
in the structure, and the presence of 2-phenoxyacetate
residues [19].

A very effective drug for the pancreatic cancer is
gemcitabine; however, this agent shows some chemo-

resistivity and poor distribution inside the tumor.
Therefore, an alternative mechanism to deliver gemci-
tabine is an important focus of current research efforts.
One potential solution is the conjugation of gemcitabine
with [60]fullerene for improved water solubility [13].
The compound exhibits cytotoxicity that can be boosted
pted from Ref. [15]).
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Table 1

A Summary of the recent progress in drug delivery and cancer therapy using carbon nanomaterials.

Carbon nanomaterial Application New progress Reference

Fullerene, C60 with porphyrin-like
transition metal-N4

Drug delivery, Ibuprofen Predicts the release of Ibuprofen in acidic environment of
unhealthy cells

[14]

Fullerene, Al- and Si-doped C60 Drug delivery, Chloroquine Possible COVID-19 treatment by drug delivery [18]
Water-soluble fullerene derivatives Cancer therapy Water-soluble fullerene derivatives with cytotoxicity for lung

cancer
[19]

[60]Fullerene-glycine derivative Cancer drug delivery,
gemcitabine

New synthetic approach for a highly water-soluble [60]
fullerene-glycine derivative

[13]

C60-serinol Cancer drug delivery,
paclitaxel

Synthesizing a novel C60 derivative [20]

C60 Cancer drug delivery,
Doxorubicin and Boronic
Chalcone

The possibility of functionalizing C60 with B and N atoms and
loading with Doxorubicin and Boronic Chalcone

[21]

Glycoconjugated C60 derivatives Cancer therapy Glycolfullerenes act as photodynamic cytotoxic agents [23]
Functionalized graphene with choline

chloride
Cancer drug delivery,
Doxorubicin

First Doxorubicin delivery by graphene [24,25]

Graphene with attached folic acid and
indocyanine green

Cancer drug delivery,
Doxorubicin

Multifunctional graphene synthesis with improved
anticancer activity

[29]

Fluorinated graphene Cancer drug delivery, curcumin Synthesis of fluorinated graphene with ionic liquid for the
first time and curcumin delivery

[30]

Folic acid functionalized graphene Combined drug delivery,
Doxorubicin and Camptothecin

Enhance the efficacy of cancer therapy [32]

Graphene Combined drug delivery,
Paclitaxel and Doxorubicin

Enhance the efficacy of cancer therapy [33]

Graphene with attached FeN4 Drug delivery, Ibuprofen High chemical bonding potential to target bio-entities [34]
Carboxylated CNTs Drug delivery, Droxidopa Uniformly dispersed and biocompatible with great system

stability
[35]

SWCNTs Drug delivery, Isoprinosine Enhanced anti-NNV ability [37]
SWCNTs Drug delivery, bath vaccine Enhanced the efficacy of bath vaccine [38]
Functionalized SWCNTs and

MWCNTs with PPGP
Cancer drug delivery,
Doxorubicin

Foster the uniform dispersibility and biocompatibility of
CNTs, and easier evaluation of cytotoxicity

[39]

PEGylated multiwalled discrete CNTs Cancer drug delivery,
Doxorubicin

Successful anticancer delivery systems [40]

Oxidized MWCNTs by HNO3/H2SO4

covered by ɣ-Fe2O3 nanoparticles
Cancer drug delivery,
Doxorubicin

Successful anticancer delivery systems [41]

Polyampholytic alternating polymers
(PMT) functionalized SWCNTs

Cancer drug delivery,
Doxorubicin

Successful anticancer delivery systems [42]

CNTs conjugated with glycoblock
copolymers and folic acid

Dual targeting system Increase the efficiency of antibreast cancer activity [43]

PPGP, pyrrole polypropylene glycol.

4 Biomaterials: Futures of Biomaterials
through the oxygen species generated by blue LED-
irradiated C60 [13].

C60 conjugated with serinolamide can permeate liver

cancer cells; C60-serinol conjugated with paclitaxel re-
duces the size of tumor without the side effect of weight
loss. A study of the in vivo function of C60-serinol shows
that its biodistribution and excretion from kidney in
mice is rapid and efficient [20]. Based on computational
results, C60 can be successfully loaded with the
chemotherapeutic drug doxorubicin (DOX) and anti-
tumor agent boronic chalcone [21].

A novel drug delivery system was described by Shi
et al. for advanced cancer therapy using C60 [22].
Unlike the traditional drug delivery systems, this

‘offeon’ type drug delivery system does not suffer
from an uncontrolled drug release. In this approach,
Current Opinion in Biomedical Engineering 2021, 17:100262
the fullerene is conjugated with DOX using reactive
oxygen species (ROS) and a hydrophilic shell is
attached to its surface, which has a tumor-targeted
feature. In the ‘off ’ mode, DOX is stably entrap-

ped at environments with pH w5.5. However, in the
‘on’ mode, ROS are produced by fullerenes, which
consequently release DOX. The switching between
the ‘on’ and ‘off ’ modes is controlled remotely by a
532 nm laser [22].

