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Abstract

Introduction: Plasmodium vivax causes significant public health problems in endemic regions. 

A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite 

strains, and the development of hypnozoites in the liver with potential for relapse. A minimally 

effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile 

immunity.

Areas covered: Despite decades of research, the complex life cycle, technical challenges and a 

lack of funding have hampered progress of P. vivax vaccine development. Here, we review the 

progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We 

also highlight the challenges and important strategies for rational vaccine design. These factors 

can significantly increase immune effector mechanisms and improve the protective efficacy of 

these candidates in clinical trials to generate sustained protection over longer periods of time.

Expert opinion: A vaccine that presents functionally-conserved epitopes from multiple antigens 

from various stages of the parasite life cycle is key to induce broadly neutralizing strain-

transcending protective immunity to effectively disrupt parasite development and transmission.
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1. Introduction

The development and implementation of a vaccine to eradicate smallpox triggered a 

renaissance in vaccine research. This resulted in one of the most economical global health 
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interventions that led to a number of licensed vaccines in the 21st century. Despite the 

successes of vaccines, 20% of children especially from low- and middle-income countries do 

not complete the scheduled immunizations in their first year [1].

Malaria is a public health problem and a major burden to socioeconomic development in 

many developing countries of the world. In 2018, the WHO reported an estimated 228 

million clinical cases of malaria leading to 405,000 deaths worldwide. Of these cases, 85% 

occur in sub-Saharan Africa and Southeast Asia. Plasmodium falciparum and Plasmodium 
vivax are the main causative parasites for malaria [2]. Although, P. vivax malaria is a 

significant public health burden in many regions, much of the associated mortality is due to 

P. falciparum infections in non-immune persons, especially children under five years and 

pregnant women of sub-Saharan Africa [2].

Plasmodium vivax has the greatest geographic distribution, accounting for 12.4% of malaria 

in Africa and >70% in Asia and the Americas [3–5]. P. vivax causes an estimated 14.3 

million malaria episodes each year and is the leading cause of malaria in Asia and Latin 

America [6,7]. However, there is increasing evidence that the severity of P. vivax is 

underestimated as it can be non-life-threatening and self-limiting [3]. Also, endemic 

countries often lack broad access to affordable and accessible healthcare, intensifying the 

impact of this disease among poorer communities. Vivax malaria incapacitates individuals of 

all ages from repeated febrile episodes and severe anemia, while recurrent infections can 

lead to life-long impairment and increased risk for pregnant women [8]. As reports of 

clinical severity and lethal cases of P. vivax infections increase [9–14], together with wide-

spread drug resistance [15–20] and relapse infections, the development of an effective 

antimalarial vaccine is considered an essential part of the overall control strategy to 

preventing disease [21].

A change in the disease pattern in a population often results from an epidemiological shift. 

Several factors that may govern this shift are age, number of immunizations, number of 

vaccinated individuals, different disease serotypes and immunizations for at risk individuals 

[22,23]. In most vivax malaria endemic areas, transmission is intermittent and acquired 

immunity is short-lived and biased towards being strain-specific [24,25]. Recent reports 

indicate that this may be further compounded by P. vivax infections and disease in Duffy-

negative individuals [26–28], previously thought to be resistant. Thus, there is legitimate and 

increasing concern that P. vivax may adapt to or be present in populations previously 

considered resistant and greatly and the actual global burden is much higher than currently 

predicted. All these factors emphasize the need for improving public health and therapeutic 

strategies including the development of a vaccine against this disease.

Like vaccines against other microbial pathogens, an effective vivax vaccine should provide 

long-term, broadly-neutralizing, strain-transcending immunity, that eliminates clinical 

disease and disrupts transmission. Failure of a vaccine against an infectious disease to 

generate such broadly-neutralizing antibodies will result in re-infection and continued 

disease transmission within the affected population, as occurred in about 10% of vaccinees’ 

that receive the MMR vaccine [29]. Sometimes, despite the adequate levels of protective 

antibodies generated after vaccination, these antibodies do not persist over a long period of 
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time resulting in disease. To circumvent this, booster doses are essential to maintain the level 

of protective antibodies to prevent vaccine failure.

Development of herd immunity should lead to resistance to the spread of an infectious agent 

amongst communities and eventually lead to disease elimination. This type of immunity can 

develop after infection, resulting in potentially significant morbidity and mortality, or at 

minimal risk in individuals who receive a vaccine such as oral polio vaccine (OPV) [30]. 

Scientific studies can help in the immunological and disease surveillance to generate 

epidemiological models for defining the threshold for herd immunity [31]. For example, 

cross-sectional and longitudinal studies can examine the antibodies and activated T- cells 

against the infectious agent. Based on the successes of vaccines that have eliminated other 

infectious diseases, the past decade has brought fresh impetus to the fight against malaria, 

driven by a growing appreciation of the humanitarian and economic magnitude of the 

problem and access to new funding sources.

1.1 Malaria Life Cycle

Plasmodium vivax has a complex life cycle with multiple stages of cellular differentiation 

and host cell types that require transmission by an anopheline mosquito. Infection begins 

with inoculation of sporozoites into the host’s skin by an infected mosquito during a blood 

meal, these then travel to the liver. In the liver, sporozoites traverse then invade and develop 

in hepatocytes into thousands of merozoites, which are released into the blood stream upon 

hepatocyte rupture. However, some parasites arrest development in hepatocytes to remain 

temporarily dormant (hypnozoites), enabling multiple sequential clinical relapses, termed 

relapse infections, and potential transmission from a single infection. Released into the 

blood, merozoites infect reticulocytes to initiate cyclical asexual development from rings 

through trophozoites to merozoites within 48 hrs. Upon maturation, the infected reticulocyte 

ruptures to release into the blood between 8–32 new blood-stage merozoites to re-initiate the 

asexual cycle [32]. Consequently, toxins released with this cycle of development lead to a 

tertian pattern of repeating fever, the paroxysm, characteristic of vivax malaria. Importantly, 

some merozoites differentiate into sexual erythrocytic stages (gametocytes), even in the first 

asexual generation of P. vivax coming out of the liver, leading to immediate mosquito 

transmission. In the mosquito, the parasite undergoes sexual reproduction to produce 

sporozoites, which find their way into the mosquito salivary glands where they become 

infective and subsequently injected into a new host during a blood meal. Given the complex 

nature of the parasite’s life cycle and the inadequate ability to prevent relapse infections and 

transmission, vaccine development should be an integral part of the overall strategy for 

malaria control [33–35].

