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Abstract

Background—Our previous work classified a taxonomy of needle driving gestures during a 

vesicourethral anastomosis of robotic radical prostatectomy in association with tissue tears and 

patient outcomes. Herein we train deep-learning based computer vision (CV) to automate the 

identification and classification of suturing gestures for needle driving attempts.

Methods—Two independent raters manually annotated live suturing video clips to label time 

points and gestures. Identification (2,395 videos) and classification (511 videos) datasets were 

compiled to train CV models to produce two- and five-class label predictions, respectively. 

Networks were trained on inputs of raw RGB pixels as well as optical flow for each frame. We 

explore the effect of different recurrent models (LSTM vs. convLSTM). All models were trained 

on 80/20 train/test splits.

Results—We observe that all models are able to reliably predict either the presence of a gesture 

(identification, AUC: 0.88) as well as the type of gesture (classification, AUC: 0.87) at 

significantly above chance levels. For both gesture identification and classification datasets, we 

observed no effect of recurrent classification model choice on performance.

Conclusions—Our results demonstrate CV’s ability to recognize features that not only can 

identify the action of suturing but also distinguish between different classifications of suturing 

gestures. This demonstrates the potential to utilize deep learning CV towards future automation of 

surgical skill assessment.
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This study utilizes deep learning-based computer vision to identify specific moments of surgical 

suturing activity and to classify each specific suturing gesture applied during robot-assisted 

surgery. The importance of this work is the foundation it provides for future automation of surgical 

skill assessment for training feedback.

Introduction

Growing evidence supports that superior surgical performance is associated with superior 

clinical outcomes.1,2 Yet how we presently assess surgery --manual evaluation by peers -- is 

fraught with subjectivity and is not scalable.3,4

Tremendous work has been done already to better assess surgeon performance during robot-

assisted surgeries. For example, with suturing, the robotic anastomosis competency 

evaluation (RACE) has been developed to streamline technical skills assessment with 

objective criteria for each suturing skill domain5. Yet even with such a rubric, manual 

assessment and feedback of every suture performed by a training surgeon is not feasible. Our 

group previously deconstructed suturing into a clinically meaningful manner to consist of 3 

phases (needle position, needle driving, and suture cinching; Fig 1), and further developed a 

classification system for suturing gestures to standardize the training and assessment of 

robot-assisted suturing (Fig 2)6. We have demonstrated that surgeon selection of gestures at 

specific anatomic positions during the vesico-urethral anastomosis (VUA) during the robot-

assisted radical prostatectomy (RARP) is linked to surgeon efficiency and clinical outcomes 

(i.e., tissue tear)6. We have also demonstrated that when surgeons are instructed on what 

specific gesture to utilize during the VUA, they are able to shorten the learning curve for this 

step of the RARP7.

Computational approaches have already been tapped towards the goal of recognizing and 

evaluating surgical gestures. Classical computer vision techniques8, as well as recurrent 

models using kinematics9 have been employed previously with modest success. In recent 

years, neural networks for extracting information from video data have made tremendous 

strides.10,11 Indeed, some groups have started to apply such deep learning approaches to 

commonly available datasets such as the JIGSAWS suture classification dataset.12 While 

these prior works have been largely limited to the well-controlled laboratory environment, 

live application of computer vision-based identification and classification of suturing 

gestures will ultimately determine the real-world utility of such technology.

Herein, we utilize deep learning-based computer vision to 1) identify suture needle driving 

activity during live robot-assisted surgery; 2) classify suturing needle driving gestures based 

on a clinically validated categorization we previously described.

