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Background. Hepatocellular carcinoma (HCC) is the leading liver cancer with special immune microenvironment, which played
vital roles in tumor relapse and poor drug responses. In this study, we aimed to explore the prognostic immune signatures in HCC
and tried to construct an immune-risk model for patient evaluation. Methods. RNA sequencing profiles of HCC patients were
collected from the cancer genome Atlas (TCGA), international cancer genome consortium (ICGC), and gene expression omnibus
(GEO) databases (GSE14520). Differentially expressed immune genes, derived from ImmPort database and MSigDB signaling
pathway lists, between tumor and normal tissues were analyzed with Limma package in R environment. Univariate Cox regression
was performed to find survival-related immune genes in TCGA dataset, and in further random forest algorithm analysis,
significantly changed immune genes were used to generate a multivariate Cox model to calculate the corresponding immune-risk
score. The model was examined in the other two datasets with recipient operation curve (ROC) and survival analysis. Risk effects
of immune-risk score and clinical characteristics of patients were individually evaluated, and significant factors were then used to
generate a nomogram. Results. There were 52 downregulated and 259 upregulated immune genes between tumor and relatively
normal tissues, and the final immune-risk model (based on SPP1, BRD8, NDRGI1, KITLG, HSPA4, TRAF3, ITGAV and
MAP4K2) can better differentiate patients into high and low immune-risk subpopulations, in which high score patients showed
worse outcomes after resection (p < 0.05). The differentially enriched pathways between the two groups were mainly about cell
proliferation and cytokine production, and calculated immune-risk score was also highly correlated with immune infiltration
levels. The nomogram, constructed with immune-risk score and tumor stages, showed high accuracy and clinical benefits in
prediction of 1-, 3- and 5-year overall survival, which is useful in clinical practice. Conclusion. The immune-risk model, based on
expression of SPP1, BRD8, NDRGI, KITLG, HSPA4, TRAF3, ITGAV, and MAP4K2, can better differentiate patients into high
and low immune-risk groups. Combined nomogram, using immune-risk score and tumor stages, could make accurate prediction
of 1-, 3- and 5-year survival in HCC patients.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most
malignant tumors around the world, causing the second
highest mortal rate with poor responses to therapies [1, 2].
The immune microenvironment of tumors has been
testified to play vital roles in tumor progression and re-
lapse, which incurred development of immune therapies,
such as application of checkpoint inhibitors and Car-T

transfusion [3]. Though these drugs, approved by the
federal government in several countries, demonstrated
efficacy in tumor regression and prolonged overall sur-
vival, overall response was not satisfying in patients,
which may be related to tumor mutation burden and
immune infiltration levels [4]. Understanding immune
microenvironment within HCC can better predict pa-
tients’ survival, which can also be used to guide drug usage
or treating strategies.
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There have been some studies investigating prognostic
signatures of HCC; however, high-precision prognostic
models based on immune-related genes were few in HCC
[5, 6]. In this study, we managed to construct an immune-
risk model to differentiate HCC patients into high- and low-
risk subgroups for survival prediction. High score patients
had worse prognosis after resection, and the significantly
changed immune genes between HCC tissues and normal
tissues were highly enriched in pathways of cell growth and
tyrosine kinase inhibitor resistance. Combining immune-
risk score and tumor stage, we constructed a nomogram with
high precision, which can help therapists make compre-
hensive clinical evaluation of patients in practice.

2. Materials and Methods

2.1. Data Description and Derivation of Immune Gene List.
Expression data included in the analysis were from TCGA
database (https://www.cancer.gov/about-nci/organization/
ccg/research/structural-genomics/tcga), ICGA database
(https://icgc.org), and GEO database (https://www.ncbi.
nlm.nih.gov/geo) [7, 8]. Clinical information of all the re-
lated patients (TCGA: 370 cases, GSE14520: 209 cases,
ICGC: 232 cases) was shown in Table 1. Immune gene list
analyzed in this study was procured from ImmPort database
(https://www.immport.org) and MSigDB pathway signature
list (IMMUNE_RESPONSE and IMMUNE_SYSTEM._-
PROCESS). The gene list of transcription factors was from
CISTROME Project (http://cistrome.org/), which is an open
web tool for tumor sequencing data analysis.

