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Drug ranking using machine learning systematically
predicts the efficacy of anti-cancer drugs
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Artificial intelligence and machine learning (ML) promise to transform cancer therapies by
accurately predicting the most appropriate therapies to treat individual patients. Here, we
present an approach, named Drug Ranking Using ML (DRUML), which uses omics data to
produce ordered lists of >400 drugs based on their anti-proliferative efficacy in cancer cells.
To reduce noise and increase predictive robustness, instead of individual features, DRUML
uses internally normalized distance metrics of drug response as features for ML model
generation. DRUML is trained using in-house proteomics and phosphoproteomics data
derived from 48 cell lines, and it is verified with data comprised of 53 cellular models from 12
independent laboratories. We show that DRUML predicts drug responses in independent
verification datasets with low error (mean squared error < 0.1 and mean Spearman'’s rank
0.7). In addition, we demonstrate that DRUML predictions of cytarabine sensitivity in clinical
leukemia samples are prognostic of patient survival (Log rank p < 0.005). Our results indicate
that DRUML accurately ranks anti-cancer drugs by their efficacy across a wide range of
pathologies.
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ARTICLE

ancers derived from the same tissue of origin and patho-

logical classification exhibit high degrees of genetic and

phenotypic variability within individuals'-3. In practice,
this heterogeneity translates to patients having differential
responses to therapy. To address this issue, the field of persona-
lized medicine aims to identify measurable biomarkers which
correlate with the efficacy of therapeutic interventions in indivi-
duals, allowing clinicians to predict patient responses to these
therapies?.

Protein biomarkers have been used to direct several targeted
cancer therapies for decades. Prime examples include HER2 and
estrogen receptor, whose expression predict the responses of
breast cancer patients to trastuzumab and tamoxifen,
respectively®. More recently, the development of robust and
affordable next-generation sequencing methods is allowing the
identification of genetic markers that predict responses to several
targeted drugs. Consequently, the majority of modern precision
medicine approaches utilize DNA sequencing methods and other
genetic analyses such as the detection of chromosomal
rearrangements®’. However, despite success in some therapeutic
contexts®?, the identification of response remains challenging for
many drugs. This is due to the complex biological landscape of
cancer, where multiple biochemical pathways compensate each
other and contribute to oncogenic phenotypes!®!l, Thus, muta-
tions and other genetic abnormalities are often inaccurate at
stratification. For example, midostaurin—a small molecule inhi-
bitor of the receptor Fms Related Receptor Tyrosine Kinase 3
(FLT3) that also targets other kinases—was approved in 2017 to
treat acute myeloid leukemia (AML) patients positive for FLT3
mutations, even though >40% of FLT3 mutant-positive AML
patients fail to respond to midostaurin'> and >30% of FLT3
mutant negative could potentially benefit from treatment!3.
Similarly, ~65% of eligible breast cancer patients (namely phos-
phatidylinositol 3-kinase alpha isoform (PIK3CA) mutant and
hormone receptor positive) failed to respond to the PI3K inhi-
bitor alpelisib (BYL-719) in a recent clinical trial'%. A feature of
current companion diagnostics is that these consider biomarkers
for a given drug in isolation without taking into account the
presence of response markers for other drugs that could also be
prescribed for a given patient. Consequently, although patient
selection using currently used biomarkers can increase the overall
efficacy of a given therapy, their ability to identify optimal
treatments is often imprecise for a particular cancer patient.

The application of machine learning (ML) to biomedicine
promises to revolutionize how cancers are diagnosed and treated
in the future!>16, Projects such as the Cancer Target Discovery
and Development and Genomics of Drug Sensitivity in Cancer
have evaluated ML as a means to predict drug responses by
associating genomic features, gene expression patterns and copy
number alterations to drug sensitivity!”-2l. However, this
approach has not been systematically applied using large scale
proteomics and phosphoproteomics data, even though anecdotal
evidence suggests that proteomic-derived features may be able
to predict drug responses more accurately that genomic
alternatives?2-26, A limitation has been the low sample
throughput of proteomics and phosphoproteomics by liquid
chromatography coupled to tandem mass spectrometry (LC-MS/
MS) compared to other omics techniques. Most proteomics
methods also involve comparing proteins after chemical or
metabolic labeling, thus restricting the number of samples that
can be directly compared and used as the input for ML model
generation?”. Moreover, since labeling methods measure protein
or phosphorylation sites as ratios, rather than providing absolute
values of abundance, models of drug responses constructed with
labelled proteomics data may be difficult to validate, and subse-
quently implement, in verification datasets and in the clinic.

Improvements in LC-MS/MS throughput and label-free
analysis?8-3! in tandem, together with the recent availability of
systematic drug response profiles for a large number of cell lines
and drugs'72132, now make feasible the use of proteomics and
phosphoproteomics data as the input of predictive models of drug
responses. Thus, assessing the performance of ML models con-
structed using proteomics data as input is timely, and essential to
evaluate the accuracy and the potential of proteomics to advance
the field of precision medicine.

To this end, here, we developed an approach, named Drug
Ranking Using ML (DRUML), for building and integrating ML
models. DRUML uses combinations of proteomic and phospho-
proteomic features to generate lists of ranked drugs based on their
efficacy in decreasing cancer cell proliferation. The ability of
DRUML to predict drug rankings within a cancer cell population,
without the need to compare to reference samples, is crucial for
the clinical implementation of ML and fulfills a core aim of
precision medicine®33,

Results

Overview of approach. DRUML consists of an ensemble of ML
models trained on the responses of cells to >400 drugs, which
allows these agents to be ranked based on their predicted efficacy
within a sample (Fig. la). In principle, any large-scale omics
dataset can be used as the input of DRUML. While the use of
gene copy number and RNA-seq for the generation of learning
models is well documented!8-323%35, the utility and relative per-
formance of large-scale proteomics and phosphoproteomics data
is less well explored. Here we used phosphoproteomics and
proteomics datasets obtained from 48 AML (n = 26), esophagus
(n=10) and hepatocellular (n = 12) cancer cell lines as the input
for DRUML to build models that may be applied to leukemia and
solid tumors (Fig. 1b). The predictive accuracy of models, initially
trained and validated using these in-house proteomic datasets,
were subsequently verified with data obtained from other
laboratories (discussed below). Supplementary Fig. 1 shows a
schematic of the approach and the datasets used for model gen-
eration, validation and verification.

To reduce the impact of data noise on model performance, we
first reduced the dimensionality of the omics datasets by
obtaining empirical markers of drug responses (EMDRs, Fig. 1a,
¢), which are used to compute an overall metric of drug response
distance (D). EMDR were identified using 80% of the samples in
the training set. The D metric is the difference in overall
expression of markers increased in drug sensitive cells relative to
markers increased in drug resistant cells within a sample. This is
an important feature of DRUML for two reasons: firstly, the use
of averaged marker values circumvents the problem of missing
predictors when making predictions in verification or in future
datasets because D can be computed even in cases where omics
input data have missing values; secondly, D is an internally
normalized metric obtained by subtracting averaged signals from
two sets of phosphosites, proteins or transcripts within a given
sample; therefore, once the model is built, application of DRUML
to predict drug responses in a new cancer-derived sample does
not require comparison against a control or reference sample set.