Some C60 derivatives are able to produce ROS under
light exposure. One example is glycoconjugated C60

derivatives that are used for targeting cancer cells [23].
Cancer cells tend to accumulate glucose and lure the
glycoconjugated C60 into themselves. Based on recent
studies, these glycolfullerenes absorbed by cancer cells

act as photodynamic cytotoxic agents when exposed to
blue and green light [23].
www.sciencedirect.com
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Graphene
Although graphene has potential use as a drug carrier, it
has a toxicity effect on human organs as it can aggregate
in tissues and produce oxidative stress. To overcome this
issue, surface modification of graphene is important.
Various functional groups can be attached to the
graphene surface through the deep eutectic solvent
(DES) method to overcome these issues. The func-
tionalization of graphene enables wider applications of
this material for advanced drug delivery. In addition, the
large surface-area-to-volume ratio of graphene is bene-

ficial for drug carrier applications.

Zainal-Abidin et al. described DES functionalization of
graphene with choline chloride and loading with DOX.
This material showed good dispersibility and DOX
loading capacity. It exhibits superior anticancer activity
as DOX is captured by the functionalized graphene
more efficiently than pristine graphene [24,25].

Graphene materials have recently been developed for
pH-responsive drug delivery. Unlike normal cells, the

cancer cells possess acidic environment. As such, pH-
responsive materials may be useful for drug delivery
systems. For example, a rubber-like nanohybrid hydrogel
containing pristine graphene was developed for pH-
responsive drug delivery applications [26]. This mate-
rial exhibited drug release with changes in pH; in
addition, the conductive nature of the hydrogel enabled
tunable and pulsatile drug delivery. The pH-oscillatory
response of the hydrogel was demonstrated by
measuring the swelling and deswelling behavior of the
hydrogel in a buffer solution as the pH of the buffer
Figure 3

Tissue section observation that confirms the effective delivery of isoprinosine u
FITC, which served as the control material. The second row shows the zebrafis
in the control system, whereas the green fluorescence in the conjugated syste
the FITC labeling and the red fluorescence corresponds to dyed cell membra

www.sciencedirect.com
solution was adjusted between 7.8 and 1.7. This study
indicated that the nanohybrid hydrogel was pH-
responsive and conductive because of the acrylic acid
contribution and graphene components of the structure
[26].

In another study, GQDs were conjugated with the
reverse transcriptase inhibitors CHI499 and CDF119 for

use in human immunodeficiency virus (HIV) treatment
[27]. GQDs have also been shown to permeate the BBB
[28].

Lucherelli et al. attached folic acid to graphene with a
PEG chain for targeted delivery of DOX; they used
indocyanine green for tracking the compound inside
cancer cells to observe its dispersity and anticancer ac-
tivity. In vitro and in vivo studies showed reduced toxicity
for the multifunctionalized graphene [29]. A novel
method for fluorination of graphene by an ionic liquid

was studied for curcumin delivery. The functionalized
material showed higher drug loading efficiency and
stronger anticancer behavior [30].

Combination drug delivery plays a pivotal role in cancer
therapy as therapy methods involving only one anti-
cancer drug are not always successful. Owing to its
straightforward functionalization and large relative sur-
face area, graphene is a promising material for combi-
nation drug delivery [31]. Computational studies show
that graphene can be conjugated with paclitaxel and

DOX simultaneously. Folic acid functionalized graphene
is capable of co-delivery of DOX and camptothecin
through strong pep interactions [32,33].
sing the conjugated system. The first row shows the zebrafish exposed to
h exposed to SWCNTs-I-FITC. No clear green fluorescence can be seen
m shows effective internalization (the green fluorescence corresponds to
ne) (with permission from Ref. [37]).
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Figure 4

A representation of inhibitory interaction of C12 with HSV-1 (with
permission from Ref. [54]).
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Recent DFT calculations show that graphene with
attached FeN4 serves as an excellent adsorptive carrier
for ibuprofen; the ibuprofen/FeN4-graphene system
possesses a high chemical bonding potential to target
biological structures [34].

Carbon nanotubes
CNTs are hydrophobic materials that exhibit nonuni-

form dispersity in biological environments; functionali-
zation of the CNTsurface can overcome this limitation.
When exposed to oxidative agents, CNTs form carbox-
ylated surfaces. The carboxylated CNT materials are
uniformly dispersed and biocompatible materials that
can be loaded with drugs. Carboxylated SWCNTs can be
loaded with droxidopa using amine and carboxylate
groups; droxidopa is used as a treatment for orthostatic
hypotension and Parkinson’s disease. Molecular dynamic
simulations predict good stability for this material [35].