2.2. Analysis of Differentially Expressed Immune Genes.
RNA expression levels of different genes from patients in
TCGA dataset were analyzed between the hepatocellular
carcinoma tissues and the para-tumor tissues, using Limma
package in R environment [9]. The genes expressing more
than 1-fold change with adjusted p value under 0.05 were
considered significant after normalization and background
correction. The package of Heatmap was used to create the
heatmap of significantly up- and downregulated genes.

2.3. Gene Ontology and Gene Enrichment. To better un-
derstand the functional roles of the significantly changed
genes, the package of clusterProfiler was used to demon-
strate the gene ontology and enriched pathways, including
the cellular compartment, biological process, molecular
function, and KEGG pathways (Kyoto Encyclopedia of
Genes and Genomes, https://www.kegg.jp) [10]. The further
gene set enrichment analysis (GSEA) between high and low
immune-score patients was performed with GSEA 4.0.1
software in order to locate the related gene sets [11, 12].

2.4. Construction of Immune Prognostic Models and
Nomogram. The RNA sequencing data in TCGA LIHC
dataset were used to find the differentially expressed im-
mune genes, and through univariate Cox regression, sur-
vival-related immune genes (overall survival and
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TasLE 1: Patients’ information in the TCGA, ICGC, and GEO
cohorts.

Clinical characteristics Total (%)

TCGA 365
. Survival 239 (65.48)
Survival status Death 126 (34.52)
Ace <61 years 173 (47.40)
& >61 years 192 (52.60)
Male 246 (67.40)
Gender Female 119 (32.60)
G1 55 (15.07)
G2 175 (47.95)
Histological grade G3 118 (32.33)
G4 12 (3.29)
Unknown 5 (1.36)
I 170 (46.58)
1 84 (23.01)
Stage 11T 83 (22.74)
v 5 (1.10)
Unknown 24 (6.57)
ICGC 232
Survival status 811;1222:1 14839 ((1%1;;7))
Ace <69 years 116 (50.00)
& 69 years 116 (50.00)
Male 171 (73.71)
Gender Female 61 (26.29)
I 36 (15.52)
II 106 (45.69)
Stage I 71 (30.60)
v 19 (8.19)
. . No 202 (87.07)
Prior malignancy Yes 30 (12.93)
GSE14520 209
Survival status Sgrexgtv;l 173;) ((36725200))
Ace <60 years 168 (80.38)
8 260 years 41 (19.62)
Male 26 (12.44)
Gender Female 183 (87.56)
I 90 (43.06)
i 74 (35.41)
Stage (TNM) 1 43 (20.57)
Unknown 2 (0.96)
0 95 (45.45)
1 67 (32.57)
2 32 (15.30)
Stage (CLIP) 3 9 (4.30)
4 3 (1.44)
5 1 (0.48)
Unknown 2 (0.96)

progression free survival) (p <0.05) were selected for risk
evaluation. The overlapped gene set (68 signatures) was
chosen to find the most relevant prognostic genes, and
random forest algorithm was used to compress the gene list.
The random forest algorithm was performed to determine
the important of immune-related genes, and the relative
importance >0.2 was identified as the final signature. The
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finally yielded 8 immune genes (SPP1, BRD8, NDRGI,
KITLG, HSPA4, TRAF3, ITGAV, and MAP4K2) were also
evaluated for their variable relative importance and were
turther put into multivariate Cox analysis to generate the
immune-risk model. These analyses were performed with R
package of randomForestSRC and algorithm of random-
SurvivalForest. In construction of the model, median risk
score (0.961) was deployed to assign patients into high and
low immune-risk groups, and, correspondingly, prognostic
value of the model was examined in the training set of
TCGA and the testing sets of ICGC and GSE14520 (im-
mune-risk  score=0.115*expSPP1+0.263"  expBRD8 +
0.125* expNDRGI +0.233* KITLG +0.195* HSPA4+
0.319" TRAF3 - 0.186"expITGAV +0.333expMAP4K2).

