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Abstract

Background: Deep learning (DL)-based image quality improvement is a novel
technique based on convolutional neural networks. The aim of this study was to
compare the clinical value of 18F-fluorodeoxyglucose positron emission tomography
(18F-FDG PET) images obtained with the DL method with those obtained using a
Gaussian filter.

Methods: Fifty patients with a mean age of 64.4 (range, 19–88) years who underwent
18F-FDG PET/CT between April 2019 and May 2019 were included in the study. PET
images were obtained with the DL method in addition to conventional images
reconstructed with three-dimensional time of flight-ordered subset expectation
maximization and filtered with a Gaussian filter as a baseline for comparison. The
reconstructed images were reviewed by two nuclear medicine physicians and scored
from 1 (poor) to 5 (excellent) for tumor delineation, overall image quality, and image
noise. For the semi-quantitative analysis, standardized uptake values in tumors and
healthy tissues were compared between images obtained using the DL method and
those obtained with a Gaussian filter.

Results: Images acquired using the DL method scored significantly higher for tumor
delineation, overall image quality, and image noise compared to baseline (P < 0.001).
The Fleiss’ kappa value for overall inter-reader agreement was 0.78. The standardized
uptake values in tumor obtained by DL were significantly higher than those acquired
using a Gaussian filter (P < 0.001).

Conclusions: Deep learning method improves the quality of PET images.

Keywords: Deep learning, 18F-fluorodeoxyglucose positron emission tomography,
Image quality
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Background
Integrated positron emission tomography (PET) and computed tomography (CT) using
18F-fluorodeoxyglucose (FDG) is a standard method used in oncology [1] and is also

applied in other conditions, including infectious, ischemic, and degenerative diseases.

In oncology, 18F-FDG PET/CT is useful for differentiation between benign and malig-

nant lesions, cancer staging, assessment of the response to treatment, and planning of

radiation therapy. However, although 18F-FDG PET is a promising modality, the images

are noisy and their resolution is low [2, 3].

PET images are reconstructed by analytic methods such as filtered back projection

[4]. However, reconstructions using analytic methods are challenging because noise sta-

tistics related to the emission of photons are difficult to model. Therefore, a statistical

model in the maximum likelihood framework has been developed [5].

High-resolution PET images with a high signal-to-noise ratio (SNR) enable better

visualization of precise anatomical structures, improving diagnostic accuracy and facili-

tating early diagnosis of disease and accurate staging. Several methods can be used to

obtain high-quality PET images, including increasing the acquisition time, using a time

of flight technique, and detection with a semiconductor [6, 7]. In clinical settings, in-

creasing the data acquisition time is a common choice. However, an increased acquisi-

tion time leads to a longer examination time, which can be burdensome for patients.

Denoising techniques have been used to improve the quality of low SNR images.

A convolutional neural network (CNN) has been applied in medical imaging, includ-

ing CT and magnetic resonance imaging. Given that it is composed of several linear

convolutional layers and nonlinear layers, CNN could reduce statistical noise in PET

images without degrading image contrast. Such layers (linear and nonlinear) with a

large number of parameters are optimized by training using large datasets. Parameters

are optimized by training data extracted from PET/CT datasets. Deep learning ap-

proaches for image noise reduction have recently been reported for other modalities,

including CT and magnetic resonance imaging [8–11]. Introduction of deep learning-

based restoration in single-photon emission tomography (SPECT) images has also been

reported. Dietze et al. used a CNN to upgrade images of technetium-99m macroaggre-

gated albumin SPECT/CT pre-treatment, resulting in images comparable with Monte

Carlo-based iterative reconstruction, which is known to render better quality images,

but to be time-consuming [12]. Moreover, CNN can be applied to PET. CNN was ap-

plied for low-dose PET/CT and yielded high-quality images [13–18]. However, the ap-

plicability of CNN to clinical PET images has not been fully investigated.

Therefore, the main purpose of this study was to evaluate initial clinical experiences

and to explore whether or not the newly developed deep learning-based method im-

proves image quality in comparison with conventional images obtained with a Gaussian

filter. We compared whole-body 18F-FDG clinical images with the DL method and

those with conventional reconstruction both visually and semi-quantitatively.