Input datasets. To develop DRUML, we first analyzed the pro-
teomes and phosphoproteomes of a panel of 26 AML, 10 eso-
phageal and 12 hepatocellular carcinoma cell lines in triplicate
(three independent cultures per cell line) by LC-MS/MS as
described previously>>3¢ (Fig. 1b, details are given in Supple-
mentary Data 1). This analysis required 288 LC-MS/MS runs and
produced a sufficiently large basal phosphoproteomics and pro-
teomics dataset containing 22,804 phosphopeptides and 6455
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Fig. 1 Overview of Drug Ranking Using Machine Learning (DRUML). a Drug response (AAC) values were modeled for 659 drugs with different DL/ML
methods. Of these, 466 produced empirical markers of drug response and the responses for 411 drugs were reliably modeled by at least one learning
algorithm. The input for DL/ML model generation are averaged values of empirical markers of drug responses (EMDRs), which are combined to derive a
distance metric D. For each drug d and for each biological sample b, Dgp, = [(SR2-RQ2) 4- (SRB-RR3)], where 5?2 and S are median and third quantile
expression values of empirical markers increased in cells sensitive to a given drug, respectively; and R22 and R@3 are median and third quartile expression
values of empirical markers increased in cells resistant to the same drug. b LC-MS/MS workflow for the generation of proteomic and phosphoproteomic
datasets used to train DRUML. € Approach to obtain empirical markers of drug responses (EMDRs). d Response values for BYL-719 obtained from
PharmacoDB (n =19). To determine empirical markers of drug sensitivity and resistance for BYL-719, cell lines are split into sensitive and resistant groups
based on area above curve (AAC) values and Empirical Bayes Statistics of linear models were used to identify response markers by resampling. e Boxplot
of the distributions of empirical markers of resistance and sensitivity in phosphoproteomics data acquired for the cell lines shown in panel d (measured in
triplicate), boxplot with median center, interquartile box boundaries and range upper and lower hinges. f BYL-719 D values for the named cell lines
calculated from the EMDR distributions shown in (e). Learning algorithms were random forest (rf), cubist, bayesian estimation of generalized linear models
(bglm), partial least squares (pls), principal component regression (pcr), support vector machine (svm), deep learning (dl) and neural network (nnet).

proteins, which generated 3,283,776 and 929,520 quantitative
data-points, respectively (Supplementary Fig. 2a). Unsupervised
hierarchical clustering showed that AML cell lines separated from
those obtained from solid tumors and individual replicates
grouped together (Supplementary Fig. 2b), thus highlighting the
quality of the quantitative data. We provide these large datasets of
phosphoproteomics with matched proteomics data for AML,
esophageal and hepatocellular carcinoma cell lines available as a
community resource (Supplementary Data 2 and 3).

Drug response data in the form of area above the curve (AAC
values) were obtained from PharmacoDB32 for the same cell lines
for which we produced phospho- and proteomics data. To
normalize for essay conditions, AAC values were scaled so that
values ranged from 0 (no effect of drug) to 1 (maximum cell
killing) within a given cell line. Drugs were filtered by an
interquartile range > 0.15 AAC units to ensure that there was a
sufficient range of sensitivity, thus reducing the number of
profiled drugs from 659 to 466. For comparison we also used
RNA-seq data obtained from the DepMap portal3” as the input of
the models. Supplementary Fig. 2c¢ shows that principal

component analyses of the proteomics, phosphoproteomics and
drug response data grouped cell lines by cancer type. Thus, to
ensure that the models generated were interrogating the biological
mechanisms of sensitivity without the influence of tumor type, we
constructed separate DRUML models for solid and AML tumor
samples as explained below.

Dimensionality reduction. To illustrate the approach that we
used to reduce dimensionality, Fig. 1c-f show the determination
of EMDRs for BYL-719 (alpelisib), a small molecule inhibitor
with selectivity for Class Ia PI3Ka38. We employed a tenfold cross
validation method, in which for each drug, 80% of cell line
samples (the training set) were split into those that are resistant or
sensitive (using the median AAC cutoff) to each particular drug.
These sensitive and resistant groups were further split into ten-
folds each and proteins, phosphosites and transcripts were
compared (by Limma, Fig. 1c) by repeated resampling in the
resistant vs sensitive folds showing significantly different drug
response values. Markers consistently found to be increased or
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decreased in sensitive cells are stored as EMDRs and provided in
the DRUMLR package (Supplementary Data 4). We refer to
markers increased in sensitive cells as sensitivity markers and
those decreased as resistance markers. As outlined above, our
approach then involves combining the identified EMDRs into a
distance metric (D), which is essentially a measure of the dis-
tributions of sensitivity markers relative to resistance markers; D
is formally defined in Fig. 1a. Figure le shows the distribution of
phosphorylation site markers associated to resistance and sensi-
tivity to BYL-719. These distributions are then measured to derive
D values (Fig. 1le), which correlate with drug responses across
these cell lines and across all models tested (Supplementary
Fig. 3a—c). As expected, the correlation was statistically significant
when markers derived from AML or solid tumors were applied to
the respective tumor type but not when solid tumor derived
markers were used to compare AML cell responses and vice-versa
(Supplementary Fig. 3a-c).

To reduce dimensionality further, for each drug, DRUML
selects the top D values positively and negatively correlated with
the dose-response data across the cell lines in the training set for
all the 466 drugs. Supplementary Fig. 3d and 3e show that BYL-
719 responses are correlated with D values for several drugs. As a
positive control for the approach, we found that BYL-719 D
values obtained from the three different marker datasets were
consistently correlated with responses to this drug (Fig. 2a-c and
Supplementary Fig. 3a—c). Figure 2a, b depicts the distance values
of several drugs for cell lines ranked based on their response to
BYL-719. Figure 2c shows Spearman rho values of the association
between responses to BYL-719 and D values obtained from
transcriptomic, proteomic and phosphoproteomic datasets. This
analysis illustrates that D values were similarly correlated with
BYL-719 responses across the different omic datasets. In addition
to BYL-719 D values, responses to this drug were also correlated
with D values for other Class Ia PI3K inhibitors (GSK1059615,
PI-103, GDC-0941 and ZSTK474), and with D values for
inhibitors of kinases acting downstream and upstream of PI3K,
including of mTOR (tensirolimus and OSI-027), AKT (MK-
2206), SK6 (pluripotin) and receptor tyrosine kinases. BYL-719
responses were also correlated with D values for Aurora A/B
inhibitors and were anti-correlated with D values for inhibitors
against several HDAC isoforms (including AR-42, belinostat, and
LAQ824) and RAF kinase (FAR265) among others (Fig. 2a-c and
Supplementary Fig. 3d-e). The anti-correlation between
responses to PI3K and HDAC inhibitors is consistent with these
two inhibitor classes being synergistic in decreasing cancer cell
viability3®. Thus, D values from different drugs and datasets
produced biologically meaningful results and reproducibility
correlated with drug responses irrespective of the omic datasets
from which these were obtained.

ML models of responses to BYL-719. We next generated pre-
dictive ML models of drug responses using the top correlated D
values for a given drug obtained as explained above for BYL-719
(Figs. 1 and 2 and Supplementary Fig. 1). Since we did not have
prior knowledge of the learning methods that would be more
appropriate to predict drug responses from our datasets, we first
assessed the performance of diverse ML methods based on ran-
dom forest (rf), cubist, bayesian estimation of generalized linear
models (bglm), partial least squares (pls), principal component
regression (pcr), support vector machine (svm), deep learning
(dl) and neural network (nnet) learning algorithms. Although, as
discussed above, our primary aim was to compare models con-
structed from D values obtained from phosphoproteomics and
proteomics data, for benchmarking, we also constructed models
using D values obtained from RNA-seq data as the input. The

RNA-seq dataset was obtained from public resources!® making it
difficult to directly compare the results obtained using RNA-seq
with those obtained from our in-house generated proteomics and
phosphoproteomics data. Therefore, in this study we do not
derive conclusions on the relative performance of RNA-seq
derived models. For model generation, samples from the training
set were used to train regression models on the normalized drug
response (AAC) data by tenfold cross validation using the root
mean standard error (RMSE) metric as the loss function. DL/ML
models were then evaluated on the validation set by comparing
predicted vs actual responses using absolute error or standard
error (SE) and RMSE (for individual data points and overall
model performance, respectively).

Using BYL-719 as an initial example, we assessed the
performance of the different models generated using D values
derived from phosphoproteomic and proteomic datasets as
predictors (shown in Fig. 2d). Figure 2d, e show that DL and
NNET using D values from phosphoproteomics data produced
models with the smaller validation errors across all cell lines
(absolute errors < 0.2 AAC units, Fig. 2d, e). DL models were able
to predict 12 out of 12 validation data-points within <0.1
AAC units.