Immune-risk score and clinical characteristics of pa-
tients, such as age, gender, tumor grades, and stages, were
then put into Cox model to evaluate corresponding risk
effect. Immune-risk score and tumor stages were signifi-
cantly correlated with survival of patients before or after
adjustment, which were then used to create a nomogram for
prognosis prediction in 1-, 3-, and 5-year follow-up. C-index
of the nomogram was calculated with bootstrap of 1000
resamples, ranging from 0.5 to 1.0. Precision of the model
was examined by calibration graphs, in which the alignment
of both lines was a fact of good performance, reflecting the
actual probability. Recipient operation curves (ROCs) were
used to demonstrate its specificity and sensitivity in com-
parison with other factors. Decision curve analysis (DCA)
was also deployed to evaluate the potential clinical benefits of
the model. ROC and DCA were performed with R packages
of rms, survcomp, and survivalROC. Kaplan-Meier (K-M)
method was used to estimate the accumulative incidence of
survival between different subpopulations in each dataset.
The survival curves were drawn through R package of
survival and compared with log-rank test.

2.5. Analysis of the Infiltrated Immune Cells. The infiltration
of six common immune cells was estimated through online
database of TIMER (https://cistrome.shinyapps.io/timer/),
which is an open tool with data access to 32 types of cancers
in TCGA database [13, 14]. Infiltration levels of B cells,
CD4+ T cells, CD8+ T cells, neutrophils, dendritic cells, and
macrophages were calculated correspondingly, and the
correlation between immune-risk score and infiltrated cell
types was examined by Pearson’s correlation test. Evaluation
of immune status’s difference between high and low im-
mune-risk patients was performed with single sample gene
set enrichment analysis (ssGSEA), using gene sets in
MSigDB pathway lists. Expression of well-known immune
checkpoints was also compared between groups. p value
under 0.05 was considered significant.

3. Results

3.1. Differentially Expressed Immune Genes between HCC and
Para-Tumor Tissues. Work flow of this study was shown in
Figure 1. We found 311 differentially expressed immune
genes between HCC and para-tumor tissues (log2-

transformed fold change> 1, p<0.05). In the list of sig-
nificantly changed genes, 259 genes were upregulated and 52
genes were downregulated (Figures 2(a) and 2(b)). Gene
ontology of those significantly changed genes was mainly
involved in signal transduction and cytokine regulation
(Figures 2(c) and 2(e)). The highly enriched pathways
were MAPK signaling pathway, Rapl signaling pathway,
Ras signaling pathway, EGFR tyrosine kinase inhibitor re-
sistance, ErbB signaling pathway, and so on, which were
well-known signalings for tumor growths and metastasis,
indicating the protumor immune microenvironment
(Figures 2(d) and 2(f)). We also analyzed the differentially
expressed transcription factors (TFs) between normal and
tumor tissues in HCC patients (Supplemental Figures 1(a)
and 1(b)). It turned out most TFs were upregulated in tumor
tissues (108 upregulated, 9 downregulated).

Constructed immune-risk model with eight signatures
can better stratify patients into subpopulations.

We performed univariate Cox analysis to locate survival-
related genes in the training set from TCGA database. In
association with overall survival (OS), we located 93 sig-
natures, while in association with progression free survival
(PES), we located 116 signatures. The overlapped 68 sig-
natures were used to build immune-risk model (Figure 3(a)).
The regulating network between differentially expressed TFs
and survival-related immune genes was also examined
(Supplemental Figure 1(c)).