Methods
Patients

The institutional review board of the Tokyo Medical and Dental University approved

the present study, and written informed consent was obtained from all patients. The
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population of the testing studies consisted of 50 patients with a mean age of 64.4

(range, 19–88) years who underwent 18F-FDG PET/CT between April 2019 and May

2019. The patient demographic and clinical data are summarized in Table 1.

PET/CT imaging

The patients fasted for at least 6 h before undergoing a PET/CT examination and their

blood glucose levels were measured. Next, a 3.7-MBq/kg injection of 18F-FDG was ad-

ministered, and 18F-FDG imaging was performed approximately 60 min later. Patients

were scanned from the skull base to the mid-thigh region using a PET/CT scanner

(Celesteion, Canon Medical, Tokyo, Japan). The CT parameters used for attenuation

correction were as follows: 120 kV; field of view, 550 mm; pitch, 16.0; and slice thick-

ness, 2.0 mm. PET emission datasets were obtained with 2 min in each bed position

(for 16–18 min in total). The conventional PET images with Gaussian postfilter were

reconstructed with three-dimensional ordered subset with 2 iterations and 10 subsets.

Then, a Gaussian filter of size 6 mm was applied. The DL images were reconstructed

with 4 iterations and 10 subsets, and DL-based noise reduction was applied. Next, for

semi-quantitative assessment, voxels of interest (VOIs) were calculated. The 18F-FDG

PET/CT scans were analyzed using a commercially available dedicated Vox-base

SP1000 workstation (J-MAC Systems, Sapporo, Japan).

Deep learning-based approach

Our DL-based approach is an application of deep convolutional neural network

(DCNN), which comprises a network training step and a denoising step. In the training

step, we prepared a large amount of low-quality and high-quality image pairs in which

network parameters are optimized to map a noisy (low-quality) image to a low noise

Table 1 Patient demographic and clinical data (n = 50)

Age, years 64.9 ± 13.9

Sex

Male 26

Female 24

Weight, kg 61.9 ± 10.9

Disease, n

Malignancy

Head and neck tumor 13

Lung cancer 10

Lymphoma 10

Breast cancer 6

Uterine cancer 2

Pancreatic cancer 2

Cancer of unknown primary 2

Others *1 5

Time delay, min 63.7 ± 6.7

Blood sugar level (mg/dl) 115.6 ± 16.0

*1, multiple myeloma, esophageal cancer, colon cancer, malignant melanoma, Takayasu aortitis
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(high-quality) image. The low-quality and high-quality images are also referred to as

training images and target images, respectively. The training dataset constituted of 6

patient studies of 18F-FDG lung scans with 2 beds coverage (lung to upper abdomen)

and 2 × 18F-FDG brain studies. The lung scans were acquired for 14 min/bed while the

brain studies were scanned for 15 min/bed. These full scans were used as the target im-

ages. We then uniformly subsampled the listmode data into 8 noise levels as 30, 45, 60,

120, 180, 240, 300, and 420 s/bed as the noisy training samples. For example, for rebin-

ning a 10-min listmode data into a count level equivalent to a 5-min acquisition, every

other event is removed in the listmode data. In such case, these noisy samples share

the same clean latent image but are corrupted with different magnitudes of noise.

These scan durations cover count levels beyond the normal range seen in clinical prac-

tice. In the training process, all the inputs at different noise levels are paired with the

same high-quality target [18]. The rationale behind this is that all the noisy samples

share the same clean latent image but are corrupted with different levels of noise. The

network filters are therefore optimized to estimate the noise residual from different

noise levels in the input images. In such a way, the CNN can learn to adapt to different

noise levels in the input image automatically and can always produce consistent high-

quality images. The training images were reconstructed with an OSEM reconstruction

algorithm incorporating time-of-flight (TOF), point spread function (PSF), attenuation,

and scatter corrections. All the images were reconstructed with 4 iterations and 10 sub-

sets. The reconstructed image dimension was 272 × 272 × 144 for the lung studies and

120 × 120 × 81 for the brain studies with 2-mm voxel dimension. Before training and

testing, all the images were converted to a standardized uptake value (SUV), a quantity

that is normalized based on the injected radioactivity and the subject’s body weight.

The SUV of normal tissue should be around 1, while a SUV of 2.5 or higher is generally

indicative of malignant tissue. All these studies constitute 9234 2D training slices in

total. The testing studies are reconstructed using the same protocol and converted to

SUV prior to being fed into the network.