1.2 Immunity to Plasmodium vivax infection

The development of a robust and persistent clinical immunity in some residents of endemic 

regions strongly supports the potential of an effective vaccine. Typically, acquired immunity 

to P. vivax blood-stage invasion ligands play a critical role in controlling blood-stage 

infection and disease. Studies of these ligands have revealed targets of naturally-acquired 

immunity (NAI) in individuals exposed to vivax infections. This immunity can trigger a 

robust protective immune response that inhibits sporozoite or merozoite invasion of host 
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cells and protects against clinical disease [36]. Such targets are considered potential vaccine 

targets.

In endemic regions, the capacity of individuals to develop an adaptive immunity against 

Plasmodium infection and disease increases with age, prior exposure and transmission 

intensity [37]. The quality and longevity of this adaptive response is highly variable, with 

some individuals acquiring long-term protection following a limited number of exposures, 

whereas in other cases repeated exposure is needed to generate and sustain protective 

immunity.

In vivax malaria, the development of NAI is achieved by, exposure to both primary blood-

stage and relapse infections that increases with age due to the booster effect by repeated 

infection [38,39]. NAI responses to P. vivax target both pre-erythrocytic and blood-stage 

antigens and include humoral and cellular components, although most studies have focused 

on very few candidates (Table 1).

Generally, NAI does not lead to sterile immunity, but decreases parasite densities to reduce 

the frequency and severity of clinical disease. In areas of high transmission intensity, such as 

Papua New Guinea, NAI to P. vivax becomes prevalent early in life with suppressed 

parasitemia leading to only few or complete absence of clinical disease in older children and 

adults [40], compared to P. falciparum [41]. On the other hand, in areas of low parasite 

transmission that are more common for vivax malaria, adults experience disease due to lack 

of development of robust clinical immunity during childhood. In some low transmission 

regions, (Amazon Basin or South Pacific), it is common to find individuals with 

asymptomatic parasitemia [42,43], suggesting that NAI can also occur with relatively few 

infections although, some host genetic factors (e.g. Fya allele), may also play a protective 

role against clinical disease [44,45]. These data support the possibility of a successful P. 
vivax vaccine in areas of little or no parasite diversity.

1.3 Limitations to vivax vaccine development

P. vivax is classified as a neglected tropical disease, especially in terms of species-specific 

therapies for vaccine development and anti-relapse therapies. Compared to P. falciparum, 

there has been no coherent vaccine program for P. vivax. This process has been hampered by 

the lack of a continuous culture system for blood-stages and restricted availability of ideal 

animal models to study parasite biology. Secondly, the preferential infection of reticulocytes, 

which account for only 1–2% of total RBCs in peripheral blood, severely hinders the 

potential to support P. vivax ex vivo studies. Hence, many studies are limited by available 

access to fresh parasites from infected patients and facilities to support non-human primate 

(NHP) infections. Unfortunately, these NHP-adapted lines do not adequately reflect the 

genetic diversity of human infections [46]. This, has restricted studying the parasite’s 

biology and the identification of new candidates and their evaluation [47,48]. To support 

vivax research, most studies have relied on surrogate functional assays to study the potential 

invasion inhibitory effects of antibodies against P. vivax invasion ligands [41,49–53], define 

the structural determinants for receptor recognition [54] and the epitope targets for immune 

antibody neutralization [25,55].
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Progress towards developing a robust long-term P. vivax culture method remains limited 

[47,50,56] and instead advances in in vitro culture of P. knowlesi in human RBCs, a closely 

related zoonotic species that naturally infects macaques, have provided an important support 

for more advanced laboratory studies [57] [58] opening the door to some experimental 

functional studies of P. vivax.

Altogether these limitations represent a major hurdle for testing vaccine efficacy and hinder 

the progress of P. vivax vaccine development. Controlled human malaria infections (CHMI) 

have been widely utilized for studying vaccine efficacy during the development of P. 
falciparum vaccine candidates [59–63]. However, CHMIs for P. vivax are more recent due to 

logistical challenges and the possibility of a relapse infection. Different groups in Australia, 

Colombia, and the USA have been working towards successfully developing blood-stage 

[64] and sporozoite (including mosquito-bite) P. vivax CHMIs [65–69]. McCarthy et al., 

established a parasite blood bank from an infected volunteer to overcome logistical 

challenges of a mosquito-bite CHMI [64]. Their team in Australia developed this infected 

blood-stage malaria (IBSM) inoculum as an alternative strategy to test vaccine efficacy 

[64,70]. Nonetheless, even as these models provide critical opportunities for testing vaccine 

immunogenicity and efficacy in experimentally controlled settings for early phase clinical 

trials prior to more costly larger-scale clinical studies, it is important to note that CHMI 

immunity may not fully replicate protective responses of NAI.

Genetic diversity is also an important consideration for vivax vaccine development as the 

genetic diversity observed in P. vivax is greater than in P. falciparum [71–73]. This may be a 

challenge if immunity is biased towards immunodominant variant epitopes, leading to strain-

specific protective immune responses [24,55,74]. However, our studies have indicated a 

modified vaccine design can overcome strain immunity by focusing immune responses to 

conserved functional epitopes, which are otherwise less immunogenic [75]. Generally, 

identification of new candidates and epitopes follow P. falciparum research; however, P. 
vivax research comparatively has limited funds to progress.

1.4 Plasmodium vivax blood-stage vaccine candidates.

The pathology of P. vivax infections depends critically on the parasite’s ability to recognize 

and invade reticulocytes, a complex process dependent upon a series of highly specific, and 

sequential ligand-receptor interactions between merozoites and the host erythrocyte surface 

proteins [76–78]. Blood-stage vaccines have so far focused on inducing broadly neutralizing 

antibodies against parasite invasion ligands to block interactions with host cell receptors, 

thereby preventing invasion, growth, and clinical disease. In addition, a blood-stage vaccine 

has the potential to reduce gametocytemia in the host and indirectly reduce transmission. 

Humoral immune responses to blood-stage antigens are believed to be an important 

component of NAI to malaria [79,80].