Random forest algorithm was used to additionally
downsize the candidate signatures, and after iteration, sig-
natures of SPP1, BRD8, NDRG1, KITLG, HSPA4, TRAF3,
ITGAV, and MAP4K2 were used to construct immune-risk
model (Figures 3(b) and 3(c)). Through multivariate Cox
regression, we used the immune-risk model to calculate the
immune-risk score of HCC patients, and using the mean
immune-risk score, we dichotomized patients into high- and
low-risk subpopulations (Figures 3(d), 3(e), and 3(f)). The
difference of OS between high and low immune-risk score
subgroups was consistent among all three datasets (TCGA,
ICGC, and GSE14520), with high-risk patients suffering
from poor outcomes in the follow-up (p<0.05)
(Figures 4(a)-4(c)). The area under curves (AUCs) for the
immune-risk model in prediction of 0.5, 1-, 2-, 3-, and 5-year
OS were 0.79, 0.80, 0.72, 0.67, and 0.68 in training set of
TCGA dataset (Figure 4(d)). In testing dataset of ICGC, the
corresponding AUC values were 0.77, 0.74, 0.76, 0.78, and
0.75, while, in GSE14520, AUCs for 0.5-, 2-, 3-, and 5-year
OS were 0.68, 0.70, 0.68, and 0.66 (Figures 4(e) and 4(f)). In
analysis of PFS, high immune-risk patients in TCGA
dataset also suffered from worse outcomes, and the re-
spective 0.5-, 1-, 2-, 3-, and 5-year AUCs were 0.64, 0.66,
0.63, 0.64, and 0.62 (Supplemental Figures 2(a) and 2(b)).

Independent risk effect for the immune-risk model and
corresponding expression levels in patients’ subgroups.

Then we tried to evaluate the risk effect of immune-risk
score and other clinical characteristics in relation to OS in
TCGA dataset. After assignment of patients according to age
(=60 or <60), gender, and tumor grades (G1/2 or G3/4) and
tumor stages (stagel/2 or stage3/4), we found high immune-
risk patients shared worse outcomes consistently
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FiGUure 1: Workflow of the analysis.
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FIGURE 3: Construction of immune-risk model with DEIGs and further assignment of patients. (a) Venn diagram for survival-related (OS
and PFS) DEIGs in TCGA dataset. (b) Random forest algorithm was used to downsize the survival-related DEIGs. (c) The relative
importance for eight immune signatures generated by random forest algorithm. (d-f) The division of patients with median risk score
calculated by 8-gene immune-risk model and the corresponding data spread in training dataset from TCGA and testing datasets from ICGC
and GSE14520. The expression difference of the eight signatures between high and low immune-risk groups was shown by heatmap.



Journal of Oncology

1.00 1.00 1.00
2 = B
2 075 2 075 3 075
] ] - 3 Bt
2 0.50 2050 2050
= = =
2 2 2
£ 051 p=1117e-06 £ 021 p=6585-07 £ 0251 p=975¢-03
v v w
0.00 0.00 0.00
01 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time (years) Time (years) Time (years)
Risk Risk Risk
= High risk = High risk = High risk
= Low risk = Low risk = Low risk
4 Highrisk {182 104 48 35 25 17 12 1 1 1 1 o High risk {116 92 46 22 4 0 0 o High risk {104 88 62 53 49 17 0
= Lowrisk {183 150 78 54 38 23 13 7 5 2 0 = Low risk {116 108 75 36 12 2 0 Z Low risk {105 91 85 78 70 23 0
0o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time (years) Time (years) Time (years)
(a) (®) (c)
ROC curve ROC curve ROC curve
1.0
=
0.8 4 o
g & 8 g
i r’ g e
o 0.6 13 3
= 04 r‘f & &
2 2 2
= ' = =
0.2 4
0.0
T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

False positive rate

False positive rate

—— 0.5 years AUC 0.79 —— 0.5 years AUC 0.77 —— 0.5 years AUC 0.68
—— 1years AUC 0.80 —— 1years AUC 0.74 —— 2years AUC 0.70
—— 2years AUC0.72 —— 2years AUC0.76 —— 3years AUC 0.68
—— 3years AUC 0.67 —— 3years AUCO0.78 5 years AUC 0.66
5 years AUC 0.68 5 years AUC 0.75
(d) (e) ®