Deep CNN architecture

Our DL method consists of a DCNN with 8 layers as shown in Fig. 1. Here, we chose

the residual network architecture that tries to estimate the noise n instead of high-

Fig. 1 Structure of a deep convolutional neural network. “Conv” represents convolution, “ReLU” denotes a
rectified linear unit, and “BN” is an abbreviation for batch normalization
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quality image x out of low-quality image y = x + n, as proposed in the previous study

[19]. The optimization process then tries to minimize the loss function L:

L Θð Þ ¼ 1
N

X
i∈N

ψ F yi;Θð Þ − yi − xið Þð Þ ð1Þ

where Θ denotes the trainable weights, F ðyi;ΘÞ is the estimation of noise n, ψ is the

error function chosen as the mean square error, N represents the number of training

images, y denotes the training images, and x denotes the target images.

In conventional DCNN training, the loss function equally weights all voxel-wise dif-

ferences in image patches. We have proposed a feature-oriented approach in the

DCNN training, which uses weight maps to steer the training toward contrast preserva-

tion for small features. Phantom and patient studies have demonstrated that this ap-

proach can effectively improve contrast recovery on small and low contrast lesions,

when the number of high-quality training dataset with small lesions is limited [15].

As shown in Fig. 2, a weight map that assigns different weights to different voxels is

provided in the network along with the low-quality input and high-quality target. The

weight map forces the network to learn to preserve the desired small features while

suppressing noise in the background. With the weight map, the loss function becomes:

L Θð Þ ¼ 1
N

X
i∈N

ψ F yi;Θð Þ − yi − xið Þð Þ∙wið Þ ð2Þ

where wi denotes the weight map and the ∙ operator denotes voxel-wise multiplication.

To generate the weight maps, we first segment the lesions in the target images in the

training dataset using adaptive thresholding in order to create the lesion mask (Fig. 3).

The weights of the background voxels are set to unity. The voxels in the lesion, which

are more important, are set to 10. This value is determined empirically based on the

tradeoff between preservation of lesion contrast versus noise reduction in our previous

experiments. The weight map is then convolved with a Gaussian kernel to accommo-

date segmentation errors. The weight map is uniform for the patches that do not con-

tain lesions. The trans-axial slices of sample training targets and the corresponding

weight maps are shown in Fig. 3. All the lesions that used to generate the weight maps

are located in the lung and liver. Please note the weight map is only needed in the

training process that can be casted as a form of regularization in the loss function.

Fig. 2 Overview of the feature-oriented deep convolutional neural network. Overview of the feature-
oriented deep convolutional neural network training to better preserve small features in output. The weight
map is used to assign different weights to different voxels in the loss function calculation. In this case, a
higher weight is assigned to voxels in the lesion
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Indeed, it prevents the network training overfitting to the noise in the input images.

During inference, no weight map is needed.

The inputs and outputs of the networks are 3-channels (3 consecutive slices), which can

be considered as a 2.5D convolution process. With stride 1 in the axial direction, some

slices may be processed 2 or 3 times. The outputs slices are weight averaged in the axial

redirection to form the final volume. During training, patches with a dimension of 32 ×

32 × 3 were extracted from the input images with 16, 16, and 2 pixels overlapping in the

x, y, and z directions, respectively. During testing, the kernels were applied to the whole

image slice. The convolutional kernel dimension was 3 × 3 in order to capture local noise

distribution and small features instead of global features. The L2 norm was chosen as the

loss function in order to account for high-intensity noise spikes and to obtain stable solu-

tion. The Adaptive Moment Estimation (Adam) algorithm optimizer was used to

minimize the loss function. The network was trained for 450 total epochs with a gradually

decreasing learning rate, i.e., 0.01 for 350 epochs, 0.001 for 50 epochs, and 0.0001 for the

last 50 epochs. To validate the training results, we reserved 1% of the training samples for

validation during training. These training samples were not used to train the network. In-

stead, they were used to monitor the performance of the network during training. We

computed the loss function using the validation data set and compared to the loss func-

tion computed from the training dataset. The network was trained in a Matlab environ-

ment using the MatConvNet toolbox [20].