Preclinical studies have characterized P. vivax merozoite antigens that might be viable 

potential vaccine candidates, based on their immunogenicity in animal models, recognition 

by NAI antibodies from vivax-exposed individuals with NAI and most importantly the 

ability to elicit parasite invasion-inhibitory antibodies. Leading blood-stage vaccine 

candidates include the Duffy-binding protein (DBP) [41,81–83], apical membrane antigen-1 
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(AMA1) [84], several reticulocyte binding protein (RBPs) [38,85,86], and the major 

merozoite surface proteins (MSPs), which include MSP1 [87–90], the MSP3 family [91–94], 

and MSP9 [95–97]. Of these antigens, MSP-1 and the DBP have received the most attention, 

but only DBP has advanced to Phase Ia clinical trials [98,99] (Table 1).

1.4.1 Plasmodium vivax Duffy binding protein—The P. vivax DBP is an apical 

organelle protein sequestered in the microneme and released to the merozoite surface during 

reticulocyte invasion. DBP belongs to the Duffy binding-like erythrocyte-binding protein 

(DBL-EBP) family, encoded by erythrocyte binding-like (ebl) genes [100,101], with 

homologs in other Plasmodium species [102–106]. Members of this family share similar 

molecular structures and functional characteristics [53,100–103]. In some Plasmodium spp. 

multiple ebl genes enable them to readily use alternative receptor pathways for invasion 

while P. vivax appears to be especially dependent upon on a single receptor, the Duffy 

antigen receptor for chemokines (DARC or Fy) [107–109].

The DBP-DARC interaction is associated with the decisive and irreversible step of junction 

formation between the merozoite and the host reticulocyte [51,76,78,97,108,110]; although, 

alternate invasion pathways now appear evident for P. vivax as discussed below [111–113]. 

This parasite’s strong preference for the DARC invasion pathway represents a weakness and 

provided early justification of DBP as a prime target for vaccine-induced immunity against 

asexual stages of the parasite.

The DBP receptor-binding domain termed Region II (DBPII) [100], contains the critical 

residues for receptor binding [24,52,114,115]. Structural studies revealed that DBPII 

dimerizes upon DARC engagement in a step-wise fashion to create a stable heterotetramer 

[114,115]. Supporting its potential as a vaccine candidate included numerous studies of 

individuals in endemic regions, demonstrating that naturally-acquired anti-DBPII antibodies 

with significant quantitative and qualitative serological responses [25,39,83,116] can block 

DBP-DARC interaction and inhibit invasion [25,41,50,117]. Further studies revealed that the 

epitope targets of natural-acquired anti-DBPII inhibitory antibodies map to the dimer 

interface, suggesting that interference with dimerization is a major factor underlying anti-

DBP NAI [25,114]. Naturally-acquired antibodies that inhibit this interaction associate with 

clinical immunity [118,119].

Typically, disease-causing infections are absent in most endemic areas with a high 

prevalence of DARC negativity [28,120–123]. However, there are increasing reports of P. 
vivax infections occurring in DARC-negative individuals [26–28]. The molecular basis of 

these infections is yet to be resolved, although it is suggested that these infections in people 

carrying the null alleles may be viable due to transient expression of DARC in erythroid 

bone marrow precursors cells of DARC-negative individuals [124]. Alternatively, 

duplications of the dbp genes may allow vivax to evade host anti-DBP humoral immunity by 

using a secondary invasion pathway [112,125–127].

1.4.1.1 DBP-based Vaccine: DBP is so far the leading vaccine candidate for targeting the 

disease-causing blood stages of P. vivax malaria. The development of a DBP-based vaccine 

candidate based on the Sal-1 allele has progressed through pre-clinical studies 
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[54,75,79,128–131] and two recent Phase Ia human clinical trials (Table 1) [98,99]. In 

preclinical studies, immunogenicity studies in laboratory animals produce anti-DBPII 

antibodies, which inhibit DBPII-DARC interaction. Despite being a promising vaccine 

candidate, the presence of immunodominant variant epitopes in DBPII misdirects immune 

responses that compromises vaccine efficacy in eliciting high titer neutralizing antibody to 

conserved strain-transcending functional epitopes [25,55,74,75].

Naturally-occurring polymorphisms in DBPII confer significant differences in sensitivity to 

inhibition by immune antibodies [24,55,132], with evidence of DBPII variant-specific 

antibody responses that correlate with homologous and not heterologous protection [133]. 

Even a single amino acid substitution can alter the antigenic character of a parasite antigen 

thus providing compelling evidence that immune selection is a driving force for allelic 

variation. Thus, it is critical to have a rational vaccine design and immunization strategy to 

focus immune responses to conserved functional epitopes that are targets of naturally 

occurring strain transcending anti-DBP inhibitory antibodies. Similar to approaches used for 

ligands of other microbial pathogens, several basic approaches have been applied to 

circumvent the inherent bias of eliciting a strain-specific immunity in a DBPII vaccine, 

including:

(i) Combination allele vaccines. The objective is to create broader specificity by directing 

the bulk of antibody to common epitopes within the constituent alleles that make up the 

vaccine. A vaccine made up of antigenically-distinct dbpII alleles elicited a higher antibody 

response and broader specificity to the individual antigens used in vaccine compared to the 

single alleles, suggesting that multiple DBPII variant alleles may be required in a vaccine for 

broader coverage [128]. Other studies also showed that single malaria antigens tend to 

induce protection against the homologous but not heterologous parasite strains 

[24,84,134,135], while a multiple component/allele vaccine did overcome strain-specific 

immunity with P. falciparum pre-clinical vaccine PfAMA1 [136–138] and the pneumococcal 

vaccine [139].

(ii) Immunofocusing. Epitope specificity is critical for vaccine design against malaria 

antigens. Dominant B-cell epitopes within DBPII are polymorphic surface-exposed motifs, 

[25,54], which tend to create an inherent bias towards a strain-specific immune response and 

limit induction of immune response towards more conserved protective epitopes [140,141]. 

Some elite responders in endemic regions do produce broadly inhibitory anti-DBPII 

antibodies [74], an indication that conserved epitope targets of strain-transcending immunity 

are present in DBP. An engineered DBPII vaccine, termed DEKnull-2, lacking the 

immunodominant variant surface epitopes, elicited broadly functional anti-DBPII antibodies 

to shared epitopes on multiple dbp alleles and inhibited parasite invasion of reticulocytes in 
vitro [75,81,129,142]. Most importantly, DEKnull-2 was recognized by naturally acquired 

anti-DBPII inhibitory antibodies [56], indicating that the vaccine contained conserved 

epitopes associated with natural protective immune response to non-dominant epitopes. This 

supports the strategy of targeting immune responses to conserved functional epitopes to 

avoid induction of strain-specific responses to dominant variant epitopes.
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(iii) Sub-unit DBPII vaccine. Another practical approach to avoid strain-specific immunity is 

to identify minimal conserved epitopes within DBPII that elicit protective neutralizing 

antibodies against the intact native ligand. Stable strain-transcending immunity in elite 

responders in endemic regions offers the potential to identify such target epitopes to guide 

vaccine development [25,41,50,83]. These individuals are capable of producing high titers of 

invasion-inhibitory anti-DBPII antibodies [25,74,133]. By screening DBPII phage libraries 

or overlapping DBP peptides (mimotopes) with broadly inhibitory antibodies, subunits of 

the native refolded protein that are associated with protective immune response were 

identified [25,143]. Similarly, structure-based vaccinology is gaining ground as a new 

approach to identify functional epitopes for malaria vaccine development.