FIGURE 4: The overall survival difference between high and low immune-risk score patients in datasets of TCGA, ICGC, and GSE14520, and
their respective predicting values for 0.5, 1-, 2-, 3-, and 5-year survival. (a—c) Overall survival difference between high and low immune-risk
patients in TCGA, ICGC, and GSE14520 datasets. (d-f) Recipient operation curve (ROC) for 0.5-, 1-, 2-, 3-, and 5-year survival prediction of
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(Figures 5(a)-5(h)). Also, the respective results in relation to
PES were similar for HCC patients in TCGA dataset, in
which high immune-risk patients shared shorter PFS time
(Supplemental Figure 2(c)). All those indicated immune-risk
score was an independent risk factor for HCC patients.

We further examined clinical characteristics in single
variate and multivariate Cox analysis in combination with
immune-risk score. It showed in TCGA, ICGC, and
GSE14520 datasets, tumor stages and immune-risk score
were both significant risk factors to OS even after adjustment
in multivariate model (Figures 6(a)-6(f)).

Enriched pathways in high immune-risk score patients
demonstrated unique biological behaviors of HCC cells.

Through gene set enrichment analysis (GSEA), we tried
to understand the differentially enriched signals between
high and low immune-risk patients. The results showed that
signatures, related to pathways of cell cycle, apoptosis, NOD
like receptor signaling, Notch signaling, and VEGF signal-
ing, were significantly enriched in high immune-risk

patients, indicating the proliferative status of HCC cells
(Figure 7, Table 2).

HCC infiltrated immune cell populations were also an-
alyzed to find whether the infiltration patterns were related to
immune-risk score. It turned out infiltration of six types of
immune cells (B cell, CD4+ T cell, CD8+ T cell, dendritic cell,
macrophage, and neutrophil) were positively related to im-
mune-risk score (p<0.05). High immune-risk score was
correlated to high infiltration of immune cells, which could
also be extrapolated as exhaustive immune status (Figure 8).
Of the six cell types, macrophages and neutrophils showed the
highest relevance and significance. Also, using ssGSEA
analysis to evaluate immune status between groups, we found
the overall immune activity score of different signals was
relatively higher in high immune-risk patients. Expression
levels of immune checkpoints were also higher in high im-
mune-risk patients (Supplemental Figure 3).

We further analyzed the survival difference between
immune cell infiltration groups, and there was no significant
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FiGure 5: Overall survival (OS) difference between high and low immune-risk score patients in subpopulations with different clinical
characteristics. (a-b) OS difference between high and low immune-risk patients in subgroups with age over or below 60 from TCGA dataset.
(c-d) OS difference between high and low immune-risk patients in subgroups with different gender (female and male) from TCGA dataset.
(e-f) OS difference between high and low immune-risk subgroups with tumor grades of grade 1/2 or grade 3/4 from TCGA dataset. (g-h) OS

difference between high and low immune-risk patients in subgroups with tumor stage 1/2 or stage 3/4 from TCGA dataset.
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FIGURE 6: Univariate and multivariate analysis of overall survival-related risk factors in datasets of TCGA, ICGC, and GSE14520 (a, c, e).
Univariate Cox analysis of the survival-related factors in TCGA, ICGC, and GSE14520 datasets (b, d, f). Multivariate Cox analysis of the
survival-related factors in TCGA, ICGC and GSE14520 dataset.
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FiGure 7: Highly enriched pathways in high immune-risk score patients through gene set enrichment analysis (GSEA). (a) Enriched score
for signatures in the pathway of cell cycle. (b) Enriched score for signatures in the pathway of apoptosis. (¢) Enriched score for signatures in
the pathway of NOD like receptor signaling. (d) Enriched score for signatures in the pathway of Notch signaling. (e) Enriched score for
signatures in pathways of cancer. (f) Enriched score for signatures in the pathway of VEGF signaling.