Systematic identification of EMDRs and ML model generation.
Systematic application of this approach (Fig. lc, Supplementary
Fig. 1) to 466 drugs in AML and solid cancer cell lines (Fig. 3a)
led to the identification of 1232 and 1139 phosphorylation sites,
542 and 480 proteins and 3046 and 3699 transcripts markers of
responses for AML and solid models, respectively. On average,
each drug was annotated with 128 +£37 (mean*SD, range
53-278) and 97.6 + 43 (15-269) phosphorylation sites markers of
drug responses for AML and solid models respectively, and with
40-50 protein markers of resistance or sensitivity on average in
solid and AML models (10-131 range) (Supplementary Fig. 4).
The number of RNA transcripts associated to drug responses was
greater because of the size of the input data. As Supplementary
Fig. 5a-d illustrates, several of these phosphorylation sites, pro-
teins and transcripts were found to be markers of responses for
several drugs. Of interest, phosphorylation sites on FAM129B,
SRRM2, lamin (LMNA) and on the mTOR substrate 4EBP1 were
found to be sensitivity markers for >200 drugs, whilst NPM1
(protein name nucleophosmin, NPM) phosphosites and the full
protein were frequent markers of resistance (Supplementary
Fig. 5¢).

We also sought to explore the biological relevance of our
EMDRs. We hypothesized that these proteins and phosphoryla-
tion sites should show commonalities between drugs with similar
modes of action, and thus group together by EMDR similarity. To
test this idea, we performed a systematic ontology, pathway and
kinase substrate enrichment analysis of the EMDRs (Supplemen-
tary Data 5). For each drug and pathway, a delta enrichment
value was calculated as the difference between enrichment of
sensitivity and resistance EMDRs for such drug and pathway. The
results of these analysis, provided in Supplementary Data 5, allow
exploring drugs’ modes of actions systematically. Examples of this
analysis in Fig. 3a, b show the enrichment of NCI pathways and
kinase downstream targets in EMDRs of PI3K/MTOR/AKT
pathway inhibitors. Pathways such as “Class I PI3K signaling
events mediated by Akt” and “p73 transcription factor network”
were enriched in EMDR for this drug class (Fig. 3b). Kinase
activity readouts enriched in sensitivity markers for PI3K/MTOR/
AKT pathway inhibitors included, among others, those for
PIK3CA and MTOR, whereas kinase targets for several other
kinases, such as MAPK1/3 and PCKI, were enriched in resistance
markers (Fig. 3c). These data are consistent with the role of
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MAPK and PKC pathways in compensating for PI3K inhibition is
some settings#. Kinase inhibitors are notoriously promiscuous®*!.
However, despite these compounds having different off-target
effects, unsupervised hierarchical clustering of the delta enrich-
ment values grouped 7 out of the 17 PI3K/MTOR inhibitors
together (Fig. 3d). Similar effect was observed for MEK inhibitors
(4 out of 6 clustered). To investigate whether our dataset may be
explored to identify drugs with similar mode of action, we
correlated the pathway/ontology delta enrichment values for all
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drugs. We then calculated similarity scores between drug pairs as
the Pearson correlation coefficient of the pathway enrichment
values for such pair of drugs (results are provided in
Supplementary Data 6). To illustrate this analysis, Fig. 3e shows
that the most similar drug to the PI3K inhibitor BYL-719 was
found to be GSK1059615, a compound that also has PI3K as the
intended target. Similarly, similar drugs to the MEK inhibitor
GSK1120212 (trametinib) included the MEK inhibitors RDEA119
and PD.0325901) as well as BHG712 (which targets EPHB4, a cell
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Fig. 2 Dimensionality reduction using empirical markers of drug responses. a Barchart of average AML cell line sensitivity to BYL-719 (n =19) rows are
sorted in order of BYL-719 sensitivity (AAC). b Mean expression of top drug marker distance (D) values which correlate both positively and negatively with
drug sensitivity to BYL-719 (2 tailed spearman correlation coeffiecient) in AML omics datasets (n =19), measured in triplicate. Rows are sorted in order of
BYL-719 sensitivity (AAC). Dot color intensities and sizes are proportional to distance values normalized 0-1. Rows in heatmap are ranked based on BYL-
719 sensitivity; columns are ordered based on hierarchical clustering (complete with Euclidean distance). ¢ Overall correlation of each distance marker with
BYL-719 sensitivity; red values correlate with sensitivity whilst blue values correlate with resistance. Dot sizes are proportional to Spearman rho value.
Columns in heatmap are ordered based on hierarchical clustering (complete with Euclidean distance). d Comparison of measured vs predicted responses
retuned by the eight different learning methods using phosphoproteomics data as input. Solid, dashed and dotted lines signify 0%, 10% and 20% absolute
error boundaries, respectively. e As in (d) but D values were obtained from proteomics data. Learning algorithms were random forest (rf), cubist, bayesian
estimation of generalized linear models (bglm), partial least squares (pls), principal component regression (pcr), support vector machine (svm), deep
learning (dl) and neural network (nnet).
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Fig. 3 Overview of systematic empirical markers of responses for >400 drugs. a Total number of empirical sensitivity and resistance markers identified
per drug in AML omics data (n = 26, measured in triplicate). Boxplots have median centers, interquartile box boundaries and range upper and lower hinges.
Not all drugs were profiled in all cells cell lines; markers were successfully identified for 466 drugs with sufficient data points. b, € Mean enrichment of NCI
pathways (b) and kinase activity markers (¢) in EMDRs for PI3K/MTOR pathway inhibitors. Rows and columns in heatmap are ordered based on
hierarchical clustering using Euclidean distances. Delta enrichment was calculated as the enrichment of the named pathway or kinase substrate set in
EMDR increased in sensitive cells to a given drug minus the enrichment of the same pathways or kinase substrate in EMDRs increased in resistant cells.
d Unsupervised clustering of delta enrichment values for all drugs with known targets (hierarchical clustering using Euclidean distances). e Drugs similar to
BYL-719 and GSK1120212 (trametinib) as determined by similarity scores calculated from the Pearson correlation of pathway enrichment values between
drug pairs. Pearson values were scaled and p values determined by comparing each similarity score value against the distribution of all values using one
sample t-test.
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surface receptor upstream of MEK#2) and the PLK1 inhibitor BI-
2536, consistent with the potential of PLKI in regulating MEK/
ERK pathway activity?3. As a further example, drugs similar to
the MTOR inhibitor rapamycin (as judged by similarity score
analysis) included several PI3K, ATK, S6K and CDKI1 inhibitors
(Supplementary Fig. 5e). Thus, our markers of drug response are
on the whole consistent with the drugs’ mode of action, thus
suggesting that these markers are indicative of the biological
mechanisms that determine responses to the profiled drugs.

DRUML model ensembles to rank drug responses. Next, we
used the approach described above (using BYL-719 as an exam-
ple) to systematically construct predictive models for 466 drugs
(of which 412 could be modeled) using the phosphoproteomics,
proteomics and RNA-seq distance D data obtained from AML
and solid tumors as input. In total we constructed 16,760 learning
models (Fig. 4a). About the same number of models were created
from phosphoproteomic and proteomics datasets (Fig. 4a). As
with the analysis of models of BYL-719 sensitivity, the DL algo-
rithm produced the smaller validation errors for the proteomics
and phosphoproteomic data derived from solid and AML tumor
cancer types with RMSE < 0.1 in all cases (Fig. 4b).