Structural studies revealed that DARC-binding residues are critical for DBPII-DARC 

dimerization upon receptor binding [114,144]. Furthermore, co-crystallization of DBP-

DARC together with naturally acquired human [25,145] and vaccine-induced [146] 

inhibitory anti-DBP antibodies enabled identification of epitopes associated with these 

inhibitory antibodies. These data demonstrate that epitopes of naturally-acquired antibodies 

bind to the dimer interface and adjacent DARC binding groove thereby interfering with 

dimerization [25,114,144,145,147], while mAbs derived by vaccination with rDBPII (in 

mice and humans) have so far bound to epitopes within subdomain 3 (SD3) of DBPII, 

probably steric hindrance that indirectly hinders dimer formation [81,146].

Each strategy above has the potential to elicit antibodies that favor responses against 

conserved protective epitopes, with functional inhibition against broader allelic variants and 

diverse P. vivax strains, thus providing critical information on motifs to be included in a 

DBPII-based vaccine to induce broadly neutralizing and global strain-transcending 

protection.

(iv) Viral vectored DBPII vaccine. In a DBPII vaccine Phase Ia trial, an adenovirus serotype 

36 (ChAd63) and a modified vaccinia virus ANKA (MVA) targeting DBPII-Sal1 strain were 

used as the delivery methods. These viral-vectored vaccines were well tolerated and 

demonstrated a safety profile in malaria-naïve adults, inducing DBPII specific antibodies 

including B cell and T cell responses [98]. Similarly, in a related Phase I randomized trial, a 

rDBPII vaccine formulated in GLA-SE adjuvant was safe and immunogenic in naïve adults 

[99]. Functional analysis demonstrated that anti-DBPII antibodies induced in both vaccine 

studies blocked binding of DBPII-DARC interaction in vitro. These studies further validate 

the vaccine potential of DBP and supports targeting parasite invasion ligands for vaccine 

development. However, further studies are required in P. vivax challenge models and/or 

ability to protect against natural infection in a Phase IIb trial in endemic regions.

1.4.2 Plasmodium vivax EBP2—A novel homolog of DBP, termed P. vivax 
erythrocyte binding protein 2 (PvEBP2) [71,111,148], was recently identified as a potential 

alternate invasion pathway ligand [100]. However, the lack of sequence similarity indicates 

that PvEBP2 is genetically distant from P. vivax DBP and other Plasmodium DBPs [111]. 

PvEBP2 is also under strong diversifying selection [149] but with lower SNPs relative to 

DBP [111], binds exclusively to reticulocytes, with a preference for immature (CD71high) 

and Duffy-positive reticulocytes with only minimal binding to DARC negative reticulocytes 
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[112]. Despite lack of direct evidence, its conserved features and epidemiological data 

suggests PvEBP2 might play a role in a DARC-independent invasion of reticulocytes 

[112,149]. Evidence for positive diversifying selection within the PvEBP2 ligand domain 

similar to that on DBPII is an indication of an important biological function including 

reticulocyte invasion and/or a target of acquired immunity [149]. Furthermore, the role of 

PvEBP2 as a protein ligand is supported by recent serological analysis [150,151]. PvEBP2 is 

a target of NAI following natural exposure to P. vivax infection and is suggested to be a 

possible serological marker for detecting recent P. vivax infections [152]. In addition, anti-

PvEBP2 antibody levels are shown to be positively correlated with age, cumulative exposure 

and are associated with protection and correlate with reduced risk of clinical disease 

[119,153,154]. Even though PvEBP2 has emerged as potential vaccine candidate, there is a 

need for more functional studies to evaluate NAI and design strategies to replicate long-term 

protective anti-PvEBP2 immunity.

1.4.3 Plasmodium vivax reticulocyte binding proteins—The P. vivax reticulocyte 

binding proteins (PvRBPs) represent additional ligand families implicated as important in 

the process of reticulocyte invasion. The restricted preference of P. vivax to invade 

reticulocytes is attributed to the RBPs [86,155,156]. It is believed that PvRBPs target 

reticulocytes for invasion and then trigger the release of DBP from the micronemes for the 

final high-affinity binding and irreversible step of junction formation just before invasion 

[110]. Homologs of these proteins in other Plasmodium spp. are implicated in early phase of 

invasion and regulate different invasion pathways [155,157–159]. In P. falciparum, these 

reticulocyte-binding protein homologs referred to as PfRH ligands are well characterized 

vaccine candidates [160]. Given their essential role in the invasion process, and the vaccine 

potential of its homologs in other species, RBPs are considered attractive vaccine targets 

against asexual blood-stage development.

There are 11 members of the rbp gene families reported in P. vivax: five full genes (rbp1a, 
rbp1b, rbp12a, rbp2, rbp2c), three partial genes (rbp1p1, rbp2p1, and rbp2p2), and three 

pseudogenes (rbp2d, rbp2e, rbp3) [111,155,161,162]. Although functional redundancy is not 

yet defined for the PvRBPs, similar to its homologs in P. falciparum and other species, it is 

suggested that the multiple PvRBPs may provide P. vivax phenotypic variation allowing the 

plasticity to recognize and use different receptors and pathways for invasion [155,163,164]. 

Likewise, it is speculated that RBPs might play a role in a DARC-independent invasion 

pathway for P. vivax infections in DARC negative individuals [28,165]. Thus, the generation 

of effective immunity to the PvRBPs may require targeting conserved functional domains of 

multiple members of this multi-gene family [166–169].