TaBLE 2: Gene sets enriched in phenotype high.

NAME ES NES FDR q-val
KEGG_PYRIMIDINE_METABOLISM 0.672451 2173925 0
KEGG_CELL_CYCLE 0.737056 2.097065 7.27E-04
KEGG_P53_SIGNALING_PATHWAY 0.620247 2.06442 0.001371
KEGG_BASAL_TRANSCRIPTION_FACTORS 0.709419 2.012458 0.003543
KEGG_PATHWAYS_IN_CANCER 0.551037 1.914016 0.007377
KEGG_NOTCH_SIGNALING_PATHWAY 0.663903 1.91001 0.007401
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FiGure 8: The correlation between immune-risk score and commonly infiltrated immune cells in HCC. (a) Relation between infiltrated B
cell score and immune-risk score. (b) Relation between infiltrated CD4+ T cell score and immune-risk score. (c) Relations between
infiltrated CD8+ T cell score and immune-risk score. (d) Relation between dendritic cell score and immune-risk score. (e) Relation between
macrophage score and immune-risk score. (f) Relations between infiltrated neutrophil score and immune-risk score.

difference between high and low infiltration groups of six
immune cell types (Figure 9(a)). However, after assigning
patients according to immune-score and each cell type in-
filtration score, we found high immune-risk score was re-
lated to worse prognosis consistently, which was
independent on immune cell infiltration levels
(Figures 9(b)-9(g)). The patients with high-risk score and
low B cell, CD4+T cell, CD8+T cell, or dendritic cell
showed the worst OS, especially high-risk score combined
with low B cell or CD 8+ T cell (Figures 9(b)-9(e)). However,
HCC patients with high-risk score and high macrophage
presented the worst OS, while the patients with low-risk
score and low macrophage had the best OS (Figure 9(f)).
This is perhaps because that tumor-associated macrophage
can promote cancer-related malignancy. HCC patients with
high-risk score had worse OS than those with low-risk score,
regardless of neutrophil level (Figure 9(g)).

3.2. Combined Nomogram Can Better Guide Treating Strat-
egies in Clinical Practice. In consideration of all the survival-
related factors, we generated a nomogram with tumor stages
and immune-risk score to evaluate 1-, 3- and 5-year OS of
HCC patients (Figure 10(a)). Calibration curves for the 3
models were also generated to show the consistence between
estimation and actual probability (Figure 10(b)). The AUCs
for the combined model in prediction of 1-, 3-, and 5-year

OS were all over 0.7, which were better than the other two
single-factor models (Figure 11(a)). DCAs of the three
models also showed superiority of the combined model in
prediction of 1-, 3-, and 5-year OS at various threshold
probabilities (Figure 11(b)).

4. Discussion

In this study, we focused on the immune status of HCC to
find the changed immune genes between HCC and relatively
normal liver tissues, and through regression analysis, we
further located eight survival-related signatures to construct
an immune-risk score model for prognostic prediction. High
score patients shared a worse outcome in comparison to the
low-risk ones significantly, which was independent on im-
mune infiltration levels, though high immune-risk score
positively correlated with immune cell infiltration. The
turther constructed nomogram, using immune-risk score
and tumor stages, could better predict the overall survival of
patients in 1, 3, and 5 years than single factor, which is very
useful for patient monitoring and instructive for choice of
therapy in clinical practice. Though, many previous studies
tried to find the differentially expressed prognostic bio-
markers in HCC, immune-related models were seldom used
to evaluate patients. However, with the development of
immune therapy in cancer treatment, such as immune
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FIGURE 9: Prognostic value of immune-risk model was consistent between different immune-infiltration subgroups. (a) Survival difference
was not obvious between subgroups of different immune infiltration groups of six immune cell types. (b) Survival difference between
subgroups classified by B cell infiltration and immune-risk score levels. (c) Survival difference between subgroups classified by CD4 T cell
infiltration and immune-risk score levels. (d) Survival difference between subgroups classified by CD8 T cell infiltration and immune-risk
score levels. (e) Survival difference between subgroups classified by dendritic cell infiltration and immune-risk score levels. (f) Survival
difference between subgroups classified by macrophage infiltration and immune-risk score levels. (g) Survival difference between subgroups
classified by neutrophil infiltration and immune-risk score levels.

checkpoint blockade (ICB) and Car-T transfusion, immune-
risk evaluation of cancer patients may better predict patients’
survival and the following response to ICB or Car-T

treatment.