We then tested whether the ML models would allow ranking
drugs within a cell line based on their predicted efficacy. Figure 4c
shows the ranking of drugs in AML cells used for the validation of
the DL algorithm. We observed a remarkably high correlation
between the predicted and actual responses within cell models
across drugs of diverse mode of action. The RMSE between
predicted and actual responses were 0.078, 0.040 and 0.13 for DL
models derived from phosphoproteomics, proteomics and RNA-
seq datasets, respectively (Fig. 4b). Spearman rank correlation
analysis confirmed the existence of a strong correlation between
experimental and modeled drug responses (with mean Spearman
rho=0.88, q values <0.002., Fig. 4d, Supplementary Data 7).
Thus our results suggest that DRUML may be used to accurately
rank drugs of diverse mode of action within tumors based on
their predicted efficacy.

Verification in independent datasets. Ultimately, to be useful,
predictive models of drug response should be able to accurately
predict treatment outcome irrespective of the laboratory from
which the data was obtained. Therefore, to verify DRUML using
data collected by independent laboratories, we strived to test
whether the models generated with our training datasets would
predict drug responses from publicly available label-free pro-
teomics and phosphoproteomics datasets generated by other
groups. Label-free phosphoproteomics data from 8 colorectal
cancer cell lines from Piersma et al. was sourced from PRIDE [#4,
pride id: PXD001550] and reprocessed using an in house mass
spectrometry informatics pipeline?83°, leading to the identifica-
tion and label-free quantification of 12,197 phosphopeptides
(Supplementary Fig. 6). This dataset was then used as an input for
DRUML to predict drug responses from the models previously
generated using solid tumor’s phosphoproteomics data for six of
these cell lines (for which drug response data is available). To do
this, we generated drug D values (using the EMDR obtained from
previous work (Fig. 3) from this new dataset as outlined above
(Supplementary Fig. 1 and Methods), which we then used as the
input of our saved DRUML models (created using esophageal and
liver cancer phosphoproteomes). This analysis led to the predic-
tion of responses for 389 drugs (number of profiled drugs varied
across individual cell lines), which were then compared with
experimental data for drugs and cell lines present in drug
response repositories.

We observed a significant correlation between the DRUML-
derived drug response predictions and the actual responses for
these six cell lines across drugs with diverse mode of action
(Fig. 5a) and developmental phase (Fig. 5b). Associations were
statistically significant with p values (by Spearman Rank
correlation) ranging from p=2.1e-06 to p=1.4e-45 (Supple-
mentary Data 8). In this dataset, PCR and RF learning algorithms
performed as well or better than DL. For the RF models,
Spearman rho was 0.70 £0.077 (mean+SD, n=6 cell lines)
(Fig. 5¢) and mean g value = 1.1e-07 with >85% of all responses
being predicted with absolute errors <0.15 AAC units (Fig. 5d, e).
We also compared the predicted vs observed rankings of drug
responses within given cancer cell lines for all drugs (Supple-
mentary Fig. 6¢) and for the top 20 ranked drugs (Supplementary
Fig. 6d). The best performing learning algorithm was RF, with
which 88% of drug responses were predicted with differences in
ranking (predicted vs observed) < 50 positons and 86% of them
with raking differences < 20 positions. For the top 20 ranked
drugs, 51% of predictions had a difference in ranking < 50
positons and for 45% of them the difference in raking prediction
was < 20 positions.

We next applied DRUML to predict drug responses in a panel
of 47 cell lines derived from diverse solid tumor types. The input
for this analysis was proteomics data obtained from Jarnuczak
et al. [%, pride id: PXD013455], who compiled data from
11 separate studies. As with the analysis of the CRC dataset, our
set of EMDRs were used as input of DRUML models—in this case
generated with our solid tumor proteomics training dataset
(Figs. 1 and 3, Supplementary Fig. 1)—to predict responses from
iBAQ values provided by Jarnuczak et al. without further
processing (except for the averaging of iBAQ values of replicate
cell line measurements). Figure 6a and Supplementary Fig. 6
show that DRUML-predicted and actual drug responses were
highly associated across the 47 cell lines irrespective of their
assigned pathology as assessed by Spearman correlation of
predictions generated by the RF models (rho values were 0.64
+0.83 (mean+SD) with p values<le-05 for all cell line
comparisons, values are provided in Supplementary Data 9).
Mean square error (MSE) of prediction was below 0.1 for all cell
lines (Supplementary Fig. 7a, b). Models generated by RF showed
the greater Spearman rho values of association between predicted
and measured responses within cell lines (Fig. 6b), and as with the
predictions from phosphoproteomics data, >85% of drug
responses were predicted with absolute errors <0.15 AAC units,
and 95% of them with errors <0.25 AAC units, with RF model
producing the most accurate predictions (Fig. 6¢). Similarly, for
51% of predictions based on RF, the differences in drug response
ranking (predicted vs measured) within given cancer cell lines
were <20 ranking positions (Supplementary Fig. 7c); for the top
20 ranked drugs per cell model, 76% of predictions showed
rankings differences of <20 positions (Supplementary Fig. 7d).
Overall, these data indicate DRUML to accurately predict and
rank the efficacy of drugs of diverse mode of action in cancer cells
derived from different pathologies using proteomics data
obtained using routine LC-MS/MS from different laboratories.

Assessing DRUML in a clinically relevant sample set. To assess
whether DRUML-derived drug efficacy prediction may be clini-
cally relevant, we predicted responses of AML patients to cytar-
abine in a published AML phosphoproteomics sample set
obtained from Casado et al. containing data for 36 primary AML
samples?°. Patients in this cohort were treated with induction
chemotherapy consisting of cytarabine complemented with co-
treatments with an anthracycline (daunorubicin or doxorubicin).
AML patients that achieve complete remission (CR) undergo
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Fig. 4 Performance and accuracy of DRUML to rank drugs based on efficacy. a Total number of models generated from phosphoproteomics, proteomics
and RNA-seq data. Input data were split into solid (n=22) and AML (n = 26) cell line groups for model building. b Validation errors for each model
generated binned by ML method and input dataset. ¢ Comparison between measured and predicted drug response values produced by DL analysis of
phosphoproteomics distance values in the AML datasets. Each data-point represents a drug prediction color coded by the drugs' mode of action. Each cell

line was analyzed in triplicate and representative comparisons are shown.

Dotted line denotes slope of 1 with O intercept. d Spearman rank correlation

coefficient rho values between predicted and actual responses returned by the different learning models and input datasets). Boxplots (b and d) have
median centers, upper and lower quartile box boundaries and range upper and lower hinges. Learning algorithms were random forest (rf), cubist, bayesian

estimation of generalized linear models (bglm), partial least squares (pls),
learning (dl) and neural network (nnet).

consolidation therapy with low dose cytarabine®. Therefore, we
reasoned that AML patients predicted to be sensitive to cytar-
abine by DRUML would show greater clinical overall
survival (OS) than those predicted to be resistant. D values were
calculated from the analysis of EMDR in this primary AML

principal component regression (pcr), support vector machine (svm), deep

phosphoproteomic dataset, and these were used as input of saved
DRUML models to predict cytarabine responses. Patient OS was
significantly correlated with the D values for cytarabine (Spear-
man p = 0.014, Fig. 7a) and with predicted responses to this drug
(Spearman p =0.04, Fig. 7b). Similarly, OS analysis using the
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Fig. 5 Accuracy assessment of DRUML to rank drugs based on efficacy using an independent phosphoproteomics dataset. DRUML was used to predict
responses to 389 drugs in the colorectal cancer (CRC) cell lines shown using phosphoproteomic data obtained from Piersma et al (Jimenez lab, PRIDE
PXD001550) a, b Scatter plots of measured and predicted drug responses. Dotted lines represent 10% absolute error margin, each data-point represents a

drug prediction and statistical significance of drug ranking was assessed by
across cell lines (n = 8). Drugs are colored by mode of action. b Comparison

measuring Spearman's rank correlation coefficient. a Model performance
of measured and predicted drug responses binned by developmental stage of

the drug. ¢ Distribution of Spearman rho values by ML model. Boxplots represent median centers, interquartile box boundaries and range upper and lower
hinges. d, e Number (d) and proportion (e) of accurate predictions of drugs for all cell lines within 0.05, 0.1, 0.15 and 0.25 absolute errors. Learning
algorithms were random forest (rf), cubist, bayesian estimation of generalized linear models (bglm), partial least squares (pls), principal component

regression (pcr), support vector machine (svm), deep learning (dl) and neu

Kaplan-Meier method showed that patients with high predicted
cytarabine responses (greater than the mean predicted AAC)
survived longer than those with low predicted responses (Fig. 7c,
d). Median OS was 1.1 vs 3.4 years (p =0.0049, n=10 and 15
respectively) for patients that underwent CR, whereas in the
complete sample cohort median OS was 1.0 and 1.64 years for
low and high cytarabine predicted response groups, respectively
(p = 0.044). These results are consistent with the fact that patients
who achieve CR are treated with cytarabine in consolidation
therapy regimes, whereas refractory patients do not receive this
treatment?®. These results therefore indicate that DRUML-
predicted drug responses are clinically relevant in this setting.