Despite the essential role played by the PvRBP ligands in the invasion process, only a few 

(RBP 1a, 2a, 2b and 2c) have received much attention [111,118,153,170–173], with the 

molecular function of other members currently unknown. Members of the PvRBP1 family 

characterized so far reveal differential binding specificities for normocytes and /or 

reticulocytes (reviewed in [174]). The large sizes (250–350kDa) and the limited knowledge 

of the receptors for members of this family have limited the progress towards vaccine 

development. However, PvRBP2b is implicated as the primary determinant of reticulocyte 
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tropism of P. vivax and binds to transferrin receptor 1 (CD71), which is highly expressed on 

reticulocytes but not on mature erythrocytes [173].

Similar to other asexual stage vaccine candidates, the PvRBPs are genetically diverse 

[160,175,176], suggesting that these adhesins are under diversifying selection and hence 

attractive immune targets [175–177]. Similar patterns of immune selection have been 

observed with other microbial adhesion molecules including PfRh2 [178], DBP [24,179], 

PfAMA-1 [180,181], which ultimately results in antigenically-distinct variants in the 

population and a bias towards strain-specific immunity. This diversity is believed to provide 

the parasite with a host immune escape mechanism favoring its survival.

Naturally-acquired antibodies to PvRBPs are prevalent in residents of endemic regions with 

different transmission intensities, and similar to DBP, anti-PvRBP serological response 

correlates with age, cumulative parasite exposure and clinical protection [112,150,170,182–

185] and may even last longer than anti-DBP antibodies in the absence of repeated exposure 

[175]. Similarly, vaccine induced immunity against functional regions of the PvRBPs 

proteins are associated with inhibition of reticulocyte binding and merozoite invasion of 

reticulocytes in vitro [170,172,173,186] as is the case with PfRH ligands in P. falciparum 
[163,187–190]. These features further strengthen PvRBPs as prime targets for blood-stage 

vivax malaria.

1.4.4 Plasmodium vivax Apical Membrane Antigen (PvAMA1)—AMA1 is a 

unique multi-stage specific vaccine target important in the host cell invasion processes of 

sporozoites [191–193] and merozoites [192–194]. AMA1 is a highly conserved 

apicomplexan ligand that is sequestered in the microneme until invasion is initiated [195] 

and provides a unique opportunity as a multi-stage vaccine target. It is shown to work 

together with proteins of the rhoptry neck protein (RON) complex. A tight junction between 

RON2, a rhoptry neck protein, and AMA1 is essential for invasion [196]. Similar to DBP, 

crystallographic studies of AMA1 have shown that AMA1 polymorphisms flanking a 

hydrophobic receptor-binding motif that is formed by two PAN domains help evade immune 

responses [197–199].

Naturally acquired antibodies against PvAMA1 block receptor binding, similar to anti-

DBPII immunity. However, polymorphic residues adjacent to the receptor-binding pocket 

motif for the RON2 receptor are associated with strain-specific immune responses and 

consequently induction of strain-specific immunity may be a challenge to strain-

transcending vaccine efficacy. Although analysis of neutralizing antibody responses to 

PvAMA1 identified the 1F9 epitope as an attractive antigenic target, it is polymorphic and 

may be associated with strain-limited immune protection [197].

Similar studies from rodent and non-human primate show that PvAMA1 is a target for 

protective immune responses [84,200]. A recombinant vaccine based on domain II of 

PvAMA1 in different adjuvants formulations elicited significant anti-AMA1 antibody titers 

in mice. Most importantly, these vaccine-induced antibodies were inhibitory against 

reticulocyte invasion by different Asian P. vivax isolates [192,193]. Furthermore, immune-

epidemiological studies show naturally-acquired antibodies to PvAMA1 even in cases of 
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very limited exposures. Altogether, these data indicate that PvAMA1 can be considered 

among the most promising blood-stage antigens to be used as a subunit malaria vaccine 

[201,202].

1.4.5 Plasmodium vivax Merozoite surface Protein (PvMSP1) and chimeric 
vaccine designs—MSP1 is a large post-translationally processed protein tethered to the 

merozoite surface by a C-terminal glycosylphosphatidylinositol group on its 42 kDa 

fragment (MSP142) [203]. During invasion, a parasite-expressed subtilisin-like protease 

further cleaves this MSP142 fragment resulting in MSP119 and MSP33 [204]. Some studies 

showed that MSP1 is highly immunogenic and naturally-acquired antibodies to the C-

terminal fragment disrupted merozoite invasion [194,205,206]. Consequently, MSP1 was a 

component of a number of previous vaccine studies. Despite the early support as a vaccine 

target and data that identified PvMSP119 C-terminal fragment as a critical binding domain 

for erythrocytes, PvMSP1 lacks a clearly defined functional role and is now considered to be 

a part of the parasite’s immune evasion mechanisms.

An important contribution of these earlier vaccine studies was the use of chimeric P. berghei 
that expressed PvMSP19 to circumvent the lack of a challenge model which impeded 

preclinical testing of vivax blood-stage candidates. Mice immunized with a chimeric 

PvMSP119, generated a strong cytophilic antibody response along with CD4 and CD8 T cell 

responses against PvMSP119 making these modular chimeric T-cell epitopes as a promising 

strategy for inducing a protective immune response [194,207].

Other studies contributed development of a heterologous prime-boost strategy involving an 

adeno virus-vectored vaccine encoding two P. vivax blood-stage antigens PvAMA1 and 

PvMSP142 in Aotus I. lemurinus monkeys. Significant protection against blood-stage 

challenge in Aotus monkeys was observed, indicating the antigen delivery approach is safe 

and immunogenic [208]. While this regimen requires further development, the results 

emphasize the importance of heterologous/prime boost strategies for increasing the efficacy 

of blood-stage vivax vaccines.

1.5 Pre-erythrocytic vaccine

Pre-erythrocytic (PE) vaccines target the early stages from Plasmodium sporozoites 

infection until completion of liver stage development and breakthrough to blood-stage. This 

is an important bottleneck of Plasmodium life cycle and PE vaccines aim to prevent 

infection when the parasite burden is at its lowest. Early support for PE vaccines was based 

on studies with irradiated sporozoite vaccine strategies in the P. berghei rodent model that 

demonstrated sterile protection [209,210]. Subsequent studies in monkeys and in humans 

supported the potential for PE vaccine development [211,212]. However, potentially 

significant production, and logistical challenges have limited irradiated (whole) sporozoite 

vaccine approach, with much research turned to subunit vaccines. Even as PE vaccines have 

great potential, the requirement to induce sterile protection has long been considered a major 

weakness. In addition, PE vaccination against P. vivax will need to be equally effective 

against hypnozoite development.
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1.5.1 Plasmodium vivax Circumsporozoite protein (PvCSP)—The CSP is the 

major surface protein of Plasmodium sporozoites and considered promising vaccine targets 

against PE stages of malaria parasites since they are directly exposed to host immune 

antibodies as sporozoites migrate to the liver during the early phase of infection (Figure 1). 