In our study, MAPK signaling, Ras signaling, ErbB
signaling, and EGFR tyrosine kinase inhibitor resistance
pathways were enriched in high immune-risk patients,

specifying the highly proliferative status of cancer cells in
high immune-risk patients. Immune microenvironment of
high immune-risk patients was more in favor of tumor

growth. Also, though the immune-risk score was positively

related to tumor infiltrating immune cells, high immune-
risk patients tended to share a worse outcome after HCC
resection, which may be due to exhaustive immune status.
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F1Gure 10: Construction of a nomogram with related factors for prognostic prediction. (a) Score model of nomogram in prediction of 1-, 3-,
and 5-year overall survival. (b) Calibration graphs for 1-, 3-, and 5-year overall survival prediction within the nomogram (usage: the clinical
stages and immune-risk score of patients were calculated and projected to the reference score bar, and total scores were compared to liner

predictor to find the probability of 1-, 3-, and 5-year survival).

Former studies have shown that immune cell function de-
pression was related to cancer progression, and we thought
those high immune-risk patients could have better treating
effect with ICB or Car-T therapy.

In the immune-risk model, secreted phosphoprotein 1
(SPP1 or OPN) is a widely studied signature in tumors,
which is normally involved in the process of osteoclasts’
attachment to mineralized bone matrix. It is elevated in
tumors for progression and metastasis, and its alternatively
spliced variants are related to many malignant traits in

cancers, such as epithelial-mesenchymal plasticity, cancer
cell stemness, chemoresistance, and radioresistance [15-20].
However, the variants of SPP1 due to aberrantly processing
may cause autoimmune reactions in tumors, which can lead
to better outcomes in partial patients [21, 22]. In HCC, SPP1
is a validated prognostic biomarker, and it may induce
chemoresistance through regulation of autophagy in HCC
cells [23, 24]. The next step of exploration shall focus on the
involved regulatory pathways in order to find the potential
drugs and inhibitors.
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Two of the signatures in our immune-risk model were
related to NF-kB and TGEF-b signal pathways. Heat shock
protein family A (Hsp70) member 4 (HSPA4) was formerly
reported to involve inflammation responses and could be
used as a biomarker for early lung cancer diagnosis and
glioma outcome evaluation [25, 26]. It has been found ex-
tracellular HSP70 could activate ERK1/2, NF-kB, and
proinflammatory genes transcription in lung cancer cell, and
in breast cancer, tumor-educated B cells could target HSPA4
to promote lymph node metastasis through Src/NF-kB
pathway [27, 28]. Also, Th2 cells in allergic disease could
increase Hsp70, which was involved in pathogenesis [29].
N-myc downregulated 1 (NDRG1) was a tumor suppressor,
which has been reported in various studies; it could at-
tenuate NF-kB and TGF-b pathways in pancreatic cancer
cells, and downregulated NDRG1 was related to increased
proliferation, invasion, and migration of digestive cancers
[30-33]. It additionally involves apoptosis, glycolytic, and
lipid metabolism in cancer cells, and virus infection process

was also related to NDRGI [34-40]. Another signature,
mitogen-activated protein kinase 2 (MAP4K2), was involved
in MAPK signaling pathway, which corroborated with the
enrichment results. We thought these pathways regulated by
the three signatures involved crucial proliferation and
progression process of tumors, and they all influence HCC
tumor immune microenvironment through unrevealed
mechanisms.