Discussion
In this study we have demonstrated that large scale proteomics
and phosphoproteomics data can be used as an input for DL/ML
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ral network (nnet).

to rank drugs based on their predicted anti-proliferative effects in
a given cancer cell population. To facilitate this work, we devel-
oped DRUML, an ensemble of predictive models trained for 412
drugs with different mode of action and developmental stage.
This study was possible because methods for systematic and
relatively high-throughput label-free analysis of proteomes and
phosphoproteomes are now emerging?428-3147-51 " and drug
response data for a large number of compounds have been made
public recently!8-323435 However, since the use of large-scale LC-
MS/MS proteomics data for DL/ML model generation has not
been investigated systematically before, as part of DRUML
development, we assessed the suitability of such large scale
datasets as the input of predictive drug response models. In
contrast to small scale proteomic studies based on protein array
methods®23, which measure a few dozens of proteins and
phosphorylation sites, our study was based on the analysis of
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a  Correlation predicted vs measured responses by RF models, input: proteomics data (Jarnuczak et al)

1.00

0.75

154
,n=27|

108]

139

=151
=155
= 75|
= 156|

152
=161
=151
n =132
=152

152]

0.50

,n=
6.1e-06
2.2e-58,n
=79
1.1e-23,n
2.2e-60,n
3.4e-68 ,n
=0.0e+00
., n =60
1.5e-54 ,n

1.2e-51,n

0.0e+00 , n
q=
q

Spearrman rho

q
9.6e-23,n
9.2e-33,n
1.0e-34 ., n
3.5e-37 ,n

=)
S
T
)
<
S

1.1e-10,n
q
1.9e-09

=151
=99
=159
=161
0.0e+00 , n = 8|
=97]
q=28e-15,n =59
=147
=77]
=115}
=157
=109
= 96}
=7
=1.1e-06 , n = 27,
1.46-69 , n = 157]
=158
=160
,n=159
2.6e-51, n = 120}
=141

1.1e-26, n
q

1.4e-48 ,n
0.0e+00 , n
3.4e-29 ,n
0.0e+00, n
0.0e+00, n
0.0e+00, n
0.0e+00

c
o
b
o
o|=
©

q
1.3e-30, n

7.6e-40 ,n

2.5e-38,n

o
b
b
o o
N

q

q
4.6e-13,n

2.3e-13,n
1.6e-11,n
q=

Lineage Assigned

[l Blood | Brain [ Cervix JJj Ovary [l Bone [JJ] Breast [J] Colorectal

b
1.00 &3 o
-g 0754 ¢ ® e % $ nnet
C [ ]
JE Y 1 LN
= e . * F prc
c% 0.25 1 b '. g rf
0.00 >

N
b(\QQIQ\QO {‘6\@

Prostate
Abs error
@ cut—off:
9 15000+
e]
£ 10000 -
2
[
5 5000
8
<
++ 0+

Fig. 6 Accuracy assessment of DRUML to rank drugs based on efficacy using independent proteomics datasets derived from 47 tumor models and 8
pathologies. DRUML was used to predict drug responses for 47 cell lines using proteomic data obtained from 12 different laboratories and compiled by
Jarnuczak et al. (Vizcaino lab, PRIDE PXD013455). Statistical significance of predictions was measured using Spearman’s rank correlation coefficient and
Rho values are shown in figures (a and b). a Comparison of measured vs predicted drug responses within cellular models using the random forest method.
Samples are colored by sample origin. b Distribution of Spearman rho correlation values between predicted and actual drug responses for all samples

separated by ML learning algorithm. This boxplot has median centers, interquartile box boundaries and range upper and lower hinges. € Comparisons of the
proportion of accurate predictions at 0.05, 0.1, 0.15 and 0.25 error cut-offs returned by the different ML methods. Learning algorithms were random forest
(rf), cubist, bayesian estimation of generalized linear models (bglm), partial least squares (pls), principal component regression (pcr), support vector

machine (svm), deep learning (dl) and neural network (nnet).

>20,000 phosphorylation sites and ~7000 proteins, thus allowing
for systematic and unbiased discovery of drug response markers.
Our initial evaluation showed that phosphoproteomics data
consistently produced the lowest training and validation errors,
although the difference between the accuracy of proteomics- and
phosphoproteomics-based models was small. This is consistent
with previous findings from our and other laboratories, which
found that phosphoproteomics and proteomics data reflect the
mechanisms underpinning drug responses of cancer cells2224-27,

To limit the impact that noise and missing values in omics
datasets may have in DL/ML model performance, and to make
the approach practical, instead of individual phosphosites, pro-
teins or transcripts, DRUML uses as input a distance metric
(which we termed D) that measures the differences in distribution
levels between sensitivity and resistance markers for a given drug.
This feature contributes to the robustness of DRUML as D is an
internally normalized value which uses biologically relevant
selected markers, thereby reducing data noise and addressing the
potential issue of missing features in validation and verification
datasets. Indeed, since each D value is calculated on average by
hundreds of proteins, phosphorylation sites or transcripts (Fig. 3,
Supplementary Fig. 4), D metrics may be computed even when
there are missing EMDRs in the datasets being analyzed,
bypassing the need for imputation. DRUML uses D values for the

respective drug and those calculated for other drugs. For example,
the D values chosen to build DL/ML models for BYL-719 include
BYL-719 D values and also D values for inhibitors of enzymes in
pathways that act in parallel, upstream and downstream of PI3K
(BYL-719 main target, Fig. 2). Thus, consistent with BYL-719
known mode of action, selected D values for BYL-719 ML model
generation, consisted of those for PI3K, AKT, mTOR and RTK
inhibitors (which positively correlated with responses to BYL-
719) but also D values for drugs against HDAC, which are known
to synergize with PI3K inhibitors3®. This finding, together with
the observation that our EMDR sets grouped drugs based on their
mode of action when analyzed by unsupervised classification
methods (Fig. 3), suggest that EMDRSs, used to calculate D values
for DRUML model generation, reflect the biological mechanisms
of responses to the different drugs. We believe that the biological
relevance of the composite input features contributed to the
models’ predictive accuracy in independent datasets (Figs. 5, 6, 7)
despite these being trained with a relatively small number of
samples.