In P. vivax NAI and controlled human malaria infections, antibodies to PvCSP correlate with 

short-term protection [213]. However, unlike the rodent malaria parasites and P. falciparum, 

PvCSP is genetically diverse with two distinct strain types, VK210 and VK247, differing in 

central repeat region [214].

Despite licensure of a PfCSP vaccine, Mosquirix™ [215], only a few pre-clinical and human 

clinical trial studies of P. vivax PE vaccine candidates primarily evaluating CSP-based 

vaccines have been reported [216–222]. In addition, advancement has been hindered by the 

inherent complications related to the nature of the relapsing P. vivax infections. The vaccines 

evaluated so far include synthetic peptides, different types of recombinant proteins, and a 

chimeric PvCSP as summarized in Table 1 [68,223–226]. Although these P. vivax vaccines 

have been safe, they are poorly immunogenic and failed to elicit protection against infection 

by sporozoite challenge. Further optimization with different antigens and/or adjuvant 

formulation is required to improve its efficacy.

A chimeric PE vaccine, vivax malaria protein 1 (VMP001), incorporated the N- and C- 

terminal regions and truncated repeat regions from both VK210 and VK247 strains of 

PvCSP. VMP001 induced high titer antibodies in mice, using Montanide ISA 720 [227,228] 

as well as a strong cellular immune response with synthetic TLR4 (GLA-SE) [229] as an 

adjuvant. Similar antibody and cellular immune responses were observed in monkeys 

immunized with VMP001-GLA-SE [230] and VMP001 formulated in TLR9 agonist and 

protected against challenge infection with P. vivax sporozoites [231]. In a related study, 

VMP001 conjugated to a lipid enveloped polymer poly (lactide-co-glycolide) acid 

nanoparticles (VMP001-NP) adjuvanted in MPLA, elicited a balanced Th1/Th2 humoral 

response in mice with enhanced avidity and affinity toward the domains within PvCSP 

implicated in protection and were able to agglutinate live P. vivax sporozoites [232].

In a Phase 1/2a clinical trial, VMP001 formulated in the GSK Adjuvant System AS01B 

(VMP001/AS01B) was well tolerated and immunogenic, with volunteers generating robust 

humoral and cellular (CD4+ T cell) immune responses to the vaccine antigen (Table 1). 

Though the vaccine did not induce sterile protection, there was a significant delay in time to 

parasitemia observed in 59% of vaccinated subjects [68].

Significant progress in VLP vaccine design have led to increased PvCSP immunogenicity in 

recent years [220,221]. An innovative design Rv21, similar to RTS,S, improved 

immunogenicity of PvCSP VLP approach even at low doses (5 μg) when combined with 

Matrix-M adjuvant [220]. Another VLP approach using Qβ-peptides from E. coli 
bacteriophage showed similar outcomes by coupling fragments of PvCSP VK210 

formulated in Matrix-M adjuvant [221]. Similar to earlier studies with blood-stage vaccine 

studies, an important advance in evaluating protective efficacy has been the introduction of 

transgenic P. berghei expressing PvCSP [219–221,233]. Upon challenge with these PvCSP 
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transgenic sporozoites, improved protective efficacy was observed in these approaches 

[220,221].

1.5.2 Plasmodium vivax Thrombospondin-related anonymous protein 
(PvTRAP)—PvTRAP, also known as sporozoite surface protein-2 (SSP2), is a conserved 

microneme protein vaccine target involved in sporozoite motility and enables invading 

sporozoites to bind heparin sulfate molecules on hepatocytes [234,235]. Very few preclinical 

studies have evaluated the efficacy of a PvTRAP vaccine. Long synthetic peptides within the 

N-terminal region of the PvTRAP binding motif administered with both Freund and 

Montanide ISA 720 adjuvants to BALB/c mice and Aotus monkeys induced antibodies 

reactive to P. vivax sporozoites [236]. In Aotus monkeys, the vaccine formulated in CFA/IFA 

induced higher titers compared to Montanide ISA 720 and partial protection was observed 

upon intravenous challenge with 2×104 P. vivax sporozoites. In a related study, a 

heterologous prime-boost vaccine study with recombinant ChAd63 and MVA both 

expressing PvTRAP, respectively, induced high titer antibodies and high T cell response in 

immunized mice, which partially protected against challenged infection with a chimeric P. 
berghei expressing PvTRAP [237]. These results show PvTRAP as a potential vaccine 

candidate. However, further assessments in different vaccine strategies and animal models is 

still required.

1.5.3 Plasmodium vivax cell-traversal protein for oökinetes and sporozoites 
(PvCelTOS)—CelTOS is a conserved microneme protein in all Plasmodium spp. and has 

an essential function in sporozoites and oökinete cell traversal motility. PvCelTOS released 

from micronemes, targets the inner-leaflet of cell membranes allowing parasites to exit cells 

in mosquitoes and human hosts [238]. This function is essential for parasite motility and 

establishing successful infections, making it an ideal multi-stage vaccine candidate to 

prevent infection and transmission. In addition, PvCelTOS shows very limited genetic 

diversity among global clinical isolates [239].

Mice immunized with recombinant PvCelTOS induced both humoral and cell-mediated 

immune responses that reduced infection, while passive transfer of anti-PvCelTOS 

antibodies conferred protection to mice [240,241]. Efficacy with PvCelTOS vaccines with 

different strategies to boost immunogenicity have produced mixed results even with 

induction of high antibody titers [242,243]. Overcoming an important limitation of vivax 

malaria research efficacy in immunized mice was assessed with challenge infections of 

PvCelTOS-expressing transgenic P. berghei sporozoites. Promising results were provided by 

viral vectored PvCelTOS leading to sterile protection in 30% of ChAd63- PvCelTOS and 

ChAd63-VLP groups versus 10% ChAd63-MVA [244]. Further supporting a PvCelTOS 

vaccine, immunizations of human volunteers with irradiated sporozoites induced sterile 

immunity [245,246] and a strong anti-PvCelTOS response that correlated with protection 

[247].

