Skip to main content
. 2021 Mar 25;21(4):421–442. doi: 10.1089/ast.2020.2301

Table 1.

Experimental Versus ReaxFF-Predicted Bond Dissociation Energies

Bond Reaction ReaxFF DE(kcal/mol) Exp DE(kcal/mol) Method ΔDE(ReaxFF-Exp) ΔR0% Year Refs.
H–H H2 → 2H 107.65 103.397 ± 0.001 Spectroscopic 3.713 ± 0.001 −1.351 1960 (Herzberg and Monfils, 1960)
H–O H2O → H + OH 115.188 118.8 ± 0.002 Thermochem 3.612 ± 0.002 −1.042 2015 (Ruscic, 2015)
C–C C2H6 → 2CH3 90.88 90.2 ± 0.2 Thermochem −0.68 ± 0.2 −0.584 1983 (Kolesov and Papina, 1983)
C = C C2H4 → 2CH2 154.0 170.15 ± 1.2 Thermochem 16.15 ± 1.2 1.0447 1990 (Ervin et al., 1990)
C–H CH4 → CH3 + H 108.5 101.6 ± 2.0 Thermochem 6.9 ± 2.0 −4.954 2015 (Ruscic, 2015)
C–O CH3OH → CH3 + OH 94.75 88.6 Thermochem −6.15 −9.090 2015 (Ruscic, 2015)
C = O H2CO → O + CH2 191.18 179.24 ± 0.036 Thermochem 11.95 ± 0.036 −7.500 2015 (Ruscic, 2015)
C–N CH3NH2 → CH3 + NH 82.32 76 Thermochem −6.32 −0.136 1967 (Wagman et al., 1967)
N–H NH3 → H + NH2 117.64 103.96 Thermochem 13.68 −0.990 1958 (Cottrell, 1958), (Darwent, 1970), (Benson, 1965), (Kerr, 1966)

Underpredicted bond dissociation energy values have a negative ΔDE (weaker) and overpredicted energy values have positive ΔDE (stronger). The average ΔDE for all reactions is 7.05 ± 3.439 kcal/mol and the standard deviation is 4.002 ± 3.1317 kcal/mol.