In our study, to avoid overfitting, we limited the number of D
values to construct DL/ML models for each drug to a maximum
of 60 (with a minimum of 14). By controlling the number of D
values to be included in models, it is possible to optimize learning
model performance. The calculation of D values relies on
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Fig. 7 Cytarabine DRUML model predicts prognosis of AML patients treated with cytarabine. DRUML was used to predict responses to cytarabine from
phosphoproteomics data obtained from 36 AML patients in triplicate by Casado et al. (PRIDE PXD005978). Prediction was obtained from the average
prediction derived from random forest, principal component regression and partial least squares models. a, b Correlation between overall patient survival
and cytarabine D values (a) or DRUML predicted responses (b) in patients that underwent complete remission (CR) and received consolidation therapy
(p values by Spearman, n=25). ¢, d Kaplan-Meier survival curves of patients with high (blue lines) or low (red lines) DRUML predicted cytarabine

responses for CR (¢) and for all (d) patients (p values by log-rank test). Mean of predicted cytarabine AAC was used as cut-off for patient stratification.

measuring EMDR and we obtained >2000 phosphorylation sites
and >800 proteins of such EMDR as input for DRUML; these are
made available to the community (Supplementary Information).
Previous studies have suggested that, in general, drug efflux
pump expression is the predominant variable impacting drug
resistance for a variety of drugs?’ and that, in particular, kinase
activation (detected as phosphorylation of kinase activity mar-
kers) underlies responses to kinase inhibitors?42>. In our work we
found pathways, ontologies and kinase substrates enriched in
sensitivity and resistance markers for the 466 drugs for which we
obtained EMDR (Fig. 3, Supplementary Data 5). In general drugs
targeting specific pathways had EMDR enriched in similar
pathways thus reflecting their mode of action. These data, pro-
vided in Supplementary Data 5 and 6, allow exploring drugs’
mechanisms of responses and their similarity with other drugs.
A limitation of DRUML is that the drugs for which responses
may be predicted are limited to those present in current reposi-
tories of drug responses. In this work we were able to predict the
ranking of 412 drugs within a cancer cell line but many of those
compounds are probes, which are unlikely to progress into the

clinic. As new drugs are developed by the pharmaceutical
industry, these could be incorporated into a retrained DRUML
model that captures all clinically relevant drugs. DRUML was
developed using data obtained from cancer cell lines, which
although they recapitulate some of the biology of the tissue from
which they originate, they have gone through the process of
immortalization and their growth conditions are different from
those in vivo. It is therefore arguable whether the mechanisms by
which primary tumors respond to drugs are preserved in
immortalized cell lines. Notwithstanding these considerations,
studies have shown that mechanisms of drug resistance identified
in cell lines can be clinically relevant>*. Similarly, we observed
that the cytarabine DRUML model predicted OS of AML patients
treated with this drug (Fig. 7), suggesting that, in at least some
cases, DRUML models may be able to predict clinical drug
responses.

Out of the different learning algorithms tested, we found that
PCR and RF produced lower errors in verification datasets
obtained from independent laboratories (Figs. 5 and 6), while the
DL models exhibited strong overtraining. This contrasts with
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findings from previous studies using transcriptomic data as input,
which found that DL outperformed other ML methods®. This
difference may be explained by the fact that DL performance is
only significantly greater than that provided by other ML meth-
ods when applied to large datasets®. Therefore, DL methods may
be better suited to train predictive models from phosphopro-
teomics and proteomics as larger data sets become available.

Assessment of DRUML using external verification datasets
from 53 cell lines analyzed by independent laboratories*44>
revealed that around 85% of the drugs could be ranked with
absolute errors < 0.15 and the drug rankings were statistically
significant (by Spearman) within all cancer models tested (Figs. 5
and 6). This represents a remarkable and surprising accuracy
given that DRUML was trained using esophageal and liver can-
cers, whereas the verification datasets consisted of data from cell
lines derived from bone, brain, breast, cervix, colorectal, ovary
and prostate cancers.

In summary, in this study we have assessed the accuracy of
DRUML to produce list of drugs ranked by their predicted effi-
cacy in reducing the proliferation of a given cancer cell popula-
tion. We trained and validated the approach with the analysis of
48 cell lines profiled in our laboratory and verified it with a set of
53 cancer cell models profiled by twelve other groups and in a 36
primary AML sample set. Our results indicate that DRUML ranks
drugs of different mode of action based on their predicted efficacy
across different cancer types with reasonable low error. Ulti-
mately, DRUML could assist drug prioritization by com-
plementing information obtained from clinicopathological
parameters and mutational analysis.

Methods

AML cell lines. The AML cell lines AML-193, CMK, K-052, Kasumi-1, KG-1,
HEL, ME-1, ML-2, MOLM-13, MONO-MAC-6, MV4-11, OCI-AML2, OCI-
AML3, OCI-AMLS5, P31/FU]J, PL-21, SIG-M5, SKM-1 and THP-1 were derived
from male patients while, GMD-1, KMOE-2, HL-60, M-07¢, NB-4 and NOMO-1
were derived from female patients. The sex of the patient from which OCI-M1 cells
were derived is not specified in the DSMZ-German Collection of Microorganisms
and Cell Cultures GmbH database.

Briefly, SIG-M5 and M-07e cell lines were maintained in IMDM supplemented
with 20% FBS and 1% Penicillin/Streptomycin (P/S). M-07e cells were in addition
supplemented with 10 ng/mL of GM-CSF. OCI-M1 and AML-193 cells were grown in
IMDM supplemented with 10% FBS and 1% P/S. AML-193 cells were in addition
supplemented with 5ng/mL of GM-CSF. OCI-AML2, OCI-AML3 and OCI-AML5
cell lines were grown in a-MEM supplemented with 20% FBS and 1% P/S. OCI-AML5
cells were also supplemented with 5 ng/mL of GM-CSE. K-052 cells were maintained
in a-MEM supplemented with 10% FBS and 1% P/S. GDM-1 and SKM-1 cells were
grown in RPMI-1640 supplemented with 20% FBS and 1% P/S. SKM-1 cells were also
supplemented with 1 ng/mL of GM-CSF. All other AML cell lines were maintained in
RPMI-1640 supplemented with 10% heat inactivated FBS and 1% (RPMI/FBS
medium). All cell lines were maintained at 37 °C and 5% CO, in a humidified
environment. Cell density was kept between 0.5 and 1.5 x 10° cells per mL.

For proteomics and phosphoproteomics analysis, AML cell lines were seeded in
IMDM medium supplemented with 10% FBS and 1% P/S in T75 flask (20 x 106
cells in 10 mL) and incubated for 3 h at 37 °C and 5% CO, in a humidified
environment. Cell suspensions were then transferred to 15 mL falcon tubes and
centrifuged at 520 x g for 5 min at 5 °C. Supernatants were removed and cell pellets
were washed twice with ice cold DPBS supplemented with phosphatase inhibitors
(1 mM NaF, 1 mM Na;VOy,). During washes, cells were centrifuged at 520 x g for 5
min at 5 °C. Cell pellets were transferred into 1.5 mL protein LoBind tubes, snap
frozen in dry ice and stored at —80 °C. Biological independent replicates for each
cell line (n = 3) were performed in different dates.

Hepatic cancer cell lines. The hepatic cancer cell lines HEP 3B2.1-7, HEP G2,
JHH2, JHH4, SK-HEP-1, SNU182, SNU-398, SNU-423, SNU-449 and SNU-475
were derived from male patients while the cell line SNU-387 was derived from a
female patient. The gender of the patient from which PLC/PRF/5 cells are derived
is not specified in the American Type Culture Collection database.

Cell lines SNU-387, SNU-423, SNU-182, SNU-398, SNU-475 and SNU-449
were maintained in RPMI-1640 supplemented with 1 mM sodium pyruvate, 10%
FBS and 1% P/S. Cell lines HEP 3B2.1-7, HEP G2, JHH2, JHH4, PLC/PRF/5 were
grown in MEM supplemented with 1 mM sodium pyruvate, 2 mM L-glutamine, 1X
NEAA solution, 10% FBS and 1% P/S and the SK-HEP-1 cell line was maintained
in MEM supplemented with 1 mM sodium pyruvate, 2 mM L-glutamine, 1X

NEAA solution, 20% FBS and 1% P/S. All cell lines were maintained at 37 °C and
5% CO, in a humidified environment. Cell density was kept between 0.2 and 0.4 x
10 cells per mL with 2-3 times per week medium renewal.