1.6 Sexual-stage antigens

The current strategies to control malaria are inadequate to eradicate vivax malaria, especially 

relapse infections and transmission. Therefore, it is of importance to develop new tools to 
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reduce the reproduction rate of the parasite resulting from relapse. Transmission-blocking 

vaccines (TBVs) are extremely important interventions to address this issue and reduce 

malaria transmission [248–250]. As discussed above for CelTOS, TBV antibodies against 

the parasite oökinete or mosquito midgut surface (oökinete receptors) antigens taken up with 

the bloodmeal can prevent the oökinete invasion of the midgut. Therefore, TBV antibodies 

can abrogate the cascade of secondary infections resulting in reduced parasitic reproducing 

rate and further transmission [249–251]. Below TBV candidates other than PvCelTOS are 

discussed.

The P. vivax oökinete surface protein (Pvs25) is a leading malaria transmission-blocking 

vaccine (TBV) candidate based on its high immunogenicity in animal models, transmission-

blocking activity of antibodies elicited in clinical trials and high conservation among P. 
vivax isolates from endemic areas. In a single blinded, dose escalating, controlled Phase I 

study, Pvs25 expressed in S. cerevisiae and formulated in Montanide ISA 51 was terminated 

due to systemic reactogenicity (Table 1) [252]. However, the same antigen adjuvanted with 

alhydrogel, showed mild adverse reactions indicating the importance of adjuvant choice in 

designing clinical trials. Anti-Pvs25 vaccine-induced antibody responses were functional as 

they showed transmission-blocking activity in mosquito feeding assays that correlated to 

antibody titers [253].

In a related study in mice, Pvs25 and another TBV, Pvs28, formulated in alum induced 

antibodies that arrested the growth of P. vivax in mosquitoes fed with infected blood meal 

[254]. A field study showed that naturally acquired antibodies from P. vivax infected patients 

from regions with differential transmission intensities had anti-Pvs230 antibody responses 

[255]. Therefore, this vivax candidate, Pvs230D1-EPA, an orthologue of the P. falciparum 
candidate Pfs230D1- EPA has been garnering attention for clinical trials [256].

Another leading TBV candidate is the Anopheline alanyl aminopeptidase N (AnAPN1), a 

mosquito midgut surface protein, which mediates Plasmodium establishment in the 

mosquito [251,257–259]. Studies have shown that anti-AnAPN1 antibodies completely 

inhibit the development of naturally-circulating gametocytemic isolates of P. falciparum in 

Cameroon from infected volunteers in two independent transmission seasons [251]. A 

related study also evaluated cross-species efficacy of these antibodies against P. vivax from 

infected volunteers in Thailand, with only partial inhibition observed, suggesting a role of 

polymorphisms in immune response to AnAPN1 across different vectors [251].

The mechanism of action of TBVs in general is restricted solely to the activity of inhibitory 

antibodies [251,257,259]. Therefore, a successful TBV candidate should induce potent, 

high-titer antibodies that may be sustainable for one season of transmission.

2. Conclusions

P. vivax vaccine development has been slowed by the complex nature of the parasite’s 

biology, technical challenges due to the lack of in vitro culture, and limited access to 

experimental models to screen new vaccine candidates. Despite these challenges, vivax 

vaccine research has slowly progressed in recent years with development of transgenic 
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rodent malaria models for some vaccine targets, a humanized mouse model and a new 

culture platform for liver stage studies, and the development of P. knowlesi lines adapted to 

human blood-stage culture. Recent advances in the use of these new platforms, structural 

vaccine design and better vaccine delivery platforms, will accelerate candidate identification 

and screening and enhance vaccine efficacy. With new adjuvants and delivery systems, there 

is a renewed interest in reestablishing the current vaccine candidates to accelerate them to 

clinical trials and eventual licensing. Engineered viruses tagged with recombinant proteins 

and VLPs could ultimately increase immunogenicity, safety and efficacy. These platforms 

can stimulate the antibody and cell-mediated responses and the same time serve as 

compatible adjuvants for human use, thus increasing the efficacy of these previously 

explored candidates. Also, heterologous prime-boost strategies could result in persistent 

immune response over longer periods of time, while multivalent-multistage vaccines will 

help prevent disease and transmission. Considering effective P. vivax vaccines will be 

essential for malaria eradication, these newer strategies will be remarkable to progress 

towards the clinical assessment of these vivax vaccine candidates.

3. Expert Opinion

Plasmodium invasive stages display an array of surface antigens important for initiating 

infection, promoting disease and enabling transmission and are, therefore, key targets for 

vaccine intervention. Epitope specificity is critical for vaccine efficacy. Thus, a rational 

vaccine design that focuses on the immune response to functionally conserved epitopes is 

essential to enhance induction of broadly neutralizing strain-transcending protective 

immunity. Such a vaccine should include functional epitopes of multiple antigens from 

different stages of the parasite life cycle.

Optimal immunogenicity and safety are critical outcomes of any effective vaccine. Hence, 

the study design, biological variables, delivery methods and route of administration are key 

factors to take into consideration.

Equally important are methods for novel candidate identification and validation, especially 

animal models for in vivo studies. Despite the availability of surrogate assays and more 

advanced in vitro parasite culture methods, including the use of chimeric/transgenic 

parasites for vivax vaccine studies, immunization challenge studies in primates remain the 

more direct and reliable measure of vaccine efficacy in vivo. All these factors are subject to 

availability of adequate funding, which has been a limiting factor for vivax vaccine studies. 

A full summary of challenges to P. vivax vaccine development and an action plan are 

summarized in Table 2.
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Article Highlights

• Plasmodium vivax malaria remains an important public health problem, yet 

there is no vaccine to prevent transmission and disease.

• There is a need for novel candidate identification and validation.

• A multivalent, multi-stage vaccine candidate elicits a stronger and robust 

immune response that can provide cross-strain protection.

• Immune focusing and structure-based vaccine design can enhance vaccine 

efficacy.

• Heterologous prime-boost strategy may induce a persistent, long-lasting 

immune response.

• Different platforms such as viral-vectored subunit vaccine candidates and 

virus-like particles can be effective tools for vaccine delivery.
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Table 1:

(a) An overview of selected promising Plasmodium vivax vaccine candidates that have progressed into clinical 

trials with their correlates of protection and vaccine outcomes

Candidate Vaccine/
platform

Host (Clinical & 
preclinical studies)

Correlates of 
protection

Outcome Progress

Blood-stage candidates

PvDBPII Phase 1a (UK adults) 
NCT01816113

Antibodies against 
PvDBPII

No serious adverse events. Across all 
vaccinated individuals median 
polyclonal IgG EC50 values were 
comparable in PvDBPII-DARC in 
vitro binding.