Qualitative analysis

The acquired images were independently reviewed and analyzed using the Vox-base

SP1000 workstation. All PET images were blindly evaluated by two experienced nuclear

medicine physicians (with 10 and 8 years of experience, respectively, in interpreting

PET scans). The readers were not aware of the clinical indication for PET/CT.

Readers were allowed to manually adjust the standard window settings. Subsequently,

based on 5-point scales, the following quality criteria were assessed: tumor delineation

(ranging from 1 = lesion cannot be confirmed to 5 = excellent delineation of the lesion

margin), overall image quality (ranging from 1 = poor overall image quality to 5 = ex-

cellent overall image quality), and image noise (ranging from 1 = enormous image noise

to 5 = no perceivable image noise) [21, 22]. In the event of large differences in assess-

ment between readers, the specific images were discussed in a consensus meeting.

Readers were instructed to record when they detected any artifact or failure.

Fig. 3 Sample target slices and corresponding weight maps. Trans-axial slices of sample target images and
their corresponding weight maps. The red crosshair marks the same location on both slices
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Quantitative analysis

For semi-quantitative analyses, one nuclear medicine physician placed 0.5-mL spherical

VOIs in healthy tissues (aortic arch, semioval center [white matter], lung, left ventricle

of the heart, parotid gland, quadriceps femoris muscle, and spleen) and also placed a 3-

mL spherical VOI in the liver for reference tissue purposes. From these VOIs, the max-

imum, peak, and mean standardized uptake values (SUVmax, SUVmean, and SUVpeak,

respectively) were obtained. VOIs were also placed in the different lesions per patient

(with an overall maximum of five lesions per patient, with a maximum of two in the

same tissue type). From these measurements, the different SUVmax, SUVpeak, and

SUVmean values were compared between the two images. The normalized values of

SUV max, SUVpeak, and SUVmean with reference to the aortic arch were calculated

and compared between the two images.

Statistical analysis

Scores for the images acquired using the two methods were compared pairwise using a

two-tailed paired samples t-test. For inter-reader agreement regarding tumor delinea-

tion, overall image quality, and image noise, the original 5-point scores were reassigned

to 3-point scores (1 + 2 became 1, 3 became 2, and 4 + 5 became 3). Inter-reader agree-

ment was subsequently evaluated using the kappa statistic. SUV parameters in healthy

tissues and lesions were compared between the different systems using a two-tailed

paired samples t-test. The statistical analysis was performed using SPSS for Windows

(IBM Corp., Armonk, NY, USA). A P-value < 0.05 was considered statistically

significant.

Results
Images using DL were scored significantly higher for tumor delineation, overall image

quality, and image noise than at baseline (P < 0.001; Table 2). The Fleiss’ kappa value

for the overall inter-reader agreement was 0.78. In most of the healthy tissues, the

SUVs measured with the DL method were higher than those measured with standard

reconstruction (P = 0.456 to < 0.001; Table 3). We detected lesions in the region in-

cluding the brain, parotid gland, thyroid, pharynx, lung, breast, liver, bile duct, pan-

creas, intestine, lymph nodes (cervical, subclavian, axillary, mediastinum, hepatic,

paraaortic, and inguinal), subcutaneous area, and bones (rib, spine, and pelvic bones).

The sizes of the lesions in the maximal axial plain ranged from 0.52 to 102.21 cm3. The

difference between DL images and Gaussian filtered images was more significant in

tumor tissues (P = 0.31 to < 0.001; Table 4). The difference in normalized values be-

tween DL images and Gaussian filtered images was also significant (P = 0.09 to < 0.001;

Table 2 Qualitative image analysis

dPET cPET P-value

Delineation 4.06 ± 0.24 2.94 ± 0.24 < 0.0001

Noise 3.88 ± 0.48 2.40 ± 0.50 < 0.0001

Overall image quality 3.94 ± 0.44 2.98 ± 0.20 < 0.0001

The data are shown as the mean and standard deviation. cPET, conventional positron emission tomography; dPET, deep
learning processed positron emission tomography
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Table 5). Representative cases are shown in Figs. 4 and 5. No artifact or failure was

detected.

Discussion
This study evaluated the effect of the deep learning technique on the quality of FDG

PET/CT images. In DL images, the image noise was lower, and the lesion delineation

and image quality were superior compared to conventional reconstruction. DL en-

hanced image quality and reduced image noise.