In the immune-risk model, bromodomain containing 8
(BRDS8) was an androgen receptor coactivator, while TNF
receptor associated factor 3 (TRAF3) was also involved in
functioning of a variety of receptors. The knowledge of
BRD8 in immune regulation was rare; however, it was re-
lated to p53-dependent apoptosis and could be a chemo-
sensitizing target in colorectal cancer [41-43]. TRAF3 has
been found to interplay with toll like receptors and TNF
receptors in lymphocytes, and previous studies have found
TRAF3 could attenuate noncanonical NF-kB pathway,
influencing B cell and T cell development and recruitment
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through chemokine regulation [44-49]. Kit ligan (KITLG or
stem cell factor, SCF) is a cytokine, which has been testified
to be expressed by both cancer cells and immune cells and
related to tumor growth, metastasis, and stemness [50, 51].
In HCC, KITLG has been found to be an independent
prognostic factor, and it can bind to c-kit receptor expressed
by various immune cell types, leading to pathological pro-
cess of allergy [52-55]. High expressions of BRD8, TRAF3,
and KITLG were related to hyperfunction of receptors in
tumor or immune cell populations, which could in turn
influence the survival of patients. We thought high ex-
pression of the three markers in HCC was related to ex-
haustive immune status, indicating highly communicative
signals in tumor microenvironment, in which ICB treatment
could yield more benefits.

Overall, the immune-risk model and the combined
nomogram are of great value in clinical practice for prog-
nostic prediction. The immune microenvironment differ-
ence between high and low immune-risk score patients may
decide patients’ responses to immune treatment, and un-
derstanding the immunogenetic changes or patterns of
immune infiltration in HCC can optimize treating strategies
and drug application [56].

There are several limitations about our investigation.
Firstly, expression analysis through bioinformatic methods
still needs tissue sample confirmation in consideration of
other potential confounding factors, such as ethic bias. Also,
the immune status behind immunogenetic changes requires
turther exploration of infiltrated immune cells, which were
simply estimated in our study.

5. Conclusion

The immune-risk model, based on expression of SPP1,
BRD8, NDRGI1, KITLG, HSPA4, TRAF3, ITGAV, and
MAP4K2, can efficiently differentiate HCC patients into
high and low immune-risk subpopulations, and in combi-
nation with tumor stages, the derived nomogram can pre-
cisely predict the 1-, 3-, and 5-year overall survival among
HCC patients, providing a tool for prognostic prediction.

Data Availability

The datasets generated and/or analyzed during the current
study are available in the TCGA (https://portal.gdc.cancer.
gov/), GEO (https://www.ncbi.nlm.nih.gov/geo/), and ICGC
(https://icgc.org/) repository.

Additional Points

Summary. Hepatocellular carcinoma has been one of the
most malignant tumors, conflicting a large number of pa-
tients worldwide with poor responses to drugs. The high
recurrent rate after resection makes outcomes of patients
even worse. Though new immune targeting drugs approved
by federal government showed some light in treatment, the
overall responses among patients are still unsatisfactory. Asa
result, the prognostic prediction of patients is very important
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in consideration of treating strategies and patient moni-
toring. Former studies tried to find the biomarkers in HCC
for diagnosis and prognosis, the scope of immunogenetic
changes have seldom been investigated. Our study managed
to find the significantly changed immune signatures in HCC,
and based on survival-related immune genes, we constructed
an immune-risk model for prognostic prediction. The high-
risk patients shared worse outcomes, and the enriched
pathways demonstrated the protumor growth immune
microenvironment. Also, the prognostic value of immune-
risk score in HCC patients was independent on immune
infiltration levels, while it did positively correlate with in-
filtrating immune cells, indicating high-risk patients may
have better ICB therapy efficacy with immune exhaustive
status. In combination with tumor stages, the nomogram
showed high accuracy in prediction of 1-, 3-, and 5- year
overall survival, which is valuable for clinical evaluation in
HCC treatment.
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