For proteomics and phosphoproteomics analysis, hepatic cell lines were seeded
in petri dishes (between 0.3 and 3.74 x 106 cells in 20 mL) and maintained in an
incubator for 3-8 days at 37 °C and 5% CO, in a humidified environment, until cell
confluence reached 80% approximately. Medium was replaced with fresh complete
medium 1.5 h prior to cell collection. Cells were subsequently washed three times
with cold DPBS supplemented with 1 mM NaF and 1 mM Na;VO, and lysed with
500 pL of urea buffer (8 M urea in 20 mM in HEPES, pH 8.0 supplemented with 1
mM NaF, 1 mM Na;VO,, 1 mM Na,P,0; and 1 mM p-glycerophosphate). After
cell collection with scrapers, lysates were snap frozen in protein LoBind tubes and
stored at —80 °C for further sample preparation.

Esophagus cancer cell lines. The Esophagus cancer cell lines KYSE-70, KYSE-
140, KYSE-410, KYSE-450 and OE-19 were derived from male patients, while the
cell lines COLO-680N, KYSE-150, KYSE-510, KYSE-520 and EO-33 were derived
from female patients.

The KYSE-150 cell line was maintained in RPMI-1640 supplemented with 49%
F12, 2% FBS and 1% P/S while KYSE-450 was grown in RPMI-1640 supplemented
with 45% F12, 10% FBS and 1% P/S. All other esophagus cell lines were maintained
in RPMI-1640 supplemented with 10% FBS and 1% P/S. All cell lines were
maintained at 37 °C and 5% CO, in a humidified environment. Cell density was
kept between 0.1 and 0.25 x 10 cells per mL.

For proteomics and phosphoproteomics experiments, esophagus cell lines were
seeded in petri dishes (between 1.5 and 3.5 x 10° cells in 10 mL) and maintained in
an incubator overnight at 37 °C and 5% CO, in a humidified environment. Then,
cells were washed twice with cold DPBS supplemented with 1 mM NaF and 1 mM
Na;VO, and lysed in 500 uL of urea buffer (8 M urea in 20 mM in HEPES, pH
8.0 supplemented with 1 mM NaF, 1 mM Na;VO,, 1 mM Na,P,0; and 1 mM p-
glycerophosphate), snap frozen and stored at —80 °C until further processing.

Sample preparation for phosphoproteomics and proteomics analysis. Phos-
phoproteomics and proteomics analysis was carried out as previously
described?>2957, AML cell pellets were lysed in 320 L of urea buffer (8 M urea in
20 mM HEPES, pH: 8.0, supplemented with 1 mM Na;VO,, 1 mM NaF, 1 mM
Na,P,0; and 1 mM p-glycerophosphate). AML cell lysates were homogenised by
sonication for 90 cycles (30 s on 30 s off) while thawed esophagus and hepatic cell
lines were homogenised for 15 cycles (30 s on & 40's off) in Diagenode Bioruptor®
Plus and insoluble material was removed by centrifugation.

Proteins were quantified using BCA protein assay. Then, 300 pg of protein were
subjected to cysteine reduction and alkylation using sequential incubation with 10
mM dithiothreitol and 16.6 mM iodoacetamide for 1 h and 30 min, respectively, at
25 °C with agitation. Trypsin beads (50% slurry of TLCK-trypsin) were equilibrated
with three washes with 20 mM HEPES (pH 8.0), the urea concentration in the
protein suspensions was reduced to 2 M by the addition of 900 pL of 20 mM
HEPES (pH 8.0), 100 pL of equilibrated trypsin beads were added and samples
were incubated overnight at 37 °C. Trypsin beads were removed by centrifugation
(2000 x g at 5°C for 5min) and samples were divided in 250 pg for
phosphoproteomics analysis and 50 pg (200 pL) for proteomics analysis.

For phosphoproteomics analysis, peptide solutions were desalted using Oasis
HLB cartridges (Waters) following the manufacturer’s indications. Briefly,
cartridges were set in a vacuum manifold device and the pressure was adjusted to
5 mmHg. Then, cartridges were conditioned with 1 mL acetonitrile (ACN) and
equilibrated with 1.5 mL of wash solution (0.1% trifluoroacetic acid (TFA), 2%
ACN). Peptides were loaded in the cartridges and washed twice with 1 mL of wash
solution. Finally, peptides were eluted with 500 pL of glycolic acid buffer 1 (1 M
glycolic acid, 5% TFA, 50% ACN). Enrichment of phosphorylated peptides was
performed with TiO, Beads. Desalting eluents were normalized to 1 mL with
glycolic acid buffer 2 (1 M glycolic acid, 5% TFA, 80% ACN) and incubated with
25 ul of TiO, buffer (500 mg TiO, beads in 500 pL of 1% TFA) for 5 min at room
temperature. TiO, beads were packed by centrifugation into empty spin columns
previously washed with ACN. TiO, beads were sequentially washed by
centrifugation (1500 x g for 3 min) with 100 pL of glycolic acid buffer 2,
ammonium acetate solution (100 mM ammonium acetate in 25% ACN) and three
times with neutral solution (10% ACN). For phosphopeptide elution, spin tips were
transferred to fresh tubes, 50 uL of elution solution 1 (5% NH,OH, 7.5% ACN)
were added and tips were centrifuged at 1500 x g for 3 min. The elution step was
repeated a total of four times. Finally, samples were snap frozen, dried in a
SpeedVac vacuum concentrator and phosphopeptide pellets were stored at —80 °C.

For proteomics experiments, peptide solutions were desalted using C18 +
carbon top tips (Glygen Corporation). The tips were conditioned twice with 200 pL
of elution solution 2 (70/30 ACN/ H20 + 0.1% TFA) and equilibrated twice with
200 pL of wash solution. Sample were loaded into the top tips and washed twice
with 200 pL of wash solution. For peptide elution, the tips were transferred to fresh
tubes, and peptides were eluted three times with 250 pL of elution solution 2. In all
desalting steps, tips were centrifuged at 1500 x g for 5 min at 5 °C. Eluted peptide
solutions were dried in a SpeedVac vacuum concentrator and peptide pellets were
stored at —80 °C.
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Mass spectrometry. To avoid batch effects, cells were grown and cell pellets
(for AML) and protein extracts (for adherent cells) were collected and stored.
Then, all samples were processed in consecutive days using the same buffer
stocks and run in the same instrument in consecutive days in a random order.
Note that the cell pellets and protein extracts for each of the three biological
replicates per cell line were generated on different days to better capture the
biological variability of the experiment. Samples were processed and run in the
mass spectrometry in consecutive days in order to reduce technical variability.

Mass spectrometry for identification and quantification of proteins and
phosphopeptides was carried out by LC-MS/MS as described before2%57. For
phosphoproteomics analysis, peptide pellets were reconstituted in 13 pL of
reconstitution buffer (20 fmol/uL enolase in 3% ACN, 0.1% TFA) and 5 uL were
loaded onto an LC-MS/MS system. For proteomics analysis, peptide pellets were
reconstituted in 10 pL of 0.1% TFA, 2 uL of this solution were further diluted in
18 uL of reconstitution buffer and 2 uL were injected into the LC-MS/MS
system.

The LC-MS/MS platform consisted of a Dionex UltiMate 3000 RSLC coupled to
Q Exactive” Plus Orbitrap Mass Spectrometer (Thermo Fisher Scientific) through
an EASY-Spray source. Mobile phases for the chromatographic separation of
the peptides consisted of Solvent A (3% ACN; 0.1% FA) and Solvent B (99.9%
ACN; 0.1% FA). Peptides were loaded in a p-pre-column and separated in an
analytical column using a gradient running from 3 to 23% B over 60 min (for
phosphoproteomics) or 120 min (for proteomics). The UPLC system delivered a
flow of 2 pL/min (loading) and 250 nL/min (gradient elution). The Q Exactive Plus
operated a duty cycle of 2.1s. Thus, it acquired full scan survey spectra (m/z
375-1500) with a 70,000 FWHM resolution followed by data-dependent
acquisition in which the 15 most intense ions were selected for HCD (higher energy
collisional dissociation) and MS/MS scanning (200-2000 m/z) with a resolution of
17,500 FWHM. A dynamic exclusion period of 30 s was enabled with m/z window
of +10 ppm. Mass spectrometry data collection was carried out using Thermo
Scientific FreeStyle 1.4.