A conventional spatial filter, such as the Gaussian filter, involves mixing of pixel

values and the amount or ratio of mixture is determined simply by the distance

Table 3 SUVs in healthy organ tissues

Organs cPET mean ± SD dPET mean ± SD P-value

Aortic arch SUV max 1.63 ± 0.26 1.72 ± 0.26 < 0.0001

SUV mean 1.34 ± 0.20 1.44 ± 0.20 < 0.0001

SUV peak 1.48 ± 0.21 1.57 ± 0.21 < 0.0001

Semioval center SUV max 2.28 ± 0.43 2.19 ± 0.39 0.04

SUV mean 1.85 ± 0.45 1.76 ± 0.37 0.003

SUV peak 2.28 ± 0.43 2.37 ± 0.47 < 0.0001

Liver SUV max 2.25 ± 0.43 2.09 ± 0.27 < 0.0001

SUV mean 1.76 ± 0.33 1.81 ± 0.30 0.456

SUV peak 2.00 ± 0.37 1.92 ± 0.24 < 0.0001

Lung SUV max 0.33 ± 0.30 0.31 ± 0.09 0.033

SUV mean 0.26 ± 0.23 0.24 ± 0.07 < 0.0001

SUV peak 0.31 ± 0.27 0.29 ± 0.08 0.006

Left ventricle SUV max 1.62 ± 0.29 1.64 ± 0.27 0.19

SUV mean 1.32 ± 0.24 1.41 ± 0.27 < 0.0001

SUV peak 1.59 ± 0.32 1.63 ± 0.30 0.006

Parotid gland SUV max 1.33 ± 0.37 1.49 ± 0.43 < 0.0001

SUV mean 1.11 ± 0.30 1.20 ± 0.33 < 0.0001

SUV peak 1.22 ± 0.34 1.30 ± 0.37 < 0.0001

Quadriceps muscle SUV max 0.64 ± 0.16 0.67 ± 0.17 < 0.0001

SUV mean 0.50 ± 0.12 0.54 ± 0.12 < 0.0001

SUV peak 0.58 ± 0.13 0.60 ± 0.13 < 0.0001

Spleen SUV max 1.87 ± 0.30 1.92 ± 0.31 0.023

SUV mean 1.59 ± 0.26 1.30 ± 0.37 < 0.0001

SUV peak 1.70 ± 0.26 1.69 ± 0.24 < 0.0001

The data are shown as the mean and standard deviation. Note: The current DCNN is trained to be used only for general
whole-body studies but is not designed for the brain. cPET, conventional positron emission tomography; dPET, deep
learning processed positron emission tomography; SD, standard deviation; SUV, standardized uptake value

Table 4 SUVs in tumor lesions (n = 108)

cPET mean ± SD dPET mean ± SD P-value

Lesions SUV max 5.59 ± 3.97 8.42 ± 5.02 < 0.0001

SUV mean 1.98 ± 0.96 2.14 ± 0.83 < 0.0001

SUV peak 4.04 ± 2.93 4.69 ± 3.07 0.31

The data are shown as the mean and standard deviation. cPET, conventional positron emission tomography; dPET, deep
learning processed positron emission tomography; SD, standard deviation
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between two pixels. This process results in unwanted blurring of organs and reduction

of the SUV value of regions with small concentration in both tumor and healthy or-

gans. The principle underlying the deep learning noise reduction process is different

from the conventional convolution filter approach. When noisy data are used as the

training input and high-quality data are presented as the training target, the network

can learn to produce clean images from noise-contaminated images. Our training target

dataset for DCNN comprised high-quality images with a longer acquisition time. DL

imaging rendered a higher image quality than conventional imaging with Gaussian fil-

tering. The difference between the conventional filter approach and DL approach re-

sults in a difference in the SUV parameters. For tumors and healthy tissues in small

organs, Gaussian filtering shaves off pixel values in the images, while DL only removes

noise. This difference results in a higher SUVmean in most concentrations. When we

consider relatively larger organs like the liver, excluding its edge, both Gaussian filter-

ing and DL do not change the overall SUV level. Thus, the lower SUVmax and SUV-

peak of DL demonstrate that DL has stronger denoising capability than Gaussian

filtering.