Methods

In this study, we set out to characterize commonly used architectures employed in action 

recognition towards the goal of recognizing and classifying surgical stitches. To undertake 

this study, we started by generating two complementary datasets for training models from 

videos of a live VUA during a RARP to identify when a suturing gesture is happening 
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(gesture identification) and what gesture is happening (gesture classification). Using 

annotated video data from a previous study,6 we generated a dataset of short clips 

corresponding to moments of “needle driving” (Fig 1b) (positive samples) and short clips 

corresponding to non-needle driving surgical activity (negative samples). This dataset which 

we call the “identification dataset” contained 2,395 total video clips (1209 positive; 1186 

negative) with an average duration of 12.2 seconds. For gesture classification, we generated 

a dataset of 511 total clips to distinguish five selected gestures from our established 

taxonomy (Fig 2). These five were selected based on the adequate sample size per class 

(Gesture 1 – 150 samples, 2–101, 3–96, 4–117, 5–47). The clips had an average duration of 

6.6 seconds and each one was manually labeled by two independent trained annotators. We 

refer to this dataset as the “classification dataset”.

The computational task of identifying actions from video inputs is commonly known in 

computer vision as action recognition. Although a challenging problem, neural networks 

have recently shown promise in their ability to reason from such spatiotemporal data. The 

most common example of such networks is so-called “two-stream networks” in which 

networks take two streams of inputs as features: the raw RGB pixels of the video as well as 

an optical flow representation in which momentary direction and magnitude of motion are 

defined at each pixel (Fig 3). These inputs are usually passed through a standard feature 

extractor (usually a deep network) and the representations produced by these networks are 

further passed into a temporally recurrent classification layer, usually some flavor of a long 

short term memory unit (LSTM13). In practice, one can add complexity or inductive biases 

to the recurrent classification for example by making this layer convolutional 

(convLSTM14), which may aid in performance and training time. In this work, we explore 

specific hyper parameter choices in this framework for the recurrent classification model 

(Figure 2). For the comparisons presented here we chose a fixed 7-layer network 

(AlexNet15), which was initialized from weights trained on a large corpus of natural images 

(ImageNet). We vary the recurrent classification layer (LSTM, convLSTM) in our 

experiments.

Using the two curated datasets as our starting point, we set out to evaluate commonly used 

deep learning architectures used in action recognition for the task of identifying when 
(identification) and what (classification) suturing gestures happened. Taken together, we 

hope this work serves as a preliminary demonstration of a potential approach towards 

merging the latest research in deep learning with the identification, classification, and 

potential evaluation of surgical skills to improve patient outcomes.

Results

We started by training a model to identify short clips as either containing “needle driving” 

(positive label) or did not contain such an action (negative label) using the annotated 

identification dataset. We trained all models on three 80/20 train/test splits, using hyper 

parameters shown in Table 1 and report AUC and accuracy in Figure 4. We observed 

significantly above chance values for both accuracy (79%) and AUC (0.88) in the 

identification task, however we found no effect of recurrent classification model on the 

model performance.
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We further moved on to train a model for identifying when a gesture happened using the 

classification dataset to output gesture type probabilities over the 5 selected gestures in our 

dataset (Figure 2). We varied the same hyper parameters as before (classification layer) and 

found that similar to the identification task that there was no effect of the specific type of 

classification model. We do however note that convolutional versions of the LSTM 

(convLSTM) reached convergence in fewer epochs than LSTM counterparts (data not 

shown). In this classification task, we achieved an average 1st guess (top1) accuracy of 62% 

for the models trained. Additionally, we also managed to maintain a high AUC (0.87), 

indicating that the model does not take a biased approach to the classification task to achieve 

good results. This is further evident in the confusion matrix in Figure 5, where a strong 

diagonal is present, indicative of reasonable performance in all classes.

Discussion

In summary, we present a novel annotated dataset for the study of suture gestures in the 

context of a robot-assisted surgical procedure. We produced annotation for two types of 

tasks, one with clips annotated with when “needle driving” is present (gesture identification 
dataset) and another dataset labeled with gesture clips and their corresponding type 

according to the presented taxonomy (gesture classification dataset). We further show that 

applying standard deep network approaches, commonly used in action recognition, can be 

used to train models that achieve promising performance on both tasks.

The results presented here, in many ways, present a conservative estimate of the sort of 

performance that can be achieved from these models. We are training in a relatively data-

limited regime in both tasks so these models will further improve as labeled data becomes 

available. In addition, we did not yet employ any inference “tricks” such as ensemble or 

majority votes commonly used in action recognition models.10,16

Our present study is foundational to future work on automating technical skills evaluation. 