A cell-penetrating cancer-targeting functionalized
MWCNT has been described [36]. The results with
material indicated showed an increase in ROS level
supporting anticancer activity, elevated BBB perme-
ability, and efficacy against glioma tumors. The BBB
penetration and the selectivity of the compound
toward glioma cells were associated with the antitumor
functionality of the material [36].

Viral nervous necrosis disease, which is caused by nervous
necrosis virus (NNV), target the CNS in fish; accessing

this affected tissue with drugs is a technical challenge.
Fluorescein isothiocyanate (FITC) and isoprinosine, an
anti-NNVagent, were conjugatedwith SWCNTs to boost
the effectivity of isoprinosine delivery (Figure 3) [37]. A
delivery system composed of bovine serum albumin,
isoprinosine, and SWCNTs was investigated both
in vitro and in zebrafish larvae and showed enhanced anti-
NNV ability with significantly reduced fatality [37].

SWCNTs were also successfully used to enhance the
efficacy of a bath vaccine for juvenile pearl gentian
grouper against iridovirus. The efficacy of the immune

genes was improved through the use of SWCNTs as the
vaccine carrier [38].

Besides the increasing toxicity for healthy tissues, the
aggregation of CNTs prevents straightforward estima-
tion of the cytotoxicity of an anticancer delivery system.
To facilitate the uniform dispersibility and biocompati-
bility of CNTs, Pennetta et al. functionalized SWCNTs
and MWCNTs with pyrrole polypropylene glycol
(PPGP) covalently (CNT/PPGPc) and noncovalently
(CNT/PPGPs) and conjugated these materials with

DOX. The novel CNT/PPGP/DOX systems were asso-
ciated with melanoma and lung cancer cell death at a
lower dose of DOX. The uniformly distributed CNT/
PPGP/DOX also facilitated easier evaluation of cyto-
toxicity [39].
Current Opinion in Biomedical Engineering 2021, 17:100262
Other novel, successful anticancer delivery systems
containing CNTs and DOX include PEGylated multi-
walled discrete CNTs [40], oxidization of MWCNTs by
HNO3/H2SO4 and coverage by ɣ-Fe2O3 nanoparticles
for magnetic drug delivery [41], and polyampholytic
alternating polymer (PMT) functionalized SWCNTs
[42].

CNTs exhibit exceptional capability to target a special
receptor or molecule. A dual targeting system has been
proposed to increase the efficiency of antibreast cancer
therapy. In this system, both the glucose transporter
protein and the folic acid receptor of cancer cells were
targeted simultaneously through loading of CNTs with
DOX-conjugated glycoblock copolymers and folic acid
[43]. A summary of the recent progress in drug delivery
and cancer therapy using the aforementioned carbon
nanomaterials is provided in Table 1.

Antiviral applications
With the emergence of new viruses such as COVID-19,
the development of new antiviral systems, including

drugs and vaccines, has recently attracted significant
attention from the research community. Carbon nano-
structures have shown promising antiviral features such
as viral inhibition activity and virus enzyme blocking to
combat against viruses such as HIV, influenza, herpes
simplex virus (HSV), and COVID-19 [44,45]. The use
of carbon nanomaterials for antiviral applications is
currently at an early stage and requires more compre-
hensive investigation.

Fullerenes
Hydrophilic fullerenes are of special interest for antiviral
applications. The biological properties of fullerenes
directly correspond to the type of functional groups
linked to the fullerene cage. The most water-soluble
fullerene derivative is C60[P(O) (OK)2]5H with CeP
www.sciencedirect.com
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connected to the cage; the synthesis of this material has
recently been significantly simplified [46].
In vitro studies of the antiviral effect of C60[P(O)
(OK)2]5H show strong activity against influenza A and
feline coronavirus [46]. Klimova et al. reported that the
water-soluble C60 (ndC60) has activity against type 1 of
Herpes simplex virus (HSV-1) and human cytomegalo-
virus. In vitro and in vivo studies indicated that ndC60

inhibits virus entry into the host cells by blocking viruse
receptor interactions [47].

The outer layer (envelope protein) of coronavirus is a
hydrophobic phospholipid that is responsible for inter-
action with the host. The aqueous colloidal fullerene
releases singlet oxygen under UVA irradiation, which
damages the lipid layer of coronavirus. As such, a C60

coating may serve as an antiviral surface. In addition, the
adhesion of the virus on the surface can be minimized.
Fullerene-coated surfaces take advantage of the lipid

structure of the virus and the hydrophobic properties of
fullerenes by decreasing the contact area of the virus on
the surface [45]. A computational study indicated that
fulleropyrrolidine derivatives may interrupt the main
mechanism by which the coronavirus protects itself
against antibodies, in which the antibodies are neutral-
ized by a receptor-binding domain of the spike protein
on the coronavirus [48].