In the qualitative assessment, we compared DL PET images with conventional PET

images. DL reduced the image noise and improved the image quality. Schaefferkoetter

et al. demonstrated that the denoising method using CNN improved very noisy data.

Table 5 Difference in SUV ratios compared to the background SUV in tumor lesions (n = 108)

cPET Mean ± SD dPET Mean ± SD P-value

Lesions SUV max ratio 3.42 ± 2.32 4.95 ± 3.26 < 0.0001

SUV mean ratio 1.49 ± 0.73 1.52 ± 0.69 0.09

SUV peak ratio 2.81 ± 2.05 3.09 ± 2.26 < 0.0001

The data are shown as the mean and standard deviation. cPET, conventional positron emission tomography; dPET, deep
learning processed positron emission tomography; SD, standard deviation

Fig. 4 A representative case. A 67-year-old male patient with metastasized non-small cell lung carcinoma.
Maximum intensity projection and axial positron emission tomography images with conventional Gaussian
filter a, c, e, g, i, k, m and those obtained with a deep learning method b, d, f, h, j, l, n
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However, the lesser effect was appreciated by applying the technique to routinely en-

countered images [17]. The clinical impact of the DL method has to be investigated in

future studies. Moreover, the application of the DL technique used in the current study

may lead to a reduction in the radiation dose and a shorter acquisition time. Cheng

et al. enhanced the image quality of 2 one-hundredth dose PET to that of standard-

dose PET using the deep learning method [13]. Further studies are necessary to deter-

mine whether or not the diagnostic accuracy of imaging with DL methods used in this

study is retained at reduced radiation doses.

PET images have a low SNR so need denoising. The commonly used technique is

Gaussian filtering, which is sometimes implemented in iterative image reconstruction

algorithms [23]. Gaussian filtering can increase the SNR. However, it also smooths the

image and can produce a loss of resolution by averaging voxels together and blurring

the distinction between two closely adjacent objects.

The network used in this study was specifically trained and applied on 18F-FDG PET

studies acquired on Canon Medical’s Celesteion PET/CT scanner. The application of

this network to other imaging tracers or scanners may not produce equivalent results

as presented in this study, which requires further investigation. In addition, we have

not investigated the impact of dose/scan duration reduction on the diagnostic quality

of the network results, which also warrants future investigation.

Fig. 5 Representative cases. Axial positron emission tomography (PET) images with conventional Gaussian
filter a, c, e, g, i and those obtained with a deep learning method b, d, f, h, l, j. Lymphoma in a 47-year-old
woman. Axial PET image shows increased metabolic activity (arrows) in the right parietal lobe a, b. Warthin
tumor in an 87-year-old man with lung cancer. Axial PET image shows increased metabolic activity (arrows)
in the right parotid gland c, d. Recurrent tumor in a 77-year-old man after surgery for lung cancer. Axial PET
image shows increased metabolic activity (arrow) in the right lung e, f. Liver and lymph node metastases in
an 88-year-old woman after surgery for lung cancer. Axial PET image shows increased metabolic activity in
the right lobe of the liver (arrows) and paraaortic lymph nodes (arrowheads) g, h. Lymph node metastases
in a 70-year-old man after surgery for colon cancer. Axial PET image shows increased metabolic activity
(arrow) in the right paraaortic lymph node i, j
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Conclusions
PET imaging is already characterized by limited spatial resolution and associated partial

volume effects. The DL methods used in this study enhanced the image quality by

maintaining the values of the SUV parameters. In this regard, the DL technique is su-

perior to conventional reconstruction.

In this initial study, we found that the DL method provides better perceived image

quality than conventional imaging with a Gaussian filter; more sharply demarcated

tumor lesions were seen, the overall image quality was higher, and a higher SNR was

assessed visually. In terms of semi-quantitative image quality, the DL technique renders

higher values for SUV parameters on imaging of tumors and healthy tissues in small

organs, while Gaussian filtering decreases the SUV by blurring. Our results demon-

strate that DL respects the tissue boundaries well and reduces the noise considerably

without losing quantitative information on PET images, including SUVmax and SUV-

mean, when compared with images using a Gaussian filter. However, improved quanti-

tative performance may be feasible using clinically optimized reconstruction settings.

Future studies that include groups of patients with more homogeneous oncologic dis-

ease are necessary to validate our findings and to assess the potential clinical impact of

the DL method on PET imaging.
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