Phosphopeptides and protein identification. Peptide identification from MS
data was automated using Mascot Daemon 2.6.0 workflow in which Mascot
Distiller v2.6.1.0 generated peak list files (MGFs) from RAW data and the
Mascot search engine (v2.6) matched the MS/MS data stored in the MGF files to
peptides using the SwissProt Database (SwissProt_20160ct.fasta). Searches
had a FDR of ~1% and allowed 2 trypsin missed cleavages, mass tolerance

of +10 ppm for the MS scans and +25 mmu for the MS/MS scans, carbami-
domethyl Cys as a fixed modification and PyroGlu on N-terminal Gln, oxida-
tion of Met and phosphorylation on Ser, Thr, and Tyr as variable modifications
(phosphorylation was only included for searches performed using
phosphoproteomics data).

Phosphopeptide and protein quantification. Identified peptides were quantified
using a label-free procedure based on extracted ion chromatograms (XICs).
Missing data points were minimized by constructing XICs across all LC-MS/MS
runs for all the peptides identified in at least one of the LC-MS/MS runs?$. XIC
mass and retention time windows were +7 ppm and +2 min, respectively. Quan-
tification of peptides was achieved by measuring the area under the peak of the
XICs. Individual peptide intensity values in each sample were normalized to the
sum of the intensity values of all the peptides quantified in that sample. Data points
not quantified for a particular peptide were given a peptide intensity value equal to
the minimum intensity value quantified in the sample divided by 10. For the
phosphoproteomics experiments, we obtained a phosphorylation index (ppIndex)
by summing the signals of all peptide ions containing the same modification site.
For the proteomics experiment, protein intensity values were calculated by adding
the intensities of all the peptides derived from a protein. Protein score values were
expressed as the maximum Mascot protein score value obtained across samples.

Data source and processing. Drug sensitivity and RNA-Seq data were sourced
from PharmacoDB?32. Proteomics and phosphoproteomics data was generated
in-house for 26 AML, 10 esophagus and 12 HCC cell lines in house (see above)
or obtained from*44>2> Drug response, proteomics and phosphoproteomics
datasets were normalized and proteomics and phosphoproteomics data were
further normalized by centering and scaling. RNA-seq data was obtained as
quantile normalized values.

Empirical markers of sensitivity and resistance method. To reduce the
dimensionality of the input datasets, we obtained EMDR using ensembles of sta-
tistical differences between cells resistant or sensitive to a given drug. For each
drug, cell lines were separated into relative resistant or sensitive populations using
the median drug response value (AAC) as cutoff. Resistant and sensitive popula-
tions were split into ten groups using the createMultiFolds caret function. AAC
values in each of the sensitive groups were compared to each the resistant groups,
leading to 100 comparisons. Resistant and sensitive samples in the repeats with p
values < 0.05 between AAC values were used to generate markers. Linear models
were generated and contrasts were computed for phosphorylation sites, proteins or
transcripts across the sampled cell lines using the Limma package. The significance

of these contrasts was assessed by empirical bayes statistics and p values adjusted
for multiple testing using the Benjamini-Hochberg method. EMDRs were defined
as significant if a fold value +0.8 and p value < 0.05 were achieved in at least 80% of
the repeats. Those found to be increased in sensitive cells relative to resistant were
regarded as markers of sensitivity while those increased in resistant cells were
considered to be resistant markers.

DRUML method. Drug enrichment values were computed using custom in house
scripts from the DRUMLR package®8. For each drug and for each cell line,
distance (D) values were computed by subtracting the median and 3rd quartiles
of sensitivity markers expressions from resistance markers expressions. D values
for each drug were correlated with all drug response data by spearman ranking
and top correlated D values (ranging from 14 to 60, half of which had a positive,
and the other half negative, correlation) were used as the input for ML models.
The precise number of D values for model generation was determined as follows.
We selected all the D values with spearman p value <0.05. If the number of
correlated values was greater than 30 in a given direction (positive or negative
correlation), then we selected the top 30 corrected values in such direction up to
a maximum of 60. If the number of correlated D values was <7 in a given
direction, then we selected the top 7 correlated D values in that direction. Models
were built using the caret and h2o packages (see code availability section). Data
was separated into training and validation populations at the cell line level with a
partition ratio of 0.8 using the createDataPartion function in caret. D values were
then normalized 0-1 before being used to build regression models using DL,
nnet, Bayesian estimation in generalized linear models (bglm), random forest
(rf), pls, principal components regression (pcr), svm and cubist ML models. The
h2o R package was used for DL model generation and the caret R package for all
other models. Each model underwent hyperparameter tuning with tenfold cross
validation (repeated CV, n =10, repeats = 3) using RMSE as the loss function
except for pls and pcr models which were tuned using leave-one-out cross
validation (code is provided in the GitHub repository for this project), and were
subsequently validated using the validation data and verified using MS data from
other laboratories. The code used for making and assessing the different learning
models is provided in the DRUMLR package.

Bioinformatics and statistics. Statistical analysis was carried out in R (v3.6)
using base functions unless otherwise stated. ML model performance was
evaluated using caret and R base functions. Ontology, pathway and kinase
substrate enrichment analysis of EMDRs was evaluated using in-house R scripts
using ontologies and pathways obtained from the literature3%>9-62, Enrichment
was calculated as [a/b]/[c/d], were a is number of EMDR that belong to a given
set (pathway/ontology/downstream kinase substrate), b is number of EMDRs, ¢
is number of proteins, phosphosites or transcripts that belong to such set in the
background data and d is the size of the background data. The p values were
obtained by the hypergeometric test and adjusted using the FDR method.
Similarity scores between drugs were determined by correlating pathway
enrichment values between pairs of drugs using the Pearson method in the ‘cor’
base R function. Pearson R values were scaled so that median and standard
deviation of the distributing was 0 and 1 respectively, and p values determined
by comparing each similarity score value against the distribution of all values
using one sample f-test (R base function t.test). The R code used for these
analyses is provided in the GitHub repository for this project.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw mass spectrometry proteomics and phosphoproteomics data generated during
this study have been deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD019591 Project https://doi.org/10.6019/
PXD019591). The processed omics datasets and EMDR data files are provided in https://
github.com/CutillasLab/DRUML-publication-datasets. Drug sensitivity and RNA-seq data
was sourced from PharmacoDB [https://zenodo.org/record/1038045#.Y Cw3K2j7SHs]32.
Colorectal phosphoproteomics validation data were obtained from PRIDE dataset
identifier PXD001550 44. Proteomics validation data were drawn from PRIDE dataset
identifier PXD013455 4. AML patient phosphoproteomics validation data was obtained
from PRIDE project PXD005978 2°. Drug information was sourced from DrugBank
[https://go.drugbank.com/]%3 and chEMBL [https://www.ebi.ac.uk/chembl/]¢%.

Code availability

The following opensource R (v3.6) packages were used for DRUML model building and
ontology/pathway and drug similarity analysis; foreach (v1.5.1), doParallel (v1.0.16),
limma (v3.42.2), caret (v6.0-86), h20 (v3.32.0.1), Cubist (v0.2.3), pls (v2.7-3), glmnet
(v4.0-2), kernlab (v0.9-29), ggdendro (v0.1.22) and randomForest (v4.6-14). The
DRUMLR R package is accessible from https://github.com/CutillasLab/DRUMLR 38
(https://doi.org/10.5281/zenodo.4555600). The code for ontology/pathway and drug
similarity analyses are available at https://github.com/CutillasLab/Term-Enrichment-
Analysis (https://doi.org/10.5281/zenodo.4562584).
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