Having completed the first steps to identify and classify suturing gestures, we will transition 

to evaluating how well a suture is executed. Part of how well suturing is performed is simply 

gesture selection at specific anatomic positions6, in which the present study can help 

streamline. But the suturing performance also depends on the actual technical skill of the 

surgeon in carrying out the maneuver, and the models we develop in this study hold promise 

for such automatic evaluation as well.

On a higher level, our present work is foundational not only for evaluation of suturing, but it 

also builds the starting point for eventual autonomous suturing. Such future platforms must 

first be capable of recognizing and assessing ideal suturing skills before becoming capable 

of performing it autonomously.

Funding/Support:

This study is supported in part by the National Institute Of Biomedical Imaging And Bioengineering of the National 
Institutes of Health under Award Number K23EB026493.

Luongo et al. Page 4

Surgery. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Birkmeyer JD, Finks JF, O’Reilly A, Oerline M, Carlin AM, Nunn AR, et al. Surgical skill and 
complication rates after bariatric surgery. N Engl J Med. 2013;369(15):1434–42. [PubMed: 
24106936] 

2. Hung AJ, Chen J, Ghodoussipour S, Oh PJ, Liu Z, Nguyen J, et al. A deep-learning model using 
automated performance metrics and clinical features to predict urinary continence recovery after 
robot-assisted radical prostatectomy. BJU Int. 2019;124(3):487–495. [PubMed: 30811828] 

3. Aghazadeh MA, Jayaratna IS, Hung AJ, Pan MM, Desai MM, Gill IS, et al. External validation of 
Global Evaluative Assessment of Robotic Skills (GEARS). Surg Endosc. 2015;29(11):3261–6. 
[PubMed: 25609318] 

4. Hung AJ, Chen J, Jarc A, Hatcher D, Djaladat H, Gill IS. Development and Validation of Objective 
Performance Metrics for Robot-Assisted Radical Prostatectomy: A Pilot Study. J Urol. 
2018;199(1):296–304. [PubMed: 28765067] 

5. Raza SJ, Field E, Jay C, Eun D, Fumo M, Hu JC, et al. Surgical competency for urethrovesical 
anastomosis during robot-assisted radical prostatectomy: development and validation of the robotic 
anastomosis competency evaluation. Urology. 2015;85(1):27–32. [PubMed: 25530362] 

6. Chen J, Oh PJ, Cheng N, Shah A, Montez J, Jarc A, et al. Use of Automated Performance Metrics to 
Measure Surgeon Performance during Robotic Vesicourethral Anastomosis and Methodical 
Development of a Training Tutorial. J Urol. 2018;200(4):895–902. [PubMed: 29792882] 

7. Remulla D, Nguyen J, Lee R, Chu T, Chen J, Singh V, Chen A, Marshall S, Gill I, Hung AJ (2019) 
Impact of a standardized training tutorial on automated performance metrics and cognitive workload 
during robotic vesicourethral anastomosis. J Urol. 2019;201(4): e509.

8. Zappella L, Bejar B, Hager G, Vidal R. Surgical gesture classification from video and kinematic 
data. Med Image Anal. 2013;17(7):732–45. [PubMed: 23706754] 

9. DiPietro R, Ahmidi N, Malpani A, Waldram M, Lee GI, Lee MR, et al. Segmenting and classifying 
activities in robot-assisted surgery with recurrent neural networks. Int J Comput Assist Radiol Surg. 
2019;14(11):2005–20. [PubMed: 31037493] 

10. Feichtenhofer C, Fan H, Malik J, He K. SlowFast Networks for Video Recognition. 
2018;arXiv:1812.03982.

11. Feichtenhofer C, Pinz A, Zisserman A. Convolutional Two-Stream Network Fusion for Video 
Action Recognition. 2016;arXiv:1604.06573.

12. [dataset] Gao Y, Vedula S, Reiley C, Ahmidi N, Varadarajan B, Lin H, et al. The JHU-ISI Gesture 
and Skill Assessment Working Set (JIGSAWS): A Surgical Activity Dataset for Human Motion 
Modeling, In Modeling and Monitoring of Computer Assisted Interventions (M2CAI) – MICCAI 
Workshop, 2014.

13. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997; 9(8): 1735–
80. [PubMed: 9377276] 

14. Shi X, Chen Z, Wang H, Yeung DY, Wong W, Woo W. Convolutional LSTM Network: A Machine 
Learning Approach for Precipitation Nowcasting. 2015; arXiv:1506.04214.

15. Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural 
networks. Proceedings of the 25th International Conference on Neural Information Processing 
Systems. 2012; 1:1097–1105.

16. Tran D, Bourdev L, Fergus R, Torresani L, Paluri M. Learning Spatiotemporal Features with 3D 
Convolutional Networks. 2015;arXiv:1412.0767

Luongo et al. Page 5

Surgery. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Phases of suturing
Suturing can generally be broken into 3 repeating phases, including a) “needle positioning” 

with needle driver instruments, b) “needle driving” through tissue, c) “suture cinching”
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Figure 2. Taxonomy of suturing gesture types
The full classification system is presented here, which is derived from our prior work.6 

Boxed gestures refer to those evaluated for our classification task in the present study.
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Figure 3. Data preparation and modeling pipeline
Schematic of the overall approach to developing a model for gesture presence and gesture 

type. Preprocessing: Prior to applying inputs to any trainable model, we pass the raw RGB 

video frames through a pre-trained deep network designed to produce optical flow estimates 

of the video. We code this optical flow into RGB using the hue as direction and saturation as 

magnitude. We pass this optical flow representation of the video alongside the RGB frames 

into the subsequent feature extractor networks. Feature extraction: We train two feature 

extractors (one for RGB, one for optical flow) initialized from ImageNet pertained deep 

networks. Outputs of these two networks are concatenated before passing to the 

classification layer. Classification: We train one of two varieties (LSTM, convolutional 

LSTM) of temporally recurrent classification layers on top of the features extracted. 

Depending on the task, these models are trained to either produce a 2-class label prediction 

(gesture identification) or a 5- class label prediction (gesture classification).
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Figure 4. Results summary of identification and classification models on stitching gestures.
Average model performance across three 80/20 train-test splits of the dataset broken down 

by task. Models were trained either to predict whether or not a gesture was happening 

(identification) or trained to identify the type of gesture being performed in a clip 

(classification). We vary the recurrent model (LSTM, convLSTM). For the 5-way 

classification in the gesture classification task, AUC represents the average of one vs. rest 

across classes and accuracy represents top1 accuracy.
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Figure 5. Confusion matrix for AlexNet-convLSTM gesture classification model
Confusion matrix showing normalized accuracy across the 5 possible gesture classes that 

were produced by the model.
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Table 1:

Hyper parameters used during training

Hyperparameter Value (classification) Value (cutting)

N classes 2 5

Learning algorithm Adam Adam

Learning rate 1e-5 1e-5

Epochs 25 7

Batch size 1 1

Base network {AlexNet} {AlexNet}

Classification network {LSTM, convLSTM} {LSTM, convLSTM}

For each network, 3 different train/test split networks were trained. For video clips longer than 4 sec, a random 4-sec clip was grabbed on each 
iteration. Classes were balanced via upsampling during training. For data augmentation each frame was resized (240×240) and cropped (224×224) 
during training. A stride of 4 frames was used (e.g. only sample 1 out of every 4 frames) for an effective frame rate of 7.5Hz. Images were standard 
scaled before passing through the network. LSTM was a 2-layer LSTM with 64 and 128 units in each layer, respectively. Convolutional LSTM had 
stride 3 and the number of channels equal to the number of channels in the final convolutional layer of the respective base network (256 for 
AlexNet).
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Table 2:

Number of trainable parameters for each model type

Number of trainable parameters

Feature extractor Recurrent model Total

AlexNet-LSTM 3.7 million 49k 7.5 million

AlexNet-convLSTM 3.7 million 7 million 14.4 million

Total number of trainable parameters for each of the 2 configurations trained. Note that more parameters does not necessarily improve performance.
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