Completed [1]

PvDBPII/GLA-SE Phase 1 (34 Indian males)
CTRI/2016/09/007289

PvDBPII-specific 
antibodies

No adverse events were observed.
50μg treatment, 82% mean binding-
inhibitory activity was observed in 
PvDBPII-DARC binding assay at day 
180

Completed by 
PATH/MVI [2]

Pre-erythrocytic candidates

P. vivax irradiated 
sporozoites

Phase I/IIa (Colombia, 
adults)
NCT01082341

Anti- PvCSP IgG1 
levels correlates with 
protection

Partial protection observed in 42% of 
the Fy+ volunteers.

MVDDC, 
NHLBI/NIH [3]

PvCSP- derived long 
synthetic peptides, 
Allohydrogel 
Montanide ISA 720 
51

Phase 1b (Colombia adults) 
NCT01081847

Antibody responses Transient pain at injection site and 
induration occurred in the Montanide 
50 μg group, PBMCs from all groups 
secreted IL-5 and IFNγ.

Completed by 
MVDDC [4]

VMP001-AS01B Phase I/IIa (USA, adults)
NCT01157897

Antibody titers Significant delay in infection patency 
observed in 59% of vaccinated 
subjects.

Ongoing studies by 
WRAIR, MVI, 
GSK [5]

Sexual-stage candidates

Pvs25- Recombinant 
Pvs25, Montanide 
ISA51

Phase I (USA, adults)
NCT00295581

Antibody responses 
correlated with 
transmission 
blocking activity

High reactogenicity observed Completed by DIR/
NIAID, JHSPH [6]

PvCSP- Plasmodium vivax circumsporozoite protein

PvDBPII- P. vivax Duffy Binding protein region II

PvDBPII/GLA-SE- recombinant P. vivax DBP region II formulated with glucopyranosyl lipid adjuvant-stable emulsion

DARC- Duffy antigen receptor for chemokines

VMP001- Vivax malaria protein 001

PBMC- Peripheral blood mononuclear cells

cPvMSP1- Chimeric Plasmodium vivax Merozoite surface protein 1

Pvs25- Ookinete surface protein

LLPCs- Long-lived plasma cells
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Table 1:

(b) Potential Plasmodium vivax vaccine candidates targeting different stages of the life cycle.

Different stages of life cycle Potential P. vivax vaccine candidates

Merozoite

PvDBP [1,2,7–9]
PvRBPs [10,11]
PvEBP2 [12]
PvMSP1[13–18]
PvAMA1[14]

Sporozoite
PvCSP [4,5,19–35]
PvTRAP [22,35–37]
PvCelTOS [34,35,38–40]

Macrogametocyte
Microgametocyte

Pvs25 [6,41,42]
Pvs28 [42]
Pvs230 [43,44]
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Different stages of life cycle Potential P. vivax vaccine candidates

Oökinete

PvDBP- P. vivax Duffy Binding protein region

PvRBPs- P. vivax Reticulocyte binding proteins

PvEBP2- P. vivax Erythrocyte binding protein2

PvMSP1- P. vivax Merozoite surface protein 1

PvAMA1- P. vivax Apical membrane antigen 1

PvCSP- P. vivax Circumsporozoite protein

PvTRAP- P. vivax Thrombospondin-related anonymous protein

PvCelTOS- P. vivax Cell-traversal protein for oökinetes and sporozoites

Pvs- P. vivax sexual stage
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Table 2:

Overview of P. vivax vaccine development: challenges, problems, potential actions, and 5-year plan to 

overcome these impediments.

Challenges Problem Actions 5-year plan

Blood-stage

Clinical infection of 
Duffy-negative 

individuals

P. vivax blood-stage merozoites 
use alternative ligands to invade 

Duffy-negative individuals

Target multiple epitopes essential for 
merozoite invasion

Identify novel ligands that 
facilitate merozoite invasion of 

Duffy-negative individuals

Low parasitemia and 
asymptomatic infections 
(lack of febrile malaria)

Parasite’s preference for 
Reticulocyte and host factors 

masks clinical infections

Better surveillance systems i.e. 
detection of sub-patent parasitemia

Develop tools to culture in vitro

Pre-erythrocytic stage

Preventing/eliminating 
dormant hypnozoites

P. vivax hypnozoite dormancy 
and reactivation

Research into hypnozonticidal 
strategies i.e drugs, PE vaccines

Establish in vitro liver stage assays 
to interrogate novel antigens/ 

targets such as ILSDA

Sexual stage

Targeting early formation 
of gametocytes

P. vivax sexual reproductive 
efficiency

Identifying blood-stage and 
gametocyte vaccine targets to prevent 

transmission

Develop in vitro tools to facilitate 
gametocyte cultures

Poor immunity conferred 
from natural exposure

Multiple vaccine doses within a 
transmission season could affect 

vaccine efficacy

Improving on adjuvant formulation, 
vaccine delivery and antigen selection 

to develop protective immune 
responses

Develop a potent single dose TBV 
candidate

Overall challenges

Lack of P. vivax 
sporozoites or merozoites

Parasite availability has 
hampered clinical trials and 

basic science research.

Use of in vivo models cultivate 
parasites and develop CHMI models 

(sporozoite inoculation, mosquito-bite 
challenges, and blood-stage 

inoculation).

Increase access to parasites from 
endemic regions. Overcome 

logistical challenges of mosquito-
bite challenges by inoculating 
IBSM to test vaccine efficacy.

Overcoming parasite 
immune escape 

mechanisms

P. vivax genetic diversity and 
antigenic polymorphism

Identify conserved functional epitopes 
of neutralization and possibly target 
parasite using a multiantigen vaccine 

approach

Generate monoclonal antibodies 
(mAbs) that can neutralize 
multiple strain as passive 

immunization

Scarce genetic tool kit Forward and reverse genetics 
tools are limited

Use transgenic or chimeric parasites to 
infer functions of P. vivax genes

Develop in vitro cultures, Use 
NHP models

Dearth of funding for P. 
vivax research

Inadequate funding for P. vivax 
research compared to P. 

falciparum

Increase funding to novel P. vivax vaccine research

mAbs-Monoclonal antibodies

PE-Pre-erythrocytic

ILSDA-In vitro Liver-stage Development assay

PEV- Pre-erythrocytic vaccine

TBV-Transmission blocking vaccine

CHMI-Controlled human malaria infections

IBSM- Infected blood-stage malaria

NHP-Non-human primate
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