The dimensions of fullerene derivatives match well with
the HIV protease active sites and can block HIV en-

zymes. The requirements for fullerene derivatives with
efficient anti-HIV activity are hydrophilicity and a bal-
ance between cytotoxicity and antiviral action. Voronov
et al. introduced five new water-soluble [60]fullerene
derivatives as HIV inhibitors [49] by the reaction be-
tween C60Cl6 and dimethyl 2,2’-(1,4-phenylenebis-
(oxy))diacetate. They found that the five derivatives
acted against R5 and X4 strains of HIV-1 virus.

Graphene
Aside from conjugation with antiviral materials,
graphene can directly interact with viruses. Graphene

may interact with the virus via electrostatic and hydro-
phobic interactions to affect the viral envelope [50]. A
newly explored direct interaction mechanism was re-
ported by Matharu et al. [51]. They investigated the
antiviral activity of graphene nanoplatelets
(110 nm � 170 nm) by 24-h incubation of a suspension
of graphene in Escherichia coli T4 bacteriophage, a
double-stranded DNA virus. Graphene nanoplatelets
significantly reduced the population of the virion and
prevented infection completely within 3 h. They
ascribed the antiviral effect of graphene to its

morphology and the generation of ROS [51]. Another
recent study indicated that a hybrid containing
graphene and copper inhibited influenza A virus
attachment and entry to the host cell within 30 min by
destroying the virus envelope [52].
www.sciencedirect.com
Graphene can be conjugated with negatively charged
antivirals (e.g. negatively charged sulfates) [53]. This
type of conjugation enhances the interaction between
graphene and the positively charged residues of virions
[53]. Donskyi et al. [54] functionalized graphene to
enhance its antiviral activity. They synthesized
graphene derivatives that were conjugated with poly-
glycerol sulfate and alkyl chains (C3eC18). Graphene

with the C12 alkyl chain acted as the best HSV-1 in-
hibitor (Figure 4); however, it showed strong toxicity
toward Vero cells. The chains shorter than C12 were non-
toxic for Vero cells yet served as good HSV-1 inhibitors.

There are some suggestions regarding the use of
graphene as a COVID-19 inhibitor based on computa-
tional simulations and experimental results from other
RNA viruses in the coronaviruses family [55,56]. They
suggested that graphene can destabilize COVID-19
virus; the strong light absorption properties of

graphene may serve as a disinfectant [55,56].

Carbon nanotubes
The RNA-binding domain (RBD) of the nonstructural
protein 1 (NS1) in influenza A facilitates virus survival
and prevents export of the mRNA of the host cell.
Molecular dynamic simulations predicted that CNTs are
able to adsorb and stretch the RBD very quickly and
interrupt the virus protection system [57]. The effect of
nonfunctionalized SWCNTs and hydroxylated
MWCNTs on influenza H1N1 strain A/Mexico/4108/

2009 (IAV) in lung tissue were evaluated by Chen et al.
They noted that body exposure to MWCNTs and IAV
changes the antiviral response to the virus without
changing the viral titers or causing significant lung
injury; SWCNTs generate greater viral titers with lung
damage under the same in vivo conditions [58].
MWCNTs show phagocytosis through macrophages; the
excretion properties of MWCNTs are considerably faster
than SWCNTs [58]. Using SWCNTs as an antiviral
coating on surfaces was suggested based on the results of
DFT studies [59]. According to the DFT results, Ru-,
Pt-, and Cu-functionalized SWCNTs strongly adsorb

H2O2 molecules, which are lethal to viruses such as
coronaviruses.
Conclusions and future perspectives
In this article, recent progress in using fullerenes,

graphene, and CNTs for drug delivery, cancer therapy,
and antiviral activity in recent years has been reviewed.
Owing to their nanoscale dimensions, these materials
possess high surface-area-to-volume ratios and high
chemical reactivity. These nanosized structures can
penetrate many biological structures and membranes to
facilitate drug delivery. There have been remarkable
advancements in the chemical modification of carbon
nanostructures and the introduction of new derivatives
to improve solubility, enhance biocompatibility, reduce
Current Opinion in Biomedical Engineering 2021, 17:100262
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toxicity, boost antineoplastic activity, and obtain stable
loading of drugs (e.g. antiviral agents). Although most
studies emphasized the benefits of localized drug de-
livery and reducing the side effects through the use of
carbon nanostructures, the toxicity and safety of these
materials still need to be more carefully